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Abstract. The problem of linking functional connectomics to behavior
is extremely challenging due to the complex interactions between the
two distinct, but related, data domains. We propose a coupled manifold
optimization framework which projects fMRI data onto a low dimen-
sional matrix manifold common to the cohort. The patient specific load-
ings simultaneously map onto a behavioral measure of interest via a
second, non-linear, manifold. By leveraging the kernel trick, we can
optimize over a potentially infinite dimensional space without explicitly
computing the embeddings. As opposed to conventional manifold learn-
ing, which assumes a fixed input representation, our framework directly
optimizes for embedding directions that predict behavior. Our optimiza-
tion algorithm combines proximal gradient descent with the trust region
method, which has good convergence guarantees. We validate our frame-
work on resting state fMRI from fifty-eight patients with Autism Spec-
trum Disorder using three distinct measures of clinical severity. Our
method outperforms traditional representation learning techniques in a
cross validated setting, thus demonstrating the predictive power of our
coupled objective.

1 Introduction

Steady state patterns of co-activity in resting state fMRI (rs-fMRI) are believed
to reflect the intrinsic functional connectivity between brain regions [4]. Hence,
there is increasing interest to use rs-fMRI as a diagnostic tool for studying neu-
rological disorders such as autism, schizophrenia and ADHD. Unfortunately, the
well reported confounds of rs-fMRI, coupled with patient heterogeneity makes
the task of jointly analyzing rs-fMRI and behavior extremely challenging.
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Behavioral Prediction from Neuroimaging Data. Joint analysis of rs-fMRI
and behavioral data typically follows a two stage pipeline. Stage 1 is a fea-
ture selection or a representation learning step, while Stage 2 maps the learned
features onto behavioral data through a statistical or machine learning model.
Some notable examples of the Stage 1 feature extraction include graph theoretic
measures which aggregate the associative relationships in the connectome, and
dimensionality reduction techniques [5], which explain the variation in the data.
From here, popular Stage 2 algorithms include Support Vector Machine (SVMs),
kernel ridge regression [5]. This pipelined approach has been successful at classi-
fication for identifying disease subtypes and distinguishing between patients and
healthy controls. However, there has been limited success in terms of predicting
dimensional measures, such as behavioral severity from neuroimaging data.

The work of [3] develops a generative-discriminative basis learning frame-
work, which decomposes the rs-fMRI correlation matrices into a group and
patient level term. The authors use a linear regression to estimate clinical severity
from the patient representation, and jointly optimize the group average, patient
coefficients, and regression weights. In this work, we pose the problem of combin-
ing the neuroimaging and behavioral data spaces as a dual manifold optimiza-
tion. Namely, we represent the each patient’s fMRI data using a low rank matrix
decomposition to project it onto a common vector space. The projection loadings
are simultaneously used to construct a high dimensional non-linear embedding
to predict a behavioral manifestation. We jointly optimize both representations
in order to capture the complex relationship between the two domains.

Manifold Learning for Connectomics. Numerous manifold learning
approaches have been employed to study complex brain topologies, especially
in the context of disease classification. For example, the work of [11] used graph
kernels on the spatio-temporal fMRI time series dynamics to distinguish between
the autistic and healthy groups. Going one step further, [9] used higher order
morphological kernels to classify ASD subpopulations.

While these methods are computationally efficient and simple in formulation,
their generalization power is limited by the input data features. Often, subtle
individual level changes are overwhelmed by group level confounds. We inte-
grate the feature learning step directly into our framework by simultaneously
optimizing both the embeddings and the projection onto the behavioral space.
This optimization is also coupled to the brain basis, which helps us model the
behavioral and neuroimaging data space jointly, and reliably capture individ-
ual variability. We leverage the kernel trick to provide both the representational
flexibility and computational tractability to outperform a variety of baselines.

