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Abstract. We introduce a novel switching Markov model for combined
epileptic seizure detection and localization from scalp electroencephalog-
raphy (EEG). Using a hierarchy of Markov chains to fuse multichannel
information, our model detects seizure onset, localizes the seizure focus,
and tracks seizure activity as it spreads across the cortex. This model-
based seizure tracking and localization is complemented by a nonpara-
metric EEG likelihood using convolutional neural networks. We learn our
model with an expectation-maximization algorithm that uses loopy belief
propagation for approximate inference. We validate our model using
leave one patient out cross validation on EEG acquired from two hospi-
tals. Detection is evaluated on the publicly available Children’s Hospital
Boston dataset. We validate both the detection and localization perfor-
mance on a focal epilepsy dataset collected at Johns Hopkins Hospital.
To the best of our knowledge, our model is the first to perform automated
localization from scalp EEG across a heterogeneous patient cohort.

1 Introduction

Epilepsy is one of the most common neurological disorders, and 20–40% of
patients are medically refractory and do not respond anti-epileptic drugs [3].
When refractory epilepsy is focal, i.e. originating from a single seizure onset
zone [7], surgical resection of this area may be the only treatment available.
Scalp EEG is the first modality used to localize the seizure onset zone. While
scalp EEG is non-invasive and easy to acquire, it is plagued by artifacts, such as
muscle and eye movements, which may completely obscure the seizure character-
istics. In addition, visual inspection of EEG recordings is time consuming and
requires extensive training due to the inherent difficulty in identifying seizure
activity.

Automated seizure localization methods fall into three general categories:
spike detection, source localization, and signal decomposition. Spike detectors
c© Springer Nature Switzerland AG 2019
D. Shen et al. (Eds.): MICCAI 2019, LNCS 11767, pp. 253–261, 2019.
https://doi.org/10.1007/978-3-030-32251-9_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-32251-9_28&domain=pdf
http://orcid.org/0000-0003-3838-433X
http://orcid.org/0000-0001-6457-938X
http://orcid.org/0000-0002-9236-1588
http://orcid.org/0000-0003-2653-5591
https://doi.org/10.1007/978-3-030-32251-9_28


254 J. Craley et al.

identify epileptiform activity between seizures. Channels containing this activity
are noted as potential onset areas. However, the accuracy of these algorithms
is hard to evaluate, as inter-rater agreement between clinicians for interictal
epileptiform activity is low [10]. Source localization methods solve an inverse
problem to identify the location within the brain the seizure activity originates
from. However, these methods require manual identification of the seizure inter-
val beforehand. Additionally, inverse methods require more expensive imaging,
such as MRI, for accurate coregistration [8]. Decomposition methods, such as
canonical decomposition, are used to localize the seizure in the sensor space but
also require annotated onsets [9]. These methods are difficult to use in practice
and do not provide much information beyond clinical review.

The work of [1,2] proposes an interesting alternative for seizure detection
based on a coupled hidden Markov model (CHMM). The coupling between EEG
channels acts as a spatio-temporal regularizer for the estimated seizure activ-
ity. While the CHMM achieves better detection accuracy, its ability to localize
seizure activity requires heuristic evaluation of the output posterior probabilities.

We propose a novel Regime-Switching Markov Model for Propagation and
Localization (R-SMMPL) and demonstrate it on both seizure detection and onset
zone localization. Our model decouples detection, propagation, and localization
into three interacting sets of variables. A switching variable controls the dynamic
regime of the system, acting as a seizure onset and offset detector. In response
to changes in this switching variable, we use a modified CHMM [1] to track the
spread of seizure activity when seizures are detected. Our formulation includes
a set of hierarchically linked location variables which allows us to tie onset loca-
tion distributions between multiple recordings. We equip the R-SMMPL with
nonparametric likelihoods using convolutional neural networks (CNNs) as in [2].

