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Abstract. We propose a unified optimization framework that combines
neural networks with dictionary learning to model complex interactions
between resting state functional MRI and behavioral data. The dictio-
nary learning objective decomposes patient correlation matrices into a
collection of shared basis networks and subject-specific loadings. These
subject-specific features are simultaneously input into a neural network
that predicts multidimensional clinical information. Our novel optimiza-
tion framework combines the gradient information from the neural net-
work with that of a conventional matrix factorization objective. This
procedure collectively estimates the basis networks, subject loadings, and
neural network weights most informative of clinical severity. We evaluate
our combined model on a multi-score prediction task using 52 patients
diagnosed with Autism Spectrum Disorder (ASD). Our integrated frame-
work outperforms state-of-the-art methods in a ten-fold cross validated
setting to predict three different measures of clinical severity.

1 Introduction

Resting state fMRI (rs-fMRI) tracks steady-state co-activation patterns i.e. func-
tional connectivity, in the brain in the absence of a task paradigm. Recently, there
has been an increasing interest in using rs-fMRI to study neurodevelopmental
disorders, such as autism and schizophrenia. These disorders are characterized
by immense patient heterogeneity in terms of their clinical manifestations. How-
ever, the high data dimensionality coupled with external noise greatly confound
a unified characterization of behavior and connectivity data.
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Most techniques relating rs-fMRI to behavior focus on discriminating patients
from controls. In the simplest case, statistical tests are used to identify group dif-
ferences in rs-fMRI features [8]. From the machine learning side, neural network
architectures have become popular for investigating neuroimaging correlates of
developmental disorders [8]. However, very few works handle continuous valued
severity prediction from connectomics data. One recent example is the work of
[3], which develops a convolutional neural network (CNN) to predict two cogni-
tive measures directly from brain connectomes. A more traditional example is the
work of [2], which combines a dictionary learning on patient correlation matri-
ces with a linear regression on the patient loadings to predict clinical severity.
Their joint optimization procedure helps the authors extract representations that
generalize to unseen data. A more pipelined approach is presented in [6]. They
decouple feature selection from prediction to estimate multiple severity measures
jointly from voxel-ROI correlations. In contrast, our method jointly optimizes for
an anatomically interpretable basis and a complex non-linear behavioral encoding
that explain connectivity and clinical severity simultaneously.

We propose one of the first end-to-end frameworks that embeds a tradi-
tional model-based representation (dictionary learning) with deep networks into
a single optimization. We borrow from the work of [2] to project the patient cor-
relation matrices onto a shared basis. However, in a notable departure from prior
work, we couple the patient projection onto the dictionary with a neural network
for multi-score behavioral prediction. We jointly optimize for the basis, patient
representation, and neural network weights by combining gradient information
from the two objectives. We demonstrate that our unified framework provides us
with the necessary representational flexibility to model complex interactions in
the brain, and to learn effectively from limited training data. Our unique opti-
mization strategy outperforms state-of-the-art baseline methods at estimating a
generalizable multi-dimensional patient characterization.

2 Multidimensional Clinical Characterization
from Functional Connectomics

Figure 1 illustrates our framework. The blue box denotes our dictionary learning
representation, while the gray box is the neural network architecture. Let N be
the number of patients and P be the number of regions in our brain parcellation.
We decompose the correlation matrix Γn ∈ RP×P for each patient n, via K
dictionary elements of a shared basis X ∈ RP×K , and a subject-specific loading
vector cn ∈ RK×1. Thus, our dictionary learning objective D is as follows:

D(X, {cn}; {Γn}) =
∑

n

[
||Γn − Xdiag(cn)XT ||2F + γ2||cn||22

]
+ γ1||X||1 (1)

where diag(cn) denotes a matrix with the entries of cn on the leading diagonal
and the non-diagonal entries as 0. Since Γn is positive semi-definite, we add
the constraint cnk ≥ 0. The columns of X capture representative patterns of co-
activation common to the cohort. The loadings cnk capture the network strength
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Fig. 1. A unified framework for integrating neural networks and dictionary learning.
Blue Box: Dictionary Learning from correlation matrices Gray Box: Neural Network
architecture for multidimensional score prediction (Color figure online)

of basis k in patient n. We add an �1 penalty to X to encourage sparsity, and an
�2 penalty to {cn} to ensure that the objective is well posed. γ1 and γ2 are the
corresponding regularization weights. The loadings cn are also the input features
to a neural network. The network parameters Θ encode a series of non-linear
transformations that map the input features to behavior. Yn ∈ RM×1 is a vector
of M concatenated clinical measures, which describe the location of patient n
on the behavioral spectrum. Ŷn is estimated using the latent representation cn.
We employ the Mean Square Error (MSE) to define the network loss L:

L({cn},Θ; {Yn}) =
∑

n

�Θ(cn,Yn) = λ
∑

n

||Ŷn − Yn||2F (2)

Since L is added to D defined in Eq. (1), λ balances the contribution of the
dictionary learning and neural network terms to the objective.

Our proposed network architecture is highlighted in the gray box. Our mod-
eling choices require us to carefully control for two key network design aspects:
representational capacity, and convergence of the optimization. Given the low
dimensionality of the input cn, we opt for a simple fully connected Artificial
Neural Network (ANN) with two hidden layers and a width of 40. We use a tanh
function

(
tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x)

)
as the activation to the first hidden layer.

We then use a SoftPlus (SP (x) = log(1 + exp(x))), a smooth approximation to
the Rectified Linear Unit, as the activation for the second layer. Experimentally,
we found that these modeling choices are robust to issues with saturation and
vanishing gradients, which commonly confound neural network training.



712 N. S. D’Souza et al.

2.1 Joint Optimization Strategy

We use alternating minimization to iteratively optimize for the dictionary ele-
ments X, the patient projections {cn}, and ANN parameters Θ. Here, we
sequentially optimize for each hidden variable in the objective by fixing the
rest, until global convergence. We use Proximal Gradient Descent to handle the
non-differentiable �1 penalty in Eq. (1), which requires the rest of the objective
to be convex in X. We circumvent this issue by the strategy in [2]. Namely,
we introduce N constraints of the form Vn = Xdiag(cn), and substitute them
into the Frobenius norm terms in Eq. (1). These constraints are enforced using
the Augmented Lagrangians {Λn}. If Tr[Q] denotes the trace operation, we add
N terms of the form Tr

[
ΛT

n (Vn − Xdiag(cn))
]

+ 0.5 ||Vn − Xdiag(cn)||2F to
Eq. (1). We then iterate through the following four steps until convergence.

Proximal Gradient Descent on X. Each step of the proximal algorithm
constructs a locally smooth quadratic model of ||X||1 based on the gradient of
D with respect to X. Using this model, the algorithm iteratively updates X
through shrinkage thresholding. We fix the learning rate for this step at 10−4.

Updating the Neural Network Weights Θ. We optimize the weights Θ
according to the loss function L using backpropagation to estimate gradients.
There are several obstacles in training a neural network to generalize and few
available theoretical guarantees to guide design considerations. We pay careful
attention to this, since the global optimization procedure couples the updates
between Θ and {cn}. We employ the ADAM optimizer, which is robust to small
datasets. We randomly initialize at the first main update. We found a learning
rate of 10−4, scaled by 0.9 every 5 epochs to be sufficient for encoding the training
data, while avoiding bad local minima and over-fitting. We train for 50 epochs
with a batch-size of 12. Finally, we fix the obtained weights to update {cn}.

L-BFGS Update for {cn}. The objective for each cn decouples as follows:

J (cn) = �Θ(cn,Yn) + γ2||cn||22 + Tr
[
ΛT

n (Vn − Xdiag(cn))
]

+ 0.5||Vn − Xdiag(cn)||2F s.t. cnk ≥ 0 (3)

Notice that we can use a standard backpropagation algorithm to compute the
gradient of �Θ(.) with respect to cn, denoted by ∇�Θ(cn,Yn). The gradient of
J with respect to cn, denoted g(cn), can then be computed as follows:

g(cn) = ∇�Θ(cn,Yn)+cn ◦ [[IK ◦ (XTX)
]
1
]−[IK ◦ (ΛT

nX + VT
nX)

]
1+2γ2cn

where 1 is the vector of all ones, and ◦ represents the Hadamard product. The
first term is from the ANN, while the rest are from the modified dictionary
learning objective. The gradient combines information from the ANN function
landscape with that from the correlation matrix estimation. For each iteration r,
the BFGS [9] algorithm recursively constructs a positive-definite Hessian approx-
imation B(crn) based on the gradients estimated. Next, we iteratively compute
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a descent direction p for crn using the following bound-constrained objective:

p∗ = arg min
p

J (crn) + g(crn)Tp + 0.5pTB(crn)p s.t. crnk + pk ≥ 0 (4)

We then update cn as: cr+1
n = crn + δp∗, repeating this procedure until conver-

gence. Effectively, the BFGS update leverages second-order curvature informa-
tion through each B(cn) estimation. In practice, δ is set to 0.9.

