
Integrating Convolutional Neural
Networks and Probabilistic Graphical

Modeling for Epileptic Seizure Detection
in Multichannel EEG

Jeff Craley1(B), Emily Johnson2, and Archana Venkataraman1

1 Department of Electrical and Computer Engineering,
Johns Hopkins University, Baltimore, USA

jcraley2@jhu.edu
2 Department of Neurology,

Johns Hopkins Medical Institute, Baltimore, USA

Abstract. Manual seizure detection in clinical electroencephalography
(EEG) is time consuming and requires extensive training. In addition,
the seizure origin and spreading pattern is valuable for therapeutic plan-
ning but cannot always be manually disambiguated. Prior work in auto-
mated seizure detection has focused on engineering new features that
better capture the seizure activity. However, these methods ignore crucial
information in the data and are not sensitive enough to track the seizure
propagation. In this work we introduce a hybrid Probabilistic Graphical
Model-Convolutional Neural Network (PGM-CNN) for seizure tracking
in multichannel EEG. Our model leverages the power of deep learning
for data driven analysis of the raw EEG time series while retaining clin-
ically relevant information through the latent PGM prior. We validate
our hybrid model on clinical EEG data from two hospitals with distinct
patient populations. Our system achieves better detection performance
than baseline methods, which exclusively use PGMs or neural networks.

1 Introduction

Epilepsy affects nearly 3.5 million people in the United States and is associated
with a fivefold increase in mortality rate [1]. It has been estimated that 20–
40% of epilepsy patients are medically refractory and do not respond to anti-
epileptic drugs [2]. Subsequent treatments for these patients rely on clinicians
being able to detect, and if appropriate, localize seizure activity in the brain.
Due to the heterogeny of epilepsy disorders, scalp electroencephalography (EEG)
recordings are critical for diagnosis and treatment planning. Typical in-patient
evaluations for epilepsy involve continuous EEG recordings, sometimes for days.
These recordings are manually inspected for seizure activity, a process which is
time consuming, requires years of training, and is prone to human error.

Feature Engineering for EEG Analysis: Automated seizure detection has
been an active field of research for the past three decades. Most algorithms
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follow a two-stage machine learning pipeline consisting of (1) feature extraction
from the EEG signal over short time windows, followed by (2) a binary classifier
to identify seizure versus non-seizure intervals [3]. This end-to-end pipeline was
exemplified by Shoeb et al. [4] where power features in different frequency bands
were used in conjunction with a support vector machine classifier.

Prior work in the seizure detection community has focused largely on the fea-
ture extraction step. For example, Andrzejak et al. [5] noted that EEG during
seizures exhibited a different degree of non-linearity than EEG recorded dur-
ing baseline, inspiring the application of non-linear signal processing and chaos
theory to EEG analysis. Similarly, Güler et al. [6] used Lyapunov exponents to
discriminate between seizure and non-seizure EEG. While the above methods
are promising, the generalization power is fundamentally limited by the chosen
features. In addition, they perform classification independently for each time
window and do not capture the seizure origin or manifestation.

Craley et al. [7] introduced a novel approach for seizure detection that used
a Coupled Hidden Markov Model (CHMM) to track the propagation of a seizure
across the scalp. However, this method relied on carefully selected features in
order to learn a highly structured likelihood function. Despite leading to good
performance, feature extraction focused specifically on a small number of spectral
features. These features, combined with likelihood scoring using a restricted set
of functions, likely missed relevant seizure information. In contrast, here we rely
on data-driven strategies using deep architectures to directly learn more effective
representations and analysis functions.

Data-Driven Representation Learning: Traditional representation learning
techniques solve auxiliary problems in the pursuit of representations with desir-
able properties. While these properties are often useful, there are no guarantees
that they are most appropriate for a given task. Alternatively, deep networks
learn representations that capture facets of the data directly applicable to the
task at hand [8]. This improved analytical power can come at the cost of inter-
pretability, as these features may lack inuitive explanation.