Unlike prior work, the R-SMMPL allows us to pool information across mul-
tiple seizure recordings into an onset zone hypothesis for each patient. Further-
more, it can easily incorporate expert information about the seizure onset times
and locations. We validate our model on Johns Hopkins Hospital (JHH) dataset
containing exclusively focal seizures and the Children’s Hospital Boston (CHB)
dataset of unspecified seizure types. To our knowledge, the R-SMMPL is the first
unified framework for both seizure detection and localization from scalp EEG.

2 R-SMMPL Formulation

Figure 1 shows our graphical model (left) and variable descriptions (right). The
plate notation in Fig. 1 describes how multiple seizure recordings are aggregated
for a single patient. Bold variables represent collections across time and, if appli-
cable, EEG channel. Figure 3 illustrates the temporal evolution of a seizure as
represented by the inner plate of Fig. 1. Seizure propagation pathways are defined
by the graph S, shown by the channel nodes and blue lines in Fig. 3. Notice that
we have coupled neighboring and contralateral channels, as these are the most
common propagation patterns observed in EEG seizure recordings.

Let N be the total number of patients, Jn be the number of recordings belong-
ing to patient n, and let superscript nj denote recording j in patient n. M is the
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Symbol Description
Snj [t] Switching chain for regime-switching
Xnj

i [t] Seizure state of EEG channel i
Lnj Seizure onset location

Cnj
i [t] EEG observation in channel i

Fnj [t] Full EEG observation for all channels
S Seizure propagation graph
πn Onset distribution for patient n
χ Seizure onset probability
ψ Seizure offset probability
ρ Seizure propagation constant

Fig. 1. Left: R-SMMPL plate model. Squares denote parameters while circles indicate
random variables. Observed variables are shaded gray. Right: Variable descriptions.
Snj � {Snj [t]}Tt=0, X

nj � {Xnj
i [t]}T,M

t=0,i=1, and similarly for Fnj and Cnj , respectively.

number of EEG channels (typically 18–20) and T is the recording duration. The
switching chain Snj [t] tracks the overall state of the system as a seizure occurs
and progresses. The chains Xnj

i [t] track the spread of seizure activity through
EEG channel i. Each recording has an onset location Lnj ∈ {1, 2, . . . ,M}. Emis-
sion variables Fnj [t] and Cnj

i [t] are observed from the switching chain Snj and
the individual CHMM chains Xnj

i [t], respectively. The joint distribution is:

P (L,S,X,F,C) =
N∏

n=1

Jn∏

j=1

P
(
Lnj

) T∏

t=1

P
(
Snj [t] | Snj [t − 1]

)
P

(
Fnj [t] | Snj [t]

)

M∏

i=1

P
(
Xnj

i [t] | Xnj
i [t − 1], Lnj , Snj [t],Xnj

neS(i)[t − 1]
)

P
(
Cnj

i [t] | Xnj
i [t]

)

Localization: For each patient, a multinomial location parameter πn represents
the probability that a seizure from patient n will exhibit onset in a particular
EEG channel. For each recording, the onset location Lnj is drawn from πn.

Regime-Switching and Propagation: The variables Snj [t] progress through
five states: pre-seizure baseline, seizure onset, seizure spreading, seizure offset,
and post-seizure baseline. The variables Xnj

i [t] are binary and denote either
normal (Xnj

i [t] = 0) or seizure (Xnj
i [t] = 1) in channel i at time t. Each recording

begins in pre-seizure baseline with all channels exhibiting normal EEG activity.

0 11− ρηnj
i [t] 1

ρηnj
i [t]

Fig. 2. Transition diagram for Xnj
i [t] when

Snj [t] is in the spreading state.

Seizure onset and spread are shown
on the right side of Fig. 3. At each time
step, there is probability χ of a seizure
occurring, represented by the switch-
ing chain Snj [t] transitioning into the
onset state. At onset, chain Xnj

Lnj [t]
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Fig. 3. Model schematic. The left side depicts the CNNs used for likelihood scoring
prior to inference. The orientations of the kernels and convolutions are shown in red.
At right the system is shown at seizure onset. Channel nodes and blue connections
define the propagation graph S. The seizure switching chain is shown above, where
seizure activity is shown in red while normal activity is white. During spreading, seizure
propagates through Xnj (below) along the blue propagation pathways. (Color figure
online)

enters the seizure state, representing abnormal activity at the seizure onset zone.
The switching chain Snj [t] then immediately transitions to the spreading state.