2 A Coupled Manifold Optimization (CMO) Framework

Figure 1 presents an overview of our Coupled Manifold Optimization (CMO)
framework. The blue box represents our neuroimaging term. We group voxels
into P ROIs, yielding the P × P input correlation matrices {Γn}N

n=1 for N
patients. As seen, the correlation matrices are projected onto a low rank subspace
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Fig. 1. Joint model for the functional connectomics and behavioral data. Blue
Box: Matrix manifold representation Gray Box: Non-linear kernel ridge regression
(Color figure online)

spanned by the group basis. The loadings are related to severity via a non-linear
manifold and the associated kernel map, as indicated in the gray box.

Notice that Γn is positive semi-definite by construction. We employ a patient
specific low rank decomposition Γn ≈ QnQT

n to represent the correlation matrix.
Each rank R factor {Qn ∈ RP×R}, where R � P , projects onto a low dimen-
sional subspace spanned by the columns of a group basis X ∈ RP×R. The vector
cn ∈ RR×1 denotes the patient specific loading coefficients as follows:

Γn ≈ QnQT
n = Xdiag(cn)XT (1)

where diag(cn) is a matrix with the entries of cn on the leading diagonal, and
the off-diagonal elements as 0. Equation (1) resembles a joint eigenvalue decom-
position for the set {Γn} and was also used in [3]. The bases Xr ∈ RP×1 capture
co-activation patterns common to the group, while the coefficient loadings cnr

capture the strength of basis column r for patient n. Our key innovation is to
use these coefficients to predict clinical severity via a non-linear manifold. We
define an embedding map φ(·) : RR → RM , which maps the native space repre-
sentation of the coefficient vector c to an M dimensional embedding space, i.e.
φ(c) ∈ RM×1. If yn is the clinical score for patient n, we have the non-linear
regression:

yn ≈ φ(cn)T w (2)

with weight vector w ∈ RM×1. Our joint objective combines Eqs. (1) and (2)

J (X, {cn},w) =
∑

n

[
||Γn − Xdiag(cn)XT ||2F + λ||yn − φ(cn)T w||22

]
(3)
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along with the constraint cnr ≥ 0 to maintain positive semi-definiteness of {Γn}.
Here, λ controls the trade-off between the two representations. We include an �1
penalty on X to promote sparse solutions for the basis. We also regularize both
the coefficients {cn} and the regression weights w with �2 penalties to ensure that
the objective is well posed. We add the terms γ1||X||1 + γ2

∑
n ||cn||22 + γ3||w||22

to J (·) in Eq. (3) with the penalties γ1, γ2 and γ3 respectively.

2.1 Inferring the Latent Variables

We use alternating minimization to estimate the hidden variables {X, {cn},w}.
This procedure iteratively optimizes each unknown variable in Eq. (3) by holding
the others constant until global convergence is reached.

Proximal gradient descent [7] is an efficient algorithm which provides good
convergence guarantees for the non-differentiable �1 penalty on X. However,
it requires the objective to be convex in X, which is not the case due to the
bi-quadratic Frobenius norm expansion in Eq. (1). Hence, we introduce N con-
straints of the form Vn = Xdiag(cn), similar to the work of [3]. We enforce
these constraints using the Augmented Lagrangians {Λn}:

J (X, {cn},w, {Vn}, {Λn}) =
∑

n

||Γn − VnXT ||2F + λ
∑

n

||yn − φ(cn)T w||22

+
∑

n

[
Tr

[
ΛT

n (Vn − Xdiag(cn))
]
+

1
2
||Vn − Xdiag(cn)||2F

]
(4)

with cnr ≥ 0 and Tr(M) denoting the trace operator. The additional terms
||Vn − Xdiag(cn)||2F regularize the trace constraints. Equation (4) is now con-
vex in both X and the set {Vn}, which allows us to optimize them via standard
procedures. We iterate through the following four update steps till global con-
vergence:

Proximal Gradient Descent on X: The gradient of J with respect to X is:

∂J
∂X

=
∑

n

2
[
XVT

n − Γn

]
Vn − Vndiag(cn) + Xdiag(cn)2 − Λndiag(cn)

With a learning rate of t, the proximal update with respect to ||X||1 is given by:

Xk = prox||·||1

[
Xk−1 −

[
t

γ1

]
∂J
∂X

]
s.t. proxt(L) = sgn(L) ◦ (max(|L| − t,0))