This paper presents an integrated framework for epileptic seizure detection
that blends the interpretability of Probabilistic Graphical Models (PGMs) with
advancements in deep learning. Our PGM leverages the CHMM [7] for auto-
mated seizure tracking. We augment this PGM with a Convolutional Neural
Network (CNN) likelihood model. Our PGM-CNN strategy can automatically
learn the EEG features relevant for detection from limited amounts of training
data. We demonstrate our PGM-CNN framework on multichannel EEG data
acquired from two hospitals with distinct patient populations. Our PGM-CNN
framework correctly identifies more of the annotated seizure activity in both
datasets than comparable baseline methods. This performance suggests a new
direction for automated seizure tracking in clinical EEG.
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Fig. 1. Detail of the inference procedure. Time flows to the right while information
flows upwards. In the third row, we depict the raw EEG signal. The signal from each
channel is fed into a dedicated CNN for scoring in the second row. The first row depicts
a hypothetical seizure spreading through the propagation network of the CHMM.

2 Integrating PGMs and Deep Learning

Figure 1 outlines our modeling strategy. Raw EEG signal from each channel in
row three is fed directly into the CNNs in row two, where one CNN is trained
for each channel. The CNNs score the signal for seizure activity and feed this
information into the CHMM prior shown in row 1. The CHMM fuses these scores
across the scalp and through time to perform posterior inference for seizure activ-
ity. Below, we formalize the mathematical relationships and inference procedure.

2.1 PGM Prior Based on the Coupled Hidden Markov Model

The PGM prior couples the hidden states of each EEG channel according to
the previous states of the neighboring and contralateral channels [7]. For each
channel i, we let the underlying seizure state at time t be represented by the
variable Xt

i ∈ {0, 1, 2} corresponding to pre-seizure baseline, seizure activity, and
post-seizure baseline, respectively. The corresponding EEG data is represented
by Y t

i . We define the aunts of channel i, au(i), as the neighbors in the graphs
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shown in Fig. 1 and indicate the states of the ensemble of aunts of channel i at
time t with Xt

au(i). The joint probability distribution can be written

P (X,Y) =
N∏

i=1

P (Y 0
i | X0

i )
T∏

t=1

P (Y t
i | Xt

i )P (Xt
i | Xt−1

au(i),X
t−1
i ), (1)

where N indicates the number of channels and T is the length of the recording.
Notice that we assume all channels are initially in baseline (i.e. X0

i = 0, ∀i) and
have thus omitted the distribution over the initial state.

The transition probability P (Xt
i | Xt−1

au(i),X
t−1
i ) for each chain depends only

on the aunt states and the state of the chain in the previous timestep. These
probabilities are encoded in a left-to-right time-inhomogenous transition matrix
At

i where P (Xt
i = k | Xt−1

i = j,Xt−1
au(i)) = At

i,jk as follows:

At
i =

⎡

⎣
1 − gt

i gt
i 0

0 1 − ht
i ht

i

0 0 1

⎤

⎦ . (2)

Here gt
i and ht

i correspond to the probability that a channel enters or exits the
seizure state, respectively. We model these probabilities as logistic regressions

log
(

gt
i

1 − gt
i

)
= ρ0 + ρ1η

t
i , log

(
ht

i

1 − ht
i

)
= φ0 + φ1η

t
i (3)

such that ρ0 corresponds to the base rate of seizure onset for each individual
channel while ρ1 corresponds to the influence of the aunt channels on the seizure
onset. Likewise, the parameters φ0 and φ1 govern offset in an identical way.