Augmented Lagrangian Update for the Constraint Variables. We have
a closed form solution for computing the constraint argument {Vn}. The dual
Lagrangians, i.e. {Λn} are updated via gradient ascent. We cycle through the
collective updates for these two variables until convergence. We use a learning
rate of 10−4, scaled by 0.75 at each iteration of gradient ascent.

Prediction on Unseen Data. We use cross validation to assess our framework.
For a new patient, we compute the loading vector c̄ using the estimates {X∗,Θ∗}
obtained during training. We remove the contribution of the ANN term from the
joint objective, as we do not know the corresponding value of Ȳ for a new patient.
The proximal operator conditions are assumed to hold with equality, removing
the Lagrangian terms. The optimization in c̄ takes the following form:

0.5 c̄T H̄c̄ + f̄T c̄ s.t. Āc̄ ≤ b̄ (5)

H̄ = 2(XTX) ◦ (XTX) + 2γ2IK

f̄ = −2IK ◦ (XTΓnX)1; Ā = −IK b̄ = 0

This formulation is similar to Eq. (4) from the BFGS update for {cn}. H̄ is
also positive definite, thus giving an efficient quadratic programming solution to
Eq. (5). We estimate the score vector Ȳ by a forward pass through the ANN.

2.2 Baseline Comparisons

We compare against two baselines that predict severity scores from correlation
matrices Γn ∈ RP×P . The first has a joint optimization flavor similar to our
work, while the second uses a CNN to exploit the structure in {Γn}:

1. The Generative-Discriminative Basis Learning framework in [2]
2. BrainNet Convolutional Neural Network (CNN) from [3]

Implementation Details. The model in [2] adds a linear predictive term
γ||CTw − y||22 + λ3||w||22 to the dictionary learning objective in Eq. (1). They
estimate a single regression vector w to compute a scalar measure yn from
the loading matrix C ∈ RK×N . To provide a fair comparison, we modify
this discriminative term to γ||CTW − Y||22 + λ3||W||22, to predict the vectors
{Yn ∈ RM×1}Nn=1 using the weight matrix W ∈ RK×M . Using the guidelines
in [2], we fixed λ3 and γ at 1, and swept the other parameters over a suitable
range. We set number of networks to K = 8, which is the knee point of the
eigenspectrum for {Γn}.
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The network architecture in [3] predicts two cognitive measures from corre-
lation matrices. In our case, {Γn} are of size P × P . For our comparison, we
modify the output layer to be of size M . We use the recommended guidelines in
[3] for setting the learning rate, batch-size and momentum during training.

For our framework, the trade-off λ from Eq. (2) balances the dictionary
learning and neural network losses in the joint optimization. The generalization
is also governed by γ1 and γ2 from the dictionary learning. Using a grid search,
we fix {γ1 = 10, γ2 = 0.1, λ = 0.1}. The number of networks K is fixed to 8.

3 Experimental Evaluation and Results

Data and Preprocessing. We validate our method on a cohort of 52 chil-
dren with high-functioning ASD. Rs-fMRI data is acquired on a Phillips 3T
Achieva scanner (EPI, with TR/TE = 2500/30 ms, flip angle = 70◦, res
= 3.05×3.15×3 mm, having 128 or 156 time samples). We use the pre-processing
pipeline in [2], which consists of slice time correction, rigid body realignment,
normalization to the EPI version of the MNI template, Comp Corr, nuisance
regression, spatial smoothing by a 6 mm FWHM Gaussian kernel, and bandpass
filtering (0.01−0.1 Hz). We defined 116 regions using the Automatic Anatomi-
cal Labeling (AAL) atlas. The contribution of the first eigenvector is subtracted
from the regionwise correlation matrices because it is roughly constant and biases
the predictions. The residual correlation matrices, {Γn}, are used as inputs for
all three methods.