During spreading, seizure activity is allowed to spread through the seizure
propagation graph S defined in Fig. 3. This spreading is governed by the prob-
abilities in the transition diagram in Fig. 2. The probability that Xnj

i [t] enters
the seizure state (1) from the non-seizure state (0) at time t is proportionate
to the number of possible ways a seizure can spread to channel i in S. Let
ηnj
i [t] �

∑
j∈neS Xnj

j [t] be the number of neighbors in S that are in the seizure
state at time t. The probability Xnj

i [t] enters the seizure state at time t + 1 is
ρηnj

i [t], where ρ is the parameter that governs how quickly the seizure spreads.
During the seizure, the probability of seizure offset at any time is ψ. When

the switching chain Snj [t] enters an offset state, all EEG channels Xnj
i [t] return

to normal activity. This offset is immediately followed by a post-seizure baseline
state for the remainder of the recording where no seizure activity is observed.

CNN Likelihood: Implemented in PyTorch, each CNN contains four convo-
lution and pool layers as shown in Fig. 3. Convolution layers use eight kernels
of five samples with two sample zero padding and LeakyReLU activation. Max
pooling with a kernel size of two was used to halve the size of the representation
at each layer. Softmax classification was performed on the concatenated result
of the final pooling. All individual CNNs for P (Cnj

i [t] | Xnj
i [t]) were trained for

60 epochs; those for all channels P (Fnj [t] | Snj [t]) were trained for 100 epochs
using Adam, batches of 32 samples, a learning rate of 0.5, and cross entropy loss.
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Algorithm 1. Approximate inference using loopy belief propagation.
1: function Approximate Inference(Fnj ,Cnj , χ, ψ, ρ, πn)
2: Pass the location variable, Lnj , to the Xnj chains
3: for Two Iterations do
4: Forward-backward algorithm on Snj chain to update γnj

S [t]
5: Pass detection messages from Snj chain down to Xnj chains
6: Approximate forward-backward on Xnj to update γnj

Xi
[t], ξnj

i [t], and φnj
i [t].

7: Pass the Xnj messages upward to the Snj chain
8: end for
9: Pass the Xnj messages to Lnj to perform localization and update τnj

10: return γnj
S [t], γnj

Xi
[t], ξnj

i [t], φnj
i [t], and τnj

11: end function

By construction, the CNN outputs the posterior probability P (Xnj
i [t] |

Cnj
i [t]) and P (Snj [t] | Fnj [t]). Therefore, to obtain the likelihood factor, the dis-

criminative CNN outputs are rescaled using Bayes rule, e.g. P (Cnj
i [t] | Xnj

i [t]) ≈
P (Xnj

i [t]|Ci[t])P (Cnj
i [t])

P̂ (Xnj
i [t])

∝ P (Xnj
i [t]|Cnj

i [t])

P̂ (Xnj
i [t])

. We only require the likelihood up to

a constant factor for inference and thus drop the P (Ci[t]) term. P (Xnj
i [t])

is approximated by the empirical distribution of seizure in the dataset, i.e.
P̂ (Xnj

i = 1) = # seizure windows
# windows , P̂ (Xnj

i = 0) = 1 − P̂ (Xnj
i = 1) as in [2].

3 Inference and Learning

The hierarchical and coupled nature of our R-SMMPL renders exact inference
intractable. Therefore, we rely on loopy belief propagation [6] for approximate
inference. Loopy belief propagation is a general class of algorithms where local
marginal beliefs are passed as messages between neighboring random variables.
These messages between represent the current local beliefs. By multiplying and
summing these messages we can find posterior marginal beliefs of random vari-
ables in our model. The marginals needed for learning our model are defined
below. Our message passing schedule is detailed in Algorithm 1. While loopy
belief propagation provides no convergence guarantees, we observe this proce-
dure to yield robust marginals, with little change after further message passing.

