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ABSTRACT

We present a generative-predictive framework that captures the differences in regional brain activity between
a neurotypical cohort and a clinical population, as guided by patient-specific genetic risk. Our model assumes
that the functional activations in the neurotypical subjects are distributed around a population mean, and that
the altered brain activity in neuropsychiatric patients is defined via deviations from this neurotypical mean.
We employ group sparsity to identify a set of brain regions that simultaneously explain the salient functional
differences and specify a set of basis vector, that span the low dimensional data subspace. The patient-specific
projections onto this subspace are used as feature vectors to identify multivariate associations with genetic
risk. We have evaluated our model on a task-based fMRI dataset from a population study of schizophrenia. We
compare our model with two baseline methods, regression using Least Absolute Shrinkage and Selection Operator
(LASSO) and Random Forest (RF) regression, which establishes direct association between the brain activity
during a working memory task and schizophrenia polygenic risk. Our model demonstrates greater consistency
and robustness across bootstrapping experiments than the machine learning baselines. Moreover, the set of brain
regions implicated by our model underlie the well documented executive cognitive deficits in schizophrenia.
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1. INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) allows us to assess brain activity in response to a given stimuli
or experimental paradigm. It has become a powerful tool to study brain abnormalities in patients with neuropsy-
chiatric disorders. The neural activity induced by an experimental stimulus is highly correlated with changes in
blood flow and oxygenation,1 and fMRI helps us to detect those changes. Diseases, like schizophrenia are often
typified by gross distortions in the perception of reality.2,3 However, fMRI protocol have also been used to study
higher-level deficits, such as deficits in executive cognition and working memory.

1.1 Estimating Group Differences

1.1.1 Univariate Analysis

Conventional task-based fMRI analysis relies on a general linear model (GLM)4 to estimate the level of activation
for each voxel or region in response to a stimulus. As a first level of analysis the GLM models intra-subject
variability in activity across the brain. From here, group level inferences are often made via mass univariate
techniques, such as ANOVA or ANCOVA,5 that compare the distribution of first-level activations betweens two
groups. Although these methods are widely used, they fail to capture multivariate interactions across the brain.
The results of the univariate techniques also vary widely across different subset of data, resulting in low repro-
ducibility.6 In contrast, our model can capture the multivariate interactions while drawing group level inference.
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1.1.2 Machine learning methods

In contrast to univariate methods, machine learning algorithms optimize for group separability using all features
of interest. For example the support vector machine (SVM)7,8 constructs a high-dimensional set of hyper-planes
that maximally separates the data into multiple categories. Different ensemble based methods like random forest
(RF),9 and neural networks10 have shown their ability to learn multiscale features while enhancing classification
accuracy. While these methods can successfully capture multivariate interactions with high generalization accu-
racy, they treat the brain activation as an arbitrary collection of features. As a result the patterns implicated
by these methods can be difficult to interpret. In contrast to standard machine learning techniques, our model
assumes that the functional activations of the neurotypical group is distributed across a population mean while
altered brain activations of the neuropsychiatric patient group is defined by the deviations from the neurotypical
mean. This hypothesis leads us to identify differential patterns in brain that are more clinically interpretable.

1.2 Decomposition of fMRI

1.2.1 Embedding in the low dimensional space

High dimensionality of the data and limited training samples are a major constraint in neuroimaging studies.
One approach to mitigate this issue is to concentrate the high dimensional imaging space onto a low dimensional
basis. For example, Principal Component Analysis (PCA)11 searches for the underlying linear subspace that
explains the maximum variance in the data. The main advantages of PCA are its computational tractability and
unsupervised nature. It does not require any external variables to extract the principal components. However,
PCA suffers from multiple setbacks.12 Similar to machine learning techniques, each principal component is a
weighted combination of features, which may not be clinically interpretable. In addition, the PCA formulation
does not account for the required outcome (e.g. discrimination of disease vs healthy). An alternative to PCA
is independent component analysis (ICA).13 ICA assumes a generative model where the time courses of all
the voxels of BOLD fMRI data are captured as a linear combination of independent sources. Unlike PCA,
ICA depends on higher order statistics for independence. The main drawback of ICA is it does not naturally
generalize to multiple subjects, which results in post hoc analysis, where subject level ICA is first done, and then
group level inference are drawn based on the component spatial overlap. The major disadvantage of ICA is that
the formulation cannot account for patient heterogeneity. In contrast to both PCA and ICA the generative part
of our model decomposes the brain activations into a linear combination of sparse anatomical basis vectors. The
subject specific combination of these basis vectors captures the patient heterogeneity within the cohort.