We use three clinical measures quantifying various impairments associated
with ASD. The Autism Diagnostic Observation Schedule (ADOS) [5] is scored
by a clinician and captures socio-communicative deficits along with repetitive
behaviors (dynamic range: 0−30). The Social Responsiveness Scale (SRS) [5] is
scored through a parent/teacher questionnaire, and quantifies impaired social
functioning (dynamic range: 70−200). On the other hand, Praxis measures the
ability to perform skilled motor gestures on command, by imitation, and for
tool usage. Two trained research-reliable raters score a videotaped performance
based on total percent correct gestures (dynamic range: 0−100).

Performance Characterization. Figure 3 illustrates the multi-score regres-
sion performance of each method based on ten fold cross validation. Our quan-
titative metrics are median absolute error (MAE) and mutual information (MI)
between the actual and computed scores. Lower MAE and higher MI indicate
better performance. The orange points indicate training fit, while the blue points
denote performance on held out samples. The x = y line indicates ideal perfor-
mance (Fig. 2).

Observe that both the Generative-Discriminative model and the BrainNet
CNN perform comparably to our model for predicting ADOS. However, our
model outperforms the baselines in terms of MAE and MI for SRS and Praxis,
with the blue points following the x = y line more closely. Generally, we find that
as we vary the free parameters, the baselines predict one of the three scores well
(in Fig. 3, ADOS), but fit the rest poorly. In contrast, only our framework learns a
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Our Method Genera ve-Discrimina ve Framework BrainNet CNN

MAE:  2.97    MI:  2.30 MAE:  2.95 MI:  2.27 MAE:  2.67 MI:  3.26

MAE:  16.21 MI:  4.20

MAE:  41.07 MI:  2.47

MAE:  20.24 MI:  3.76

MAE:  11.70 MI:  3.70

MAE:  19.28 MI:  2.82

MAE:  15.89 MI:  3.21

Fig. 2. Multi-Score Prediction performance for Top: ADOS Middle: SRS Bottom:
Praxis by Red Box: Our Framework. Green Box: Generative-Discriminative Frame-
work from [2]. Blue Box: BrainNet CNN from [3] (Color figure online)

Fig. 3. Eight subnetworks identified by our model from multi-score prediction. The
blue and green regions are anticorrelated with the red and orange regions. (Color figure
online)

representation that predicts all three clinical measures simultaneously, and hence
overall outperforms the baselines. We believe that the representational flexibility
of neural networks along with our joint optimization is key to generalization.

Figure 3 illustrates the subnetworks in {Xk}. Regions storing positive values
are anticorrelated with negative regions. From a clinical standpoint, Subnet-
work 8 includes the somatomotor network (SMN) and competing, i.e. anticor-
related, contributions from the default mode network (DMN). Subnetwork 3
also has contributions from the DMN and SMN, both of which have been widely
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reported in ASD [4]. Along with the DMN, Subnetworks 5 and 2 contain positive
and competing contributions from the higher order visual processing areas (i.e.
occipital and temporal lobes) respectively. These findings concur with behavioral
reports of reduced visual-motor integration in ASD [4]. Finally, Subnetworks 2, 3,
and 8 exhibit central executive control network and insula contributions, believed
to be critical for switching between self-referential and goal-directed behavior [7].

4 Conclusion

We have introduced the first unified framework to combine classical optimiza-
tion with the modern-day representational power of neural networks. This inte-
grated strategy allows us to characterize and predict multidimensional behav-
ioral severity from rs-fMRI connectomics data. Namely, our dictionary learning
term provides us with interpretability in the brain basis for clinical impairments.
Our predictive term cleverly exploits the ability of neural networks to learn rich
representations from data. The joint optimization procedure helps learn infor-
mative connectivity patterns from limited training data. Our framework makes
very few assumptions about the data and can be adapted to work with complex
clinical score prediction scenarios. For example, we are developing an extension
our method to handle case/control severity prediction using a mixture density
network (MDN) [1] in lieu of a regression network. The MDN models a mix-
ture of Gaussians to fit the target bimodal distribution. Accordingly, the net-
work loss function is a negative log-likelihood, which differs from conventional
formulations. This is another scenario that may advance our understanding of
neuropsychiatric disorders. In the future, we will also explore extensions that
simultaneously integrate functional, structural and dynamic information.
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