We use an expectation-maximization (EM) type algorithm for fitting the R-
SMMPL to data. Our model contains three unknown transition parameters: the
seizure onset probability χ, the offset probability ψ, and the spreading rate ρ.
In addition we learn the onset distribution πn for each patient. The updates are
derived by setting the first derivative of the expected log-likelihood of the joint
distribution with respect to the parameter of interest to zero.

The parameters χ and ψ are updated by dividing the total number of onset
and offset transitions by the expected number of timesteps spent in the pre-
seizure and seizure spreading state, respectively. Let the singleton posterior
marginals of Snj [t] be defined as γnj

S [t](k) � P (Snj [t] = k | Fnj ,Cnj) where
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k = 0 represents pre-seizure baseline and k = 2 is the spreading state.

χ =
∑N

n=1 Jn

∑N
n=1

∑Jn

j=1

∑T
t=0 γnj

S [t](0)
, ψ =

∑N
n=1 Jn

∑N
n=1

∑Jn

j=1

∑T
t=0 γnj

S [t](2)

The spreading parameter ρ is updated by calculating the ratio of times chan-
nels enter a seizure state versus times channels remain in non-seizure states,
weighted by the number of neighboring channels exhibiting seizure activity.
Here we require the singleton and pairwise marginals γnj

Xi
[t](k) � P (Xnj

i [t] =
k | Fnj ,Cnj) and ξnjXi

[t](k, l) � P (Xnj
i [t] = l,Xnj

i [t − 1] = k | Fnj ,Cnj).
In addition, let the expected number of neighbors in the seizure state be
φnj
i [t] = E

[
ηnj
i [t] | Fnj ,Cnj

]
.

ρ =

∑N
n=1

∑Jn

j=1

∑M
i=1

∑T
t=1 ξnjXi

[t](0, 1)
∑N

n=1

∑Jn

j=1

∑M
i=1

∑T
t=0 φnj

i [t]γnj
Xi

[t](0)

Let τnj [t](i) � P (Lnj = i | Fnj ,Cnj) be the posterior belief of onset in channel
i. For patient n, we update πn via πn(i) ∝ ∑Jn

j=1 τnj(i). This update pools the
expected beliefs regarding onset location across all of a patient’s recordings.

4 Experimental Results

CHB Dataset: Our first dataset consists of publicly available seizure record-
ings acquired at Children’s Hospital Boston (CHB) [4]. We selected 185 seizures
from 24 patients for our experiment. Clinical annotations for CHB include onset
and offset times. The type of seizure, general or focal, and potential onset local-
ization are not provided. Recordings in this dataset were made at 256 Hz in a
longitudinal montage using the standard 10/20 electrode placement system [5].

JHH Dataset: Our second dataset consists of focal seizure recordings from the
epilepsy monitoring unit of Johns Hopkins Hospital. Expert clinical annotations
from this hospital include rough onset and offset times as well as consensus of
rough onset zone localizations, allowing us to evaluate both detection and local-
ization. The dataset includes 88 seizure recordings from 15 patients. Recordings
were sampled at 200 Hz using 10/20 electrode placement.

Preprocessing: We extracted seizure recordings with up to 10 min of baseline
before and after the seizure annotations. Channels were normalized to mean zero
and variance one. High- and low-pass filters were applied at 1.6 Hz and 50 Hz to
remove DC offsets and noise. A notch filter at 60 Hz was applied to remove any
possible power line contamination. One second windows with 250 ms overlap
were extracted from all EEG channels. Test and train sets were separated using
leave one patient out cross validation. Unlike studies which train patient-specific
detectors, our evaluation focuses on generalizability to unseen patients.
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Baseline Comparisons: We compare detection accuracies to the discrimina-
tive CNNs trained on the individual EEG channels (I-CNN) and those trained
on all channels (S-CNN). These baselines let us assess the effect of the propa-
gation model in fusing information across time and channels. We also compare
to the CHMM model in [1] using the same I-CNN for likelihood scoring. The
CHMM was shown to outperform standard machine learning classifiers in [1].