1.2.2 Dictionary learning based methods

Another popular method for fMRI data analysis is sparse dictionary learning.14 Dictionary learning models
the observed data as a noisy observation of an underlying latent structure. This latent structure is a linear
combination of sparse basis vectors known as atoms. Here, the basis captures the common patterns of activations
across all patients, while the linear combination can explain patient heterogeneity. The conventional dictionary
learning framework ignores external factors, such as the heterogeneity in clinical scores or variation in genetic
data. However, the majority of neuropsychiatric disorders are highly heterogeneous in terms of the associated
disease presentations and the underlying risk factors. In order to capture both the patient specific heterogeneity,
and the patterns of activations that are different between patients and controls we introduce a generative-
predictive framework that identifies aberrant brain activity, which tracks with genetic risk. We validate our
framework on a cohort of schizophrenia patients.

2. METHODS

2.1 Joint modelling of altered brain activity and genetic risk

Fig. 1 represents a overview of our joint modelling approach. The generative part of our model is very closely
related to dictionary learning. The modelling of the generative part is based on the assumption that the average
functional activity of the clinical group differs from their neurotypical counterparts in certain brain regions,
which can be approximated by a set of sparse basis vectors. We rely on the `2,1 norm for group sparsity; this
norm has been previously used for feature selection and for localizing quantitative traits to predict cognitive
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Figure 1. The joint modelling framework to capture brain activity and genetic risk. The gray box represents the generative part of
the model for a single schizophrenia patient. We captured altered brain activity in the patients as deviations from the population
mean. The major contribution of the anatomical regions to overall deviation are shown as surface plots in the yellow box. The green
box is the predictive part of the model that track the genetic risk as linear regression.

outcomes.15,16 However, its application to identify group-level changes in brain activity while tracking genetic
risk has not been explored. The predictive part of our model is a linear regression model, where the feature
vectors are constructed as projections of the data onto the subspace spanned by the set of basis vectors. Here
we assume a linear relationship between the feature vectors and the genetic risk. Our joint optimization enables
us to learn a set of regions that capture the group differences in brain activity, along with a set of projection
coefficients, which capture the variability in genetic information across patients.

2.1.1 The Generative Framework

This section provides a formal mathematical description of our generative-predictive framework. Mathematically,
let J denote the number of normal controls, and let M be number of clinical patients. We assume that the brain
has been parcellated into N ROIs, from which we extract an N × 1 vector f, that quantifies the functional
activation across the ROIs. The inputs to our model are the feature vectors {fj}Jj=1 for neurotypical controls

and {f̄m}Mm=1 for clinical patients, along with the patient-specific polygenic risk scores {pm}Mm=1.

Modelling the neurotypical control population: Throughout our analysis we assume that the brain acti-
vation of the neurotypical control population is distributed across a population mean, s whereas the neuropsy-
chiatric patient population is distributed across a shifted version of this population mean. So, we model the
functional activation of the control group in the following way:

fj = s + n where n(i) ∼ iid,

where σ2 is the variance of the noise associated with the activation of each region.

Modelling the neuropsychiatric patient population: We hypothesize that the given neurological disorder
manifests as coordinated disruptions over a set of brain regions. Accordingly, our model stipulates that the
deviation caused by the disorder in different brain regions can be approximated by a set of sparse basis vectors.

Proc. of SPIE Vol. 10949  1094927-3
Downloaded From: https://www.spiedigitallibrary.org/conference-proceedings-of-spie on 23 Jun 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Unlike the control population the brain activation of the clinical patients are distributed across a shifted mean
s + Axm. Hence, we model the activation of region i in patient m as:

f̄m(i) ≈

{
s(i) when: A(i, ·) = 0

s(i) + A(i, ·)xm when: A(i, ·) 6= 0
(1)

where A ∈ RN×d is the set of sparse canonical basis vectors that captures the contribution of each region to
overall activation differences. As seen in Eq. (1) if A(i, ·) ≈ 0, the mean activation at region i can be well
approximated by the neurotypical mean, s(i), but if A(i, ·)� 0 then the patient population has a substantially
different activation contribution at region i than the population mean. Hence the matrix A captures the set
of brain regions that are substantially affected by the neurological disorder. Moreover, the feature vectors xm

captures the patient heterogeneity within the cohort. In this model we assume an additive effect for all the
basis vectors, so we introduce the non-negativity constraint xm ≥ 0 on the coefficients. At a high level, our
decomposition reduces the data dimensionality while simultaneously capturing patient heterogeneity.