Where ◦ denotes the Hadamard product. Effectively, this update performs an
iterative shrinkage thresholding on a locally smooth quadratic model of ||X||1.
Kernel Ridge Regression for w: We denote y as the vector of the clinical
severity scores and stack the patient embedding vectors i.e. φ(cn) ∈ RM×1 into
a matrix Φ(C) ∈ RM×N . The portion of J (·) that depends on w is:

F(w) = λ||y − Φ(C)T w||22 + γ3||w||22 (5)
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Setting the gradient of Eq. (5) to 0, and applying the matrix inversion lemma,
the closed form solution for w is similar to kernel ridge regression:

w = Φ(C)
[
Φ(C)T Φ(C) +

γ3
λ

IN

]−1

y = Φ(C)α =
∑

j

αjφ(cj) (6)

where IN is the identity matrix. Let κ(·, ·) : RM × RM → R be the kernel
map for φ, i.e. κ(c, ĉ) = φ(c)Tφ(ĉ). The dual variable α can be expressed as
α = (K+ γ3

λ IN )−1y, where K = Φ(C)T Φ(C) is the Gram matrix for the kernel
κ(·, ·). Equation (6) implies that w lies in the span of the coefficient embeddings
defining the manifold. We use the form of w in Eq. (6) to update the loading
vectors in the following step, without explicitly parametrizing the vector φ(cn).

Trust Region Update for {cn}: The objective function for each patient load-
ing vector cn decouples as follows when the other variables are fixed:

F(cn) = λ||yn − φ(cn)T w||22 + γ2||cn||22 + Tr
[
ΛT

n (Vn − Xdiag(cn))
]

+
1
2
||Vn − Xdiag(cn)||2F s.t. cnr ≥ 0 (7)

We now substitute this form into Eq. (7) and use the kernel trick, to write:

||yn − φ(cn)T w||22 = ||yn −
∑

j

φ(cn)T φ(ĉj)αj ||22 = ||yn −
∑

j

κ(cn, ĉj)αj ||22

where {ĉn} denotes the coefficient vector estimates from the previous step to
compute w. Notice that the kernel trick buys a second advantage, in that we only
need to optimize over the first argument of κ(·, ·). Since kernel functions typically
have a nice analytic form, we can easily compute the gradient ∇κ(cn, ĉj) and
hessian ∇2κ(cn, ĉj) of κ(cn, ĉj) with respect to cn.

Given this, the gradient of F(·) with respect to cn takes the following form:

gn =
∂F
∂cn

= cn ◦ [[IR ◦ (XT X)
]
1
] − [IR ◦ (ΛT

nX + VT
nX)

]
1 + 2γ2cn

−λ
∑

i

αi

[
2∇κ(cn, ĉi)yi −

∑

k

αk [κ(cn, ĉi)∇κ(cn, ĉk) + κ(cn, ĉk)∇κ(cn, ĉi)]

]

where 1 is the vector of all ones. Notice that the top line of the gradient term
is from the matrix decomposition and regularization terms, and the bottom
line corresponds to the kernel regression. The Hessian Hn = ∂2F/∂c2n can be
similarly computed. Due to space limitations, we have omitted its explicit form.

Given the low dimensionality of cn, we derive a trust region optimizer for this
variable. The trust region algorithm provides guaranteed convergence, like the
popular gradient descent method, with the speedup of second-order procedures.
The algorithm iteratively updates cn according to the descent direction pk,
i.e. c(k+1)

n = c(k)n + pk. The vector pk is computed via the following quadratic
objective, which is a second order Taylor expansion of F around ck

n:
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p = arg min
p

F(ck
n) + gk

n(ck
n)T p +

1
2
pT Hk

n(ck
n)p s.t. ||p||2 ≤ δk, ck

nr + pr ≥ 0

where gn(·) and Hn(·) are the gradient and Hessian referenced above evaluated at
the current iterate ck

n. We recursively search for a suitable trust region radius δk

such that we are guaranteed sufficient decrease in the objective at each iteration.
This algorithm has a lower bound on the function decrease per update, and with
an appropriate choice of the δk, converges to a local minimum of F [12].