2.2 Nonparameteric Likelihood via Convolutional Neural Networks

CNNs have become standard in computer vision due to their ability to learn
spatially invariant features across multiple scales [8]. At a high level, the early
layers learn simple features, such as edge detectors, while subsequent layers
learn more and more complicated features. CNNs are also becoming popular
for one-dimensional and time series data, where they provide a valuable alterna-
tive to the standard Recurrent Neural Network (RNN). While RNNs have been
particularly effective in analyzing short sequences, CNNs with large receptive
fields can be trained much faster than RNNs for long sequences. In addition,
CNNs are restricted to learning highly structured functions composed of con-
volutions, which reduces their ability to overfit when training data is limited
[8]. While CNNs are powerful tools for data analysis, they suffer from a lack of
interpretability. However, from a clinical standpoint, we are primarily concerned
with the seizure propagation patterns, as opposed to the underlying feature rep-
resentation. Our hybrid approach captures the clinically relevant information by
using a directly interpretable PGM prior while giving the CNN free rein over the
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data likelihood to improve EEG signal analysis, resulting in gains in detection
performance.

One important caveat to integrating a CNN data likelihood is that, by
default, a CNN is trained for posterior inference. Namely, given the input data
Y t

i , the CNN will output a soft class assignment of seizure versus baseline, i.e.
P (Xt

i | Y t
i ). In contrast, the joint distribution in Eq. (1) relies on the data like-

lihood, P (Y t
i | Xt

i ). We can obtain this factor by applying Bayes’ rule:

P (Y t
i | Xt

i ) =
P (Xt

i | Y t
i )P (Y t

i )
P (Xt

i )
∝ P (Xt

i | Y t
i )

P (Xt
i )

. (4)

Notice that we ignore the marginal probability P (Y t
i ), as this term is the same

regardless of the class label, and we only require data likelihoods up to a con-
stant factor for posterior inference. Hence, we can rescale the CNN output by
P (Xt

i ) to arrive at a surrogate likelihood term [9]. We approximate P (Xt
i ) by

the proportion of seizure versus baseline in the dataset, i.e.

P̂ (X = 1) =
#seizure windows

#windows
, P̂ (X = 0) = 1 − P̂ (X = 1). (5)

The rescaling of the discriminative posterior in Eq. (4) using the approximate
prior over states in Eq. (5) will serve as the likelihood in our PGM-CNN model.

2.3 Fitting the PGM-CNN Model

We fit the PGN-CNN using a variational algorithm, similar to the one in [7]. We
approximate the latent posterior as the product of independent HMM chains.

P (X | Y) ≈ Q(X) =
N∏

i=1

1
ZQi

Qi(Xi) =
N∏

i=1

1
ZQi

T∏

t=1

T t
i (Xt

i | Xt−1
i )Et

i (X
t
i ). (6)

The factors Et
i (X

t
i ) and T t

i (Xt
i | Xt−1

i ) encode the emission and transition terms
of the approximating HMMs, respectively.

Posterior Inference: We infer the latent posterior distribution by iteratively
running the forward-backward algorithm [10] over each of the individual chains,
while holding the remaining chains constant. The forward-backward algorithm
calculates the following posterior statistics under the distribution Q:

γ̃t
i (j) := EQi

[
1(Xt

i = j)
]

ξ̃t
i(j, k) := EQi

[
1(Xt

i = j,Xt+1
i = k)

]
.

The variational form of T t
i (Xt

i | Xt−1
i ) closely resembles the original transition

distribution but is now based on the statistics {γ̃t
i (j), ξ̃

t
i (j, k)}. The emission

parameters are the original likelihood multiplied by a correction factor αt
i(·).

Et
i (0, 2) = p(Y t

i | Xt
i = 0, 2)αt

i(0), Et
i (1) = p(Y t

i | Xt
i = 1)αt

i(1)
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Fig. 2. Convolutional neural network architecture used in this work

αt
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(7)

The factor shown in Eq. (7) encodes the influence of the aunts in the following
timestep. In this term we define νt

i =
∑

j∈au(i) Xt
j . We use Newton’s method to

learn the transition parameters {ρ0, ρ1, φ0, φ1} based on the inferred Q(X).