2.1.2 The predictive framework

As shown in Fig. 1, we use the patient specific coefficients {xm}Mm=1 to predict the genetic risk in a linear
regression model. We concatenate the coefficients {xm}Mm=1 into a matrix X = [x1, . . . ,xM ] ∈ Rd×M and the
patient specific risk scores into a vector, p = [p1, . . . , pM ] ∈ RM×1. We then fit them in a linear regression model:

p ≈ XTb

where b ∈ Rd×1 is the regression vector. We include an `2 regularization on b.

2.1.3 The joint model

We combine both the generative and predictive terms into a joint objective, which can be expressed as a matrix
decomposition and regression framework as follows:

J (x1, ...,xM , s,b,A) =

J∑
j=1

||fj − s||22 +

M∑
m=1

||f̄m − s−Axm||22 + λ3

M∑
m=1

||pm − xT
mb||22

Subject to: {xm}Mm=1 > 0

where
∑J

j=1 ||fj−s||22 +
∑M

m=1 ||f̄m−s−Axm||22 represents the cost associated with modelling the fMRI data and

λ3
∑M

m=1 ||pm − xT
mb||22 represents the cost associated with predicting genetic risk. The parameter λ3 denotes

the trade off between the data representation term and the predictive term.

2.1.4 Regularization Penalties

We would like the matrix A to capture a representative set of regions where the brain activations are affected by
the disease. We enforce that by putting a sparsity constraint across the rows of A. Further we want to model A
to implicate a sparse set of regions. We enforce this by putting a smoothness constrain across the columns of A.
We combine these two in the form of `2,1 norm which is ||A||2,1 =

∑
i ||A(i, ·)||2. This norm enforces a smoothness

constrain across columns and sparsity constraint across rows. Further, from an optimization standpoint different
scaled result of {X,b} can lead to the same solution. So, we need to introduce a quadratic penalty over X as

λ1
∑M

m ||xm||22. Similarly, we also need to introduce a quadratic penalty over b as λ2||b||22 which is similar to
ridge regression. Gathering these terms, the final regression cost is:

λ0||A||2,1 + λ1

M∑
m

||xm||22 + λ2||b||22
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Figure 2. The alternating minimization approach to obtain the set of minimizers.

Now, the complete cost function takes the following form:

J (x1, ...,xM , s,b,A) =

J∑
j=1

||fj − s||22 +

M∑
m=1

||f̄m − s−Axm||22 + λ3

M∑
m=1

||pm − xT
mb||22

+ λ0||A||2,1 + λ1

M∑
m

||xm||22 + λ2||b||22 (2)

Subject to: {xm}Mm=1 > 0

2.2 Optimization Strategy

We optimize Eq. (2) via the alternating minimization procedure illustrated in Fig. 2, in which we update each
variable independently, while holding the others constant. The process is computationally efficient since that the
cost function J (·) is convex over s, A, xm, and b independently. The variables {s, b} have closed form updates,
and we use iterative method to update A and xm. This optimization strategy is further described below.

2.2.1 Closed form update for s:

The global minimizer of s can be found by setting the gradient of J (·) with respect to s equal to zero. The
update for s relies on both the neurotypical and patient imaging data:

s∗ =

∑J
j fj +

∑M
m (f̄m −Axm)

J +M

2.2.2 Closed form update for b:

The regression coefficient of the prediction term also has a closed form update. It can also be found by setting
the gradient of J (·) with respect to b to zero. The update is given by:

b∗ = (λ2I + XXT )−1(Xp) (3)

where we have concatenated the projections X = [x1, . . . ,xM ], and clinical scores p = [p1, . . . , pm]T for conve-
nience. Notice that Eq. 3 parallels the least square regression solution.