Seizure Detection: Table 1 reports the detection performance of our R-
SMMPL and baseline methods. We evaluate each algorithm’s performance in
terms of true positive rate (TPR), true negative rate (TNR), area under the
curve (AUC), precision (P), and F1 score on a frame-wise basis. Performance
was evaluated based on how well the methods detected the entire seizure interval.
This evaluation is more stringent than prior work, which flags a single correct
detection.

The R-SMMPL outperforms all baselines in TPR, P, and F1 scores. We
observe that higher TPR comes at the cost of more false positives, reflected by
lower TNR. Both the R-SMMPL and CHMM outperform the CNN baselines,
illustrating the positive effect of data fusion through the use of spatio-temporal
models. The main difference is that the CHMM provides localization information
only via heuristic analysis, whereas the R-SMMPL provides it automatically.

L Temporal R Temporal R Temporal R Fronto-central R Temporal L Fronto-temporal

Bilateral Temporal L Temporal L Fronto-temporal L Temporal R Fronto-temporal

L Antero-temporal L Parietal L Fronto-temporal R Temporal

Fig. 4. Localization results from the JHH dataset. Posterior distributions over onset
locations for each patient are shown with clinician provided onset diagnoses above.

Localization Results: We evaluate the localizing ability of our model when
provided with a rough seizure onset time. We stipulate that the switching vari-
able should remain in pre-seizure baseline until the clinician annotated onset.
The R-SMMPL is free to switch on any time after this point.

Figure 4 shows the estimated location distribution πn for each patient, along
with the clinically diagnosed onset location. In this figure, red regions repre-
sent areas our model assigns high probability for the onset location. In the top
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Table 1. Detection results for both datasets

JHH dataset CHB dataset

Trial TPR TNR AUC P F1 TPR TNR AUC P F1

R-SMMPL 0.62 0.84 0.84 0.65 0.53 0.67 0.94 0.86 0.58 0.58

CHMM 0.46 0.96 0.86 0.65 0.51 0.59 0.96 0.85 0.57 0.54

S-CNN 0.34 0.92 0.76 0.41 0.32 0.48 0.95 0.84 0.48 0.44

I-CNN 0.28 0.92 0.77 0.33 0.27 0.30 0.95 0.82 0.34 0.29

row we show cases where our algorithm reported a primary mode in agreement
with clinical consensus of the seizure onset zone. The second row shows cases
in which the secondary modes agrees with the clinical annotations. By pooling
seizure localization information across all of each patient’s recordings, our model
identifies likely seizure onset zones in agreement with clinical consensus in 11 of
15 patients. The R-SMMPL misidentifies the seizure onset location in just four
patients. In summary, not only does the R-SMMPL automatically detect and
track the seizure, but also leverages multiple seizure presentations to create an
onset zone hypothesis for each patient. These results demonstrate the promise
of R-SMMPL for clinical evaluation of epilepsy.

5 Conclusion

We have presented R-SMMPL, the first unified framework that provides clini-
cally relevant detection and localization information from scalp EEG. R-SMMPL
combines a probabilistic graphical model of seizure propagation with deep learn-
ing for data driven likelihood scoring. We derive an inference and learning pro-
cedure for the model and demonstrate its detection and localization abilities on
wholly unseen patients, mirroring clinical conditions. Our methodology for auto-
matic seizure onset zone localization by tracking seizure propagation is the first
of its kind. In the future, we plan to integrate clinically informative seizure semi-
ology into the prior distribution for the seizure onset. We also plan to reweight
onset posteriors when pooling individual recordings to automatically distinguish
between noisy recordings and those with better onset location evidence.
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