Neural Network Implementation: We implemented the CNN in PyTorch.
The CNN consists of 4 convolution and pool layers as shown in Fig. 2. Each
layer uses 6 channels with a kernel size of 5 samples and 2 sample zero padding
to maintain a constant size. A LeakyReLU activation, where LeakyReLU(x) =
max(0, x)+0.01·min(0, x), is applied at each layer. A max pooling operation with
a kernel size of 2 and a stride of 2 is applied, halving the size of the representation
at each layer. After the final convolution, the hidden units are concatenated and
passed to a single linear layer for classification using a softmax activation.

During experimentation in the design of this network, we investigated similar
architectures of varying depths, numbers of channels, and activation functions.
Networks with saturating activations failed to train in some cases, perhaps due
to the presence of artifact with extreme amplitudes. We found the LeakyReLU
to be the most robust, likely due to the fact that it does not saturate.

The CNNs were trained discriminatively with a cross entropy loss function
prior to posterior inference. We trained separate CNN classifiers for each EEG
channel to capture behavior specific to different parts of the scalp. Stochastic
gradient descent was performed using the Adam optimizer with a batch size of
32 samples and a learning rate of 0.5. We trained each CNN for 60 epochs, which
was sufficient to achieve reliable performance without overfitting.
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3 Evaluation

3.1 Baseline Comparisons

We compare our PGM-CNN detection performance to baseline methods ranging
from simple classifiers on hand selected features to a fully CNN strategy. The
features used in [7] (sum of spectral components and line-length) were used for
all non-CNN baselines. Recordings were randomly assigned to 5-folds for cross
validation. Training was performed on 4 folds while the remaining fold was used
for testing. The baseline methods are summarized below.

CNN: We implement an end-to-end deep learning pipeline based on the CNN
classification architecture described in Sect. 2.3. This comparison evaluates the
predictive value of the CNN without the smoothing in the PGM prior.

CHMM: We implement the original CHMM model proposed in [7] which
assumes a Gaussian Mixture Model (GMM) likelihood using the suggested
parameter settings. This comparison will evaluate the performance gain in using
a non-parametric likelihood with data driven learning from the raw EEG signal.

ReLUFullyConnected So�max

Fig. 3. Artificial neural network
used for seizure detection in this
work.

ANN: Similar to the CNN baseline, we eval-
uate the performance of the predefined fea-
tures as inputs for an Artificial Neural Network
(ANN) classifier. Due to the relatively small
feature space we opted for a small ANN shown
in Fig. 3 to avoid overfitting. Our networks are
composed of two hidden layers with 10 units
each. Each layer is fully connected with Recti-
fied Linear Unit (ReLU) activations. The final
output layer contains two nodes with a softmax
activation applied. Thus the final layer repre-
sents the posterior probability of a hidden state
given the associated feature vector.

GMM: Finally, we implement a simple GMM classifier based on the precom-
puted EEG features. The inclusion of this baseline allows us to evaluate the rel-
ative performance of the CNN, ANN, and parametric GMM likelihoods directly
without the inclusion of the latent seizure spreading prior.

3.2 Performance Metrics

Our performance metrics are based on the maximum a posterior (MAP) esti-
mate of baseline versus seizure for each method and are presented as averages
across test folds. Since the clinical seizure annotations tend to be overly gener-
ous and do not contain spatial information about onset, we aggregate the True
Positives (TP), True Negatives (TN), False Positives (FP), and False Negatives
(FN) across all windows, channels, and all seizure recordings. In general, the
recordings contain muscle artifact directly following the seizure which confounds
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Fig. 4. Propagation paths for the (a) common reference and (b) longitudinal montage.

the offset for all methods. Therefore, we count any seizure classification occuring
within the annotated seizure region as TP. However any contiguous classifications
continuing past the annotated offset is not counted in our evaluation statistics.