2.2.3 Optimizing A using fixed point iteration:

The update rule for A does not have a closed form solution due to the `2,1regularization term. However, it can
be efficiently updated using a fixed point iteration. In this method the `2 norm of each row of A is kept constant
to its value from previous iteration leading to the modified objective:

At+1 = argmin
A

M∑
m=1

||f̄m − s−Axm||22 + λ0

N∑
i=1

||A(i, ·)||22
2||At(i, ·)||

(4)
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Eq. (4) has a closed form update for each row of A according to the following expression:

At+1(i, ·) = F̄(i, ·)XT

(
XXT +

λ0
2||At(i, ·)||2

I
)−1

where we have concatenated the observed patient activations {f̄m}Mm=1 as F̄ = [f̄1, . . . , f̄M ] ∈ RN×M for conve-
nience. The proof of convergence for this fixed point iteration can be found in Wang et al.15

2.2.4 Optimizing xm using quadratic programming:

The objective function is quadratic in xm when the other variables are kept constant. Moreover, the patient
specific projection coefficients decouples into M independent quadratic equations which take the form:

x∗
m = argmin

xm

xT
mQxm + cTxm

Subject to: Bmxm ≤ dm

The cost and the constraints are computed from the original variables in Eq. (2):

Q = ATA + bbT

c = −2(̄fm − s)TA

B = −Id
dm = [0, . . . , 0]T

The quadratic solvers give us globally optimal solutions for all the patient specific feature vectors.

2.3 Model Evaluation

2.3.1 Baseline algorithms

LASSO: We perform a comparison of our proposed model with LASSO regression, which assumes a multivari-
ate linear association between the feature vectors {f̄m} and the polygenic risk scores {pm}. Mathematically:

p = F̄Tβ + λ||β||1 , (5)

where F̄ = [f̄1, . . . , f̄M ] ∈ RN×M . As seen in Eq. (5), we estimate the regression coefficients β, whose non-
zero entries indicate region-wise associations between genetic risk and functional activation. We threshold the
regression coefficients to obtain a binary vector Ilasso ∈ {0, 1}N×1 with the highest region-wise association:

Ilasso(j) = 1 if |β(i)| > σ (6)

= 0 Otherwise (7)

We use this binary vector to evaluate the performance during boostrapping which we discuss in Section 2.3.2.

Random Forest: We also compare our model with Random Forest (RF) regression, which estimates a non-
linear association between the features f̄m and the genetic scores pm. It is an ensemble learning method that fits
multiple regression trees on random subsets of the data. The randomness prevents the tress from over fitting and
reduces the error variance while keeping the bias constant. The final prediction is the average over all of these
trees. Here, the importance of each feature is quantified by the change in error when values of that predictor
are randomly permuted. Features with high importance result in higher change in error. Similar to LASSO, we
obtain a binary vector Irf ∈ {0, 1}N×1 by retaining the top 70% of the features according to their importance.
We quantified the performance through bootstrapping which we describe in Section 2.3.2.
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Generative-Predictive Model: The matrix A in our generative-predictive (gp) framework quantifies the
region association strength to each basis network. We compute a single region measure via the `2 norm across
the bases. These values are thresholded to obtain the final Igp ∈ {0, 1}N×1.

I(j) = 1 if ||A(i, ·)||2 > σ (8)

= 0 Otherwise (9)

where σ is the threshold. Similar to LASSO and RF we will use the binary vectors to quantify the performance
of our model across bootstrapped subsets of our data.

2.3.2 Performance Metrics

We evaluate the performance of our framework and both the baseline methods in terms of reproducibility, i.e
how consistent the inferred associations are across different subsets of data. We quantify this performance using
two different metrics; (1) Jaccard Index, and (2) Fractional Occurence.

We evaluate both the metrics using bootstrapping. Bootstrapping is a statistical method that relies on
random sampling of data with replacement. The main idea behind bootstrapping is that, inferences that are
consistent across random subsets of the data are more likely to generalize beyond the experiment. In all our
methods we randomly sampled 90% of our data with replacement for 100 bootstrapping trials. After each trial, t
we obtain the binary vectors {Itlasso, Itrf , Itgp} as described previously. So, via bootstrapping we get 100 binary
vectors for each of the methods, which we use to quantify consistency.

Jaccard Index: This measure quantifies the overlap between two vectors, i.e.,

J(Ism, I
t
m) =

∑N
i=1 Ism(i)Itm(i)

max
(
Card(Ism),Card(Itm)

) (10)

(11)

where m denotes the method under consideration i.e. {lasso, rf, gp} and Card(It) denotes the number of non
zero elements in the binary vector. Since, we ran 100 bootstrapping iterations, we have 4950 Jaccard indices for
each method. We can assess both the average consistency and the variability of the Jaccard index across subsets.