Augmented Lagrangian Update for Vn and Λn: Each {Vn} has a closed
form solution, while the dual variables {Λn} are updated via gradient ascent:

Vn = (diag(cn)XT + 2ΓnX − Λn)(IR + 2XT X)−1 (8)
Λk+1

n = Λk
n + ηk(Vn − Xdiag(cn)) (9)

We cycle through the updates in Eqs. (8–9) to ensure that the proximal con-
straints are satisfied with increasing certainty at each step. We choose the learn-
ing rate parameter ηk for the gradient ascent step of the Augmented Lagrangian
to guarantee sufficient decrease for every iteration of alternating minimization.

Prediction on Unseen Data: We use the estimates {X∗,w∗, {c∗
n}} obtained

from the training data to compute the loading vector c̄ for an unseen patient.
We must remove the data term in Eq. (4), as the corresponding value of ȳ is
unknown for the new patient. Hence, the kernel terms in the gradient and hessian
disappear. We also assume that the conditions for the proximal operator hold
with equality; this eliminates the Augmented Lagrangians in the computation.
The objective in c̄ reduces to the following quadratic form:

1
2
c̄T H̄c̄ + f̄T c̄ s.t. Āc̄ ≤ b̄ (10)

Note that the formulation is similar to the trust region update we used previously.
For an unseen patient, the parameters from Eq. (10) are:

H̄ = 2(XT X) ◦ (XT X) + 2γ2IR

f̄ = −2IR ◦ (XT ΓnX)1; Ā = −IR b̄ = 0

The Hessian H̄ is positive definite, which leads to an efficient quadratic program-
ming solution to Eq. (10). The severity score for the test patient is estimated by
ȳ = φ(c̄)T w∗ =

∑
j κ(c̄, c∗

j )α
∗
j , where α∗ =

[
Φ(C∗)T Φ(C∗) + γ3

λ IN

]−1
y.

2.2 Baseline Comparison Methods

We compare our algorithm with the standard manifold learning pipeline to pre-
dict the target severity score. We consider two classes of representation learning
techniques motivated from the machine learning and graph theoretic literature.
From here, we construct a non-linear regression model similar to our manifold
learning term in Eq. (3). Our five baseline comparisons are as follows:
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1. Principal Component Analysis (PCA) on the stacked P×(P−1)
2 correlation

coefficients followed by a kernel ridge regression (kRR) on the projections
2. Kernel Principal Component Analysis (kPCA) on the correlation coefficients

followed by a kRR on the embeddings
3. Node Degree computation (DN ) based on the thresholded correlation matri-

ces followed by a kRR on the P node features
4. Betweenness Centrality (CB) on the thresholded correlation matrices followed

by a kRR on the P node features
5. Decoupled Matrix Decomposition (Eq.(3)) and kRR on the loadings {cn}.

Baseline 5 helps us evaluate and quantify the advantage provided by our joint
optimization approach as opposed to a pipelined prediction of clinical severity.

3 Experimental Results:

rs-fMRI Dataset and Preprocessing. We validate our method on a cohort
of 58 children with high-functioning ASD (Age: 10.06 ± 1.26, IQ: 110 ± 14.03). rs-
fMRI scans were acquired on a Phillips 3T Achieva scanner using a single-shot,
partially parallel gradient-recalled EPI sequence with TR/TE = 2500/30 ms, flip
angle = 70◦, res = 3.05×3.15×3 mm, having 128 or 156 time samples. We use a
standard pre-processing pipeline, consisting of slice time correction, rigid body
realignment, normalization to the EPI version of the MNI template, Comp Corr
[1], nuisance regression, spatial smoothing by a 6 mm FWHM Gaussian kernel,
and bandpass filtering between 0.01–0.1 Hz. We use the Automatic Anatomical
Labeling (AAL) atlas to define 116 cortical, subcortical and cerebellar regions.
We subtract the contribution of the first eigenvector from the regionwise corre-
lation matrices because it is roughly constant and biases the predictions. The
residual correlation matrices, {Γn}, are used as inputs for all the methods.