Below we detail the summary statistics computed for each model. True Posi-
tive Rate (TPR), also known as recall, represents the total rate of correct classi-
fication. False Positive Rate (FPR) represents the rate of incorrect classification
of baseline regions as seizure after excluding classifications beginning within the
seizure region. We calculate a lower bound on the Area Under the Curve (AUC)
using these two metrics. Precision (P) details the ratio of correct seizure classi-
fications to the total number of seizure classifications. In addition to AUC, the
F1 score offers a similar summary by computing the harmonic mean of P and
TPR. Mathematically, these statistics are given by:

TPR =
∑N

i=1 TPi∑N
i=1 (TPi + FNi)

FPR =
∑N

i=1 FPi∑N
i=1 (TNi + FPi)

P =
∑N

i=1 TPi∑N
i=1 (TPi + FPi)

F1 = 2
P · R

P + TPR

AUC = FPR · TPR/2 + (1 − FPR)(1 + TPR)/2.

4 Experimental Results

Data and Preprocessing: Epileptic seizures are extremely heterogeneous. For
example, generalized seizures manifest across the entire cortex at once, whereas
focal seizures originate from a single area and may spread to other regions of the
cortex. Given this heterogeneity, we evaluate our algorithm on two datasets. The
first is taken from the Johns Hopkins Hospital (JHH) and contains 90 seizures
from 15 adult patients with focal epilepsy. The second is a publicly available
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Fig. 5. Estimated posteriors for a single seizure from the JHH dataset. EEG channels
are shown on the y-axis and time proceeds in the x-direction. The first row shows
models with a CHMM prior. The second row shows channel-wise classifications.

Table 1. Results for the both datasets

JHH dataset CHB dataset

Trial TPR FPR AUC P F1 TPR FPR AUC P F1

PGM-CNN 0.45 0.010 0.72 0.79 0.57 0.61 0.013 0.80 0.74 0.67

CHMM 0.37 0.0083 0.68 0.80 0.50 0.571 0.0067 0.78 0.83 0.67

CNN 0.19 0.010 0.59 0.62 0.28 0.27 0.0071 0.63 0.70 0.39

DNN 0.11 0.0070 0.55 0.58 0.18 0.23 0.0071 0.61 0.66 0.34

GMM 0.18 0.015 0.58 0.52 0.27 0.26 0.010 0.62 0.61 0.37

dataset from Children’s Hospital Boston (CHB) of unspecified epilepsy types
[4]. We used 185 recordings from this dataset from 24 pediatric patients.

Besides the patient populations, another difference between the two datasets
is the acquisition protocol. The JHH dataset contains the original recordings
of the 10/20 international system in common reference. In contrast, the CHB
dataset uses the longitudinal montage, which forms difference channels by sub-
tracting the signals in neighboring electrodes. We specify a propagation network
appropriate for this montage as shown in Fig. 4b. This coupling preserves neigh-
boring and contralateral relationships on the scalp from the original prior.

Our recordings contain one seizure and up to ten minutes of pre- and post-
seizure baseline. For the CHB data, these segments were clipped from the original
release. EEG channels were low and highpass filtered at 50 and 1.6 Hz, respec-
tively. A notch filter at 60 Hz was applied to remove any remaining power supply
artifact. As in [7], 4 spectral features and one line-length feature were extracted
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Fig. 6. Example posteriors from the CHB dataset. CHMM and likelihood models are
shown in the first and second rows, respectively.

from 1 s windows with a 250 ms overlap. The CNN model was trained directly
on the raw EEG signal from the 1 s windows.

Detection Performance. Table 1 reports the seizure detection performance
averaged across the testing folds for both the JHH and CHB datasets. We have
reported True Positive Rate (TPR), False Positive Rate (FPR), Area Under the
Curve (AUC), Precision (P), and F1, as described in Sect. 3.2.