Fractional Occurrence: We introduce another metric to identify the consistency of all the methods. It is
defined as the average number of times each region appears in the binary vector across all the bootstrapping
trials. The fractional occurrence of region i is computed as:

Fm(i) =
1

100

100∑
i=1

Im(i) (12)

where m again denotes the method under consideration. Fractional occurence is closely tied with the Jaccard
similarity index. A high fractional occurrence across all the regions will result in a high Jaccard similarity
index and vice-versa. However, the Jaccard index is essentially a summary statistic over all the regions, whereas
fractional occurrence gives us the individual statistics of each region.

2.3.3 Parameter Settings

In our model the hyperparameters {λ0, λ1, λ2, λ3} are user specified. We swept over two orders of magnitude
for each parameters and over feature dimensions d = 1, . . . , 8. Our final setting was d = 5, λ0 = 6.4, λ1 = 0.4,
λ2 = 0.05, and λ3 = 1 based on optimizing the Jaccard measure. We also swept over different parameter settings
for our baseline methods. In LASSO we looked over two orders of magnitude to identify the optimal parameter
(λ = 0.01) that gives the lowest mean square error in Eq. (5). In Random Forest we used 1000 randomized
regression trees for predicting the genetic risk based on optimizing the Jaccard measure.
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Figure 3. The distribution of the Jaccard similarity indices for each of the three methods are shown.

3. EXPERIMENTAL RESULTS

Schizophrenia is a heritable disease, as their first degree relatives also show deficits in cognitive function when
compared to healthy neurotypical subjects. Deficits in working memory and executive cognition appear to be
related to genetic risk for schizophrenia17. We evaluate the generative-predictive framework on a cohort of 53
patients with chronic schizophrenia and 53 controls. The groups were matched for age, IQ, gender, education,
and % correct on the N2-back working memory task. The fMRI data was acquired on 3-T General Electric Sigma
scanner (gradient EPI sequence, 24 axial slices, 6 mm thickness, voxel dimension: 3.75 mm3; TR/TE = 2000/28
msec; flip angle= 90; field of view, 24 cm). A block design paradigm with four cycles of alternating 0-back (15
trials) and 2-back (15 trials) was used comprising a total of 120 brain volumes. During 0-back the subject was
instructed to press the button corresponding to the number currently displayed on the screen, and during the
2-back trials the subject had to press the number seen two trials previously while encoding the number currently
displayed on the screen. Preprocessing include slice timing correction, coregistration, spatial normalization to
an MNI template, smoothing and motion regression using SPM12. We use the Braintome atlas18 to define 246
cortical and subcortical regions. The average time course for each region was then fed into a Generalized Linear
Model4 to obtain the activation maps β0 for 0-back and β2 for 2-back. The input to our model is the contrast
map (β2 − β0) across the 246 regions. The schizophrenia polygenic risk score for each individual was calculated
as the sum of the GWAS imputation probability of reference alleles weighted by the natural log of odds ratio.19

The genetic risk scores were constructed using SNPs with GWAS association P-value < 0.05.

Fig. 3 illustrates the distribution of Jaccard indices for each method based on five number summary, minimum
of the data, first quartile, median, third quartile and the maximum. The box plot gives us a good idea on how
tightly the data are grouped, and if and how the data are skewed. As seen in Fig. 3 our generative-predictive
model demonstrates superior performance in terms of consistency since the median is significantly higher than
the baseline methods. This improvement can be attributed to the structured form of group sparsity, which forces
our model to identify the regions of differential contrast but sufficient patient variability to capture genetic risk.
In contrast, LASSO and RF identify only the regions of high activity variation in the patient group, which differs
across subsets of data. This behavior leads to low reproducibiliy between bootstrapping trials.

From our discussion in Section 2.3.2 we know that Jaccard index is strongly coupled with fractional occurrence.
A high Jaccard index should also mean a high fractional occurrence for each of regions. Fig. 4 evaluates the
robustness in fractional occurrence for each region across all bootstrapping trials. We have colored each region
according to their fractional occurrence and the color bar gives the associated values. As expected our method
shows a higher fractional occurrence in the identified set of regions than the two baseline methods.