We consider three separate measures of clinical severity quantifying different
impairments associated with ASD. The Autism Diagnostic Observation Schedule
(ADOS) [8] captures social and communicative deficits of the patient along with
repetitive behaviors (dynamic range: 0–30). The Social Responsiveness Scale
(SRS) [8] characterizes impaired social functioning (dynamic range: 70–200).
Finally, the Praxis score [2] quantifies motor control, tool usage and gesture
imitation skills in ASD patients (dynamic range: 0–100).

Characterizing the Non-linear Patient Manifold: Based on simulated
data, we observed that the standard exponential kernel provides a good recovery
performance in the lower part of the dynamic range, while polynomial kernels
are more suited for modeling the larger behavioral scores, as shown in Fig. 2.
Thus, we use a mixture of both kernels to capture the complete behavioral char-
acteristics:

κ(ci, cj) = exp

[
−||ci − cj ||22

σ2

]
+

ρ

l

(
cT

j ci + 1
)l

We vary the kernel parameters across 2 orders of magnitude and select the
settings: ADOS {σ2 = 1, ρ = 0.8, l = 2.5}, SRS {σ2 = 1, ρ = 2, l = 1.5} and
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Praxis {σ2 = 1, ρ = 0.5, l = 1.5}. The varying polynomial orders reflect the
differences in the dynamic ranges of the scores.

Fig. 2. Recovery Top:
Exponential Bottom:
Polynomial kernel

Predicting ASD Clinical Severity. We evaluate
every algorithm in a ten fold cross validation setting,
i.e. we train the model on a 90% split of our data,
and report the performance on the unseen 10%. The
number of components was fixed at 15 for PCA and
at 10 for k-PCA. For k-PCA, we use an RBF kernel
with the coefficient parameter 0.1. There are two free
parameters for the kRR, namely, the kernel parameter
C and �2 parameter β. We obtain the best performance
for the following settings: ADOS {C = 0.1, β = 0.2},
SRS {C = 0.1, β = 0.8}, and Praxis {C = 0.01, β =
0.2}. For the graph theoretic baselines, we obtained the
best performance by thresholding the entries of {Γn}
at 0.2. We fixed the parameters in our CMO framework
using a grid search for {λ, γ1, γ2, γ3}. The values were
varied between (10−3 −10). The performance is insen-
sitive to λ and γ3, which are fixed at 1. The remaining
parameters were set at {γ1 = 10, γ2 = 0.7, γ3 = 1} for
all the scores. We fix the number of networks, R, at
the knee point of the eigenspectrum of {Γn}, i.e. (R = 8).

Performance Comparison. Figures 3, 4, and 5 illustrate the regression per-
formance for ADOS, SRS, and Praxis respectively. The bold x = y line indicates
ideal performance. The red points denote the training fit, while the blue points
indicate testing performance. Note that baseline testing performance tracks the
mean value of the data (indicated by the horizontal black line). In comparison,
our method not only consistently fits the training set more faithfully, but also
generalizes much better to unseen data. We emphasize that even the pipelined
treatment using the matrix decomposition in Eq. (3), followed by a kernel ridge
regression on the learnt projections fails to generalize. This finding makes a
strong case for coupling the two representation terms in our CMO strategy.
We conjecture that the baselines fail to capture representative connectivity pat-
terns that explain both the functional neuroimaging data space and the patient
behavioral heterogeneity. On the other hand, our CMO framework leverages
the underlying structure of the correlation matrices through the basis manifold
representation. At the same time, it seeks those embedding directions that are
predictive of behavior. As reported in Table 1, our method quantitatively out-
performs the baselines approaches, in terms of both the Median Absolute Error
(MAE) and the Mutual Information (MI) metrics.

Clinical Interpretation. Figure 6 illustrates the subnetworks {Xr} trained on
ADOS. The colorbar indicates subnetwork contributions to the AAL regions.
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Table 1. Performance evaluation using Median Absolute Error (MAE) & Mutual
Information (MI). Lower MAE & higher MI indicate better performance.