Our PGM-CNN dramatically outperforms all of the baseline methods on the
JHH dataset. The only drawback is a slightly higher FPR, since our CNN shows
more sensitivity to seizure activity, and classifies slightly more baseline as seizure.
Despite the numerical increase in FPR, the increased sensitivity is valuable in the
clinic, particularly when augmenting the expert manual inspections. Moreover,
these spurious detections are compensated by more accurate true detections,
which are reflected in the AUC, precision, and F1 measures. We emphasize that
our evaluation metrics are much more conservative than in prior studies, which
is why the TPR seems uniformly low. Instead of measuring singular detections
within the annotated seizure period, we aggregate over channels and windows.
This allows us to evaluate not only correct detections of seizures but how much
seizure activity our algorithms are capable of discerning.

Interestingly, the same detection trends are seen in the CHB data, despite
our PGM spreading prior being designed for focal and not generalized seizures.
The PGM-CNN achieves the best TPR and AUC as well as a comparable F1
score. In short our flexible data likelihood based on the CNN allows us to learn
complex data representations that better separate seizure from baseline. This
leads to better detection rates, which is valuable for clinical planning.

Finally, we note that the channel-wise baselines are uniformly bad. Detect-
ing seizure activity is, in general, a relatively difficult problem. Both seizure and
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Fig. 7. Example seizure tracking from the JHH dataset. (a, b) Posteriors for all chan-
nels. (c, d) Topographic detail showing posterior onsets in clinically annotated regions.

baseline contain high amplitude muscle artifact, which confound the detection
over short time windows. In addition, the data distributions are highly overlap-
ping, with seizure activity often resembling normal behavior. The effect of the
prior in the PGM-CNN and CHMM for data fusion across channels is apparent.

Figures 5 and 6 show the classification posteriors of each model for an example
seizure in the JHH and CHB datasets, respectively. EEG channels are presented
on the y-axis while the x-axis shows time. The dashed black lines correspond to
annotations for seizure onset and offset. Red indicates the posterior probabilities
of the seizure state. The PGM-CNN correctly classifies more of the annotated
seizure in Fig. 5 than any of the other models. Each model incorrectly activates
during the period immediately following the seizure, responding to the presence
of artifact. However, the CNN likelihood model places more confidence in the
seizure region, allowing for more correct classification. In contrast, the ANN and
GMM identify strong seizure-like activity in the artifact following the actual
seizure, causing an incorrect classification by the CHMM [7]. In Fig. 6 the PGM-
CNN correctly classifies more of the annotated seizure than the CHMM but
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makes a false positive, while the CHMM classifies only a small portion of the
seizure and responds strongly to the artifact prior to the seizure.

Seizure Localization: Surgical resection is the standard-of-care for medically
refractory focal epilepsy. The latent propagation prior of our PGM-CNN has the
potential to aid in seizure localization. Figure 7 shows two classifications from the
PGM-CNN. Clinical annotations for the seizure in (a) and (c) suggest an origin
in the right temporal lobe and spreading left. Likewise, the annotations in (b)
and (d) suggest a left frontal lobe onset. The localization information provided by
our model agrees with the annotated foci. Remarkably, this spreading behavior
is learned in a completely unsupervised manner based on the clinical hypotheses
embedded in the PGM prior. This result highlights the promise of integrating
model-based and data-driven approaches for medical imaging applications.

5 Conclusion

We have presented the first generative model-deep learning hybrid for epilep-
tic seizure detection. Our framework captures the spatio-temporal spread of a
seizure through a structured PGM prior, while allowing for a complex likeli-
hood function that is implicitly learned via a CNN. This data driven approach
learns representations directly from the raw EEG signal, improving upon feature
extraction techniques. At the same time the PGM preserves clinical interpretabil-
ity and acts as a local smoothing process for the CNN outputs based on limited
training examples. We evaluate our method on clinical data from two hospitals
with distinct patient populations. In both cases, our PGM-CNN achieved higher
true positive detection and AUC than any of the baseline methods.

Future work will explore alternate deep learning architectures with larger
receptive fields and evaluate the effectiveness of training multichannel CNNs for
fusing information across the scalp. In addition, modeling improvements such
as restrictions on allowed onsets and enforcement of concurrent offsets across
channels would likely reduce false positives and is an ongoing direction of work.
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