Table. 1 reports the most consistent regions identified by each method. We observe that the set of regions
identified by our model include superior frontal gyrus, inferior frontal gyrus, cingulate gyrus, and supramarginal
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gyrus, all regions well known to subserve executive function including working memory and implicated in the
pathophysiology of executive cognition deficits observed in patients with schizophrenia.17 In contrast, while few
regions of LASSO and RF regression are same as in our generative-predictive model, other regions identified by
LASSO and RF included the postcentral gyrus, middle temporal gyrus, precentral gyrus, orbital gyrus, and infe-
rior temporal gyrus. These regions are not strongly associated with the N-back working memory task.17 Taking
this as further evidence, along with the lower Jaccard index and fractional occurrence, we can conclude that
both LASSO and RF regression could partly be capturing noise. However, our generative-predictive framework
leverages the heterogeneity in genetic risk to compensate for noise. As a result we find differential functional
activity in the canonical brain regions underlying cognitive processing required for working memory.

4. CONCLUSION

We have introduced an elegant matrix decomposition framework to identify differential regional brain activity
that is modulated by genetic risk. We use group sparsity to pick out a representative set of features that
have a linear association with the patient-specific genetic risk scores. This strategy provides a richer set of
features using the information of differential functional activity, and genetic variation. Moreover, we leverage
the patient heterogeneity to identify a more consistent and robust set of region assignments across bootstrapping
experiments. We demonstrate significant improvement in our generative-predictive model regarding consistency
and robustness compared to two baseline methods, which do not leverage patient heterogeneity. Our generative-
predictive model is not tied to any specific paradigm and can be used to draw associations between a variety
of neuroimaging phenotypes and variables beyond genetic risk, such as clinical, cognitive and behavioral scores.
Future work includes understanding of the role of risk genes on the neurobiology underlying executive cognitive
deficits in patients with schizophrenia by exploring the involvement of single neucleotide polymorphism on these
brain activations. We will also investigate the efficiency of the model to capture data variability with other
modalities of data associated with different neuropsychiatric disorders.

Acknowledgements: This work was supported by NSF CRCNS 1822575, and the National Institute of Mental
Health extramural research program. The authors would like to acknowledge Naresh Nandakumar and Niharika

Figure 4. (a) The fractional occurrence(Fgp) of the set of regions identified by our generative-predictive model. (b) The fractional
occurrence(Flasso) of the set of regions identified by lasso. (c)The fractional occurrence(Frf ) of the set of regions identified by
random forest. For visualization the regions are colored according to their fractional occurence. Blue indicates a high fractional
occurence, and red indicates a low fractional occurence. From Left to Right the images are internal surface of left hemisphere,
external surface of left hemisphere, internal surface of right hemisphere, and external surface of right hemisphere.
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Table 1. The table shows the implicated set of regions identified by our generative-predictive framework, lasso and random forest
regression along with the corresponding fractional occurrence.

Methods Implicated Regions Fractional Occurrence

Generative-
Predictive

Superior Frontal Gyrus (BA - 9) 0.7

Inferior Frontal Gyrus (BA - 44, 45) 0.83

Supramarginal Gyrus (BA - 40) 0.78

Cingulate Gyrus (BA - 24) 0.63

Precuneus (BA - 7, 5) 0.99

Angular Gyrus (BA - 39) 0.86

Superior Parietal Lobule (BA - 7) 0.9

LASSO
Superior Frontal Gyrus (BA - 8) 0.38

Orbital Gyrus (BA - 11) 0.41

Precentral Gyrus (BA - 4) 0.47

Superior Temporal Gyrus (BA - 32) 0.33

Middle Temporal Gyrus (BA - 37) 0.31

Inferior Temporal Gyrus (BA - 20) 0.34

Angular Gyrus (BA - 39) 0.39

Supramarginal Gyrus (BA - 40) 0.37

Postcentral Gyrus (BA - 1,2 3) 0.37

RF
Superior Frontal Gyrus (BA - 8, 9) 0.53

Orbital Gyrus (BA - 11, 12) 0.49

Postcentral Gyrus (BA - 1,2, 3) 0.38

Precentral Gyrus (BA - 4) 0.42

Angular Gyrus (BA - 39) 0.38

Postcentral Gyrus (BA - 1, 2, 3) 0.38

Parahippocampal Gyrus (BA - 35, 36) 0.39

Supramarginal Gyrus (BA - 40) 0.43

Shimona D’Souza, for their generous contributions to this document.
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