Score Method MAE train MAE test MI train MI test

ADOS PCA & kRR 1.29 3.05 1.46 0.87

k-PCA & kRR 1.00 2.94 1.48 0.38

CB & kRR 2.10 2.93 1.03 0.95

DN & kRR 2.09 3.03 0.97 0.96

Decoupled 2.11 3.11 0.82 1.24

CMO Framework 0.035 2.73 3.79 2.10

SRS PCA & kRR 7.39 19.70 2.78 3.30

k-PCA & kRR 5.68 18.92 2.85 1.74

CB & kRR 11.00 17.72 2.32 3.66

DN & kRR 11.46 17.79 2.24 3.60

Decoupled 15.9 18.61 2.04 3.71

CMO Framework 0.09 13.28 5.28 4.36

Praxis PCA & kRR 5.33 12.5 2.50 2.68

k-PCA & kRR 4.56 11.15 2.56 1.51

CB & kRR 8.17 12.61 1.99 3.05

DN & kRR 8.18 13.14 2.00 3.20

Decoupled 10.11 13.33 3.28 1.53

CMO Framework 0.13 9.07 4.67 3.87

Fig. 3. Prediction performance for the ADOS score for Red Box: CMO framework.
Black Box: (L) PCA and kRR (R) k-PCA and kRR, Green Box: (L) Node degree
centrality and kRR (R) Betweenness centrality and kRR Blue Box: Matrix decom-
position from Eq. (3) followed by kRR (Color figure online)
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Fig. 4. Prediction performance for the SRS score for Red Box: CMO framework.
Black Box: (L) PCA and kRR (R) k-PCA and kRR, Green Box: (L) Node degree
centrality and kRR (R) Betweenness centrality and kRR Blue Box: Matrix decom-
position from Eq. (3) followed by kRR (Color figure online)

Fig. 5. Prediction performance for the Praxis score for Red Box: CMO framework.
Black Box: (L) PCA and kRR (R) k-PCA and kRR, Green Box: (L) Node degree
centrality and kRR (R) Betweenness centrality and kRR Blue Box: Matrix decom-
position from Eq. (3) followed by kRR (Color figure online)
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Fig. 6. Eight subnetworks identified by our model from the prediction of ADOS. The
blue & green regions are anticorrelated with the red & orange regions. (Color figure
online)

Regions storing negative values are anticorrelated with positive regions. From
a clinical standpoint, Subnetwork 4 includes the somatomotor network (SMN)
and competing i.e. anticorrelated contributions from the default mode network
(DMN), previously reported in ASD [6]. Subnetwork 8 comprises of the SMN
and competing contributions from the higher order visual processing areas in the
occipital and temporal lobes. These findings are in line with behavioral reports
of reduced visual-motor integration in ASD [6]. Though not evident from the sur-
face plots, Subnetwork 5 includes anticorrelated contributions from subcortical
regions, mainly, the amygdala and hippocampus, believed to be important for
socio-emotional regulation in ASD. Finally, Subnetwork 6 has competing contri-
butions from the central executive control network and insula, which are critical
for switching between self-referential and goal-directed behavior [10].

Figure 7 compares Subnetwork 2 obtained from ADOS, SRS and Praxis pre-
diction. There is a significant overlap in the bases subnetworks obtained by train-
ing across the different scores. This strengthens the hypothesis that our method
is able to identify representative, as well as predictive connectivity patterns.

Fig. 7. Subnetwork 2 obtained from L: ADOS M: SRS and R: Praxis prediction

4 Conclusion

We have introduced a Coupled Manifold Optimization strategy that jointly ana-
lyzes data from two distinct, but related, domains through its shared projec-
tion. In contrast to conventional manifold learning, we optimize for the rele-
vant embedding directions that are predictive of clinical severity. Consequently,
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our method captures representative connectivity patterns that are important
for quantifying and understanding the spectrum of clinical severity among ASD
patients. We would like to point out that our framework makes very few assump-
tions about the data and can be adapted to work with different similarity matri-
ces and clinical scores. We believe that our method could potentially be an
important diagnostic tool for the cognitive assessment of various neuropsychi-
atric disorders. We are working on a multi-score extension which jointly analyses
different behavioral domains. We will explore extensions of our representation
that simultaneously integrate functional, structural and behavioral information.
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