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Abstract. We propose a hierarchical Bayesian model that refines a
population-based atlas using resting-state fMRI (rs-fMRI) coherence.
Our method starts from an initial parcellation and then iteratively reas-
signs the voxel memberships at the subject level. Our algorithm uses a
maximum a posteriori inference strategy based on the neighboring voxel
assignments and the Pearson correlation coefficients between the voxel
time series and the parcel reference signals. Our method is generalizable
to different initial atlases, ensures spatial and temporal contiguity in the
final network organization, and can handle subjects with brain lesions,
whose rs-fMRI data varies tremendously from that of a healthy cohort.
We validate our method by comparing the intra-network cohesion and the
motor network identification against two baselines: a standard functional
parcellation with no reassignment and a recently published method with
a purely data-driven reassignment procedure. Our method outperforms
the original functional parcellation in intra-network cohesion and both
methods in motor network identification.
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1 Introduction

Resting-state fMRI (rs-fMRI) captures the intrinsic communication patterns
in the brain. Neural activity at rest is organized into Resting State Networks
(RSNs), which are determined by both spatial coherence and temporal syn-
chrony at the voxel level [1]. Non-invasive methods for identifying RSNs are
of particular interest when planning neurosurgery, where the goal is to localize
(and subsequently avoid) cruicial motor and language functionality, also known
as the eloquent cortex. Accurately identifying these key functional networks will
determine safe resection margins and may also help us to predict the functional
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outcomes of surgery [2]. Task-fMRI, where the subject is performing an explict
language or motor paradigm, is currently the most popular technique for map-
ping eloquent brain areas. However, recent interest has moved towards rs-fMRI
to overcome both the unreliability of certain task activations and the inability
of critically ill patients to complete a cognitively demanding protocol [2].

While a standard functional parcellation is often sufficient to identify RSNs
in healthy individuals, a subject specific approach is necessary for brain lesion
patients due to a compensatory mechanism known as neural plasticity. For exam-
ple, it has been shown that motor and language functionality in patients with
low-grade gliomas can migrate to other parts of the brain [3]. Therefore, data
from glioma patients may not conform to a standard functional atlas.

Previous work has focused on deriving subject-specific functional atlases from
the original rs-fMRI data. These techniques include, but are not limited to, spa-
tially constrained hierarchical parcellations [4] and data-driven clustering tech-
niques [5]. In contrast, we approach this problem as one of atlas refinement rather
than atlas construction. This strategy allows us to work with any previously val-
idated anatomical or functional parcellation. Liu et. al have introduced a method
to obtain subject-specific RSNs by iteratively reassigning the voxel memberships
based on the Pearson correlation coefficients between the voxel time series and
a collection of network reference signals. This method was originally derived to
determine functional network differences in healthy subjects and showed promise
for clinical populations [6]. These reference signals are calculated as a weighted
average of the previous iteration’s reference signal and the current average time
series for the RSN. Their method does not explicitly consider spatial contiguity
in RSNs, and requires the user to specify various parameters.

We develop a Bayesian model that uses both spatial and temporal informa-
tion to iteratively refine an initial functional parcellation on a patient-specific
basis. Our model uses a Markov Random Field (MRF) prior to encourage spa-
tial contiguity within the functional parcels. We employ a maximum a posteriori
(MAP) inference strategy for voxel-wise network assignment until a predefined
convergence criteria is met. Our method builds on prior work in Bayesian net-
work modeling [7] and MRF priors for rs-fMRI data [8]. We validate our method
on rs-fMRI data from 67 glioma patients. Our initial atlas is the Yeo 17 net-
work functional parcellation [9], which is one of the most widely cited functional
atlases in the literature. We compare the performance of our method with the
original parcellation (no reassignment) and with reassignment according to Liu,
whose paper references the same parcellation. Our validation metrics include the
intra-network cohesion amongst the final RSNs and motor network identification
via task based fMRI concordance using three distinct task paradigms.

2 A Bayesian Model for Voxel Reassignment

Our model infers an underlying (i.e. latent) network architecture that integrates
both spatial contiguity and temporal synchrony across the brain. At each voxel,
we leverage the time series data, the neighborhood network membership, and a
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Fig. 1. A graphical model of our framework where shaded nodes represent observed
random variables.

binary tumor label, indicating if the voxel lies within the lesion or not. Let Xv be
the network assignment for voxel v. In our framework, Xv gets assigned to one of
K+1 values, where K is the number of networks (or region parcels) defined in the
initial atlas. An assignment of Xv = 0 indicates no network membership for voxel
v if it belongs to the glioma. Mathematically, let X−v be the current network
assignments of all other voxels in the brain. Likewise, yv is the time series data
at voxel v, µk is the current reference signal for network k ∈ {

1 . . . K
}
, and

bv ∈ {
0, 1

}
is the binary tumor label such that bv = 0 implies that voxel v

is tumorous. Our setup is illustrated in Fig. 1. As seen, the assignment for Xv

depends on its immediate spatial neighbors. The relationship between Xv and
X−v is captured by an MRF prior while the relationship between Xv and yv, bv is
captured by the data likelihood. For visualization purposes the 2D representation
in Fig. 1 shows four neighbors per pixel. However, we have implemented a 3D
model, which has six neighbors per voxel.

We encourage spatial contiguity in our latent network assignments by stip-
ulating that voxel v will be more likely to assume the state of its neighboring
voxels. We model the MRF prior after the Potts model [10]:

P (Xv = k|X−v) =
1

Zx
Ψ(Xv,X−v, k) ∝

⎧
⎨

⎩
1 + exp

⎡

⎣−(β +
∑

i∈ne(v)

1Xi=k)

⎤

⎦

⎫
⎬

⎭

−1

(1)
where β controls the influence of the neighbor voxel network memberships
on voxel v. Here, ne(v) denotes the neighbors of voxel v, and the sum∑

i∈ne(v) 1Xi=k captures how often these neighbors are assigned to network k.
Notice that this sum will be zero for network k when Xi �= k for all i ∈ ne(v).

The likelihood P (yv|Xv = k;µk, bv) is modeled after a rescaled version of
the Pearson correlation coefficient between the reference µk and data yv:

ρ =
cov(yv,µk)

σyv
σµk

(2)
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where ρ is subsequently shifted and scaled to be between [0, 1] to allow for a
normalizable density. The final likelihood model is given by

P (yv|Xv = k;µk, bv) =
1
Zy

Ψ(yv,µk, bv) =
1
Zy

{
(ρyv,µk

+ 1)
2

× bv

}
. (3)

The rescaled Pearson correlation coefficient goes to one for strong positive corre-
lations and zero for strong negative correlations. The label bv sets the likelihood
to zero for tumorous voxels, which corresponds to no network membership.

2.1 Approximate Posterior Inference

The observed rs-fMRI time series yv are conditionally independent given {Xv}.
Based on the model factorization, our posterior distribution can be written as

P (Xv = k|X−v,yv; θ) =
1
Z

Ψ(Xv,X−v, k)Ψ(yv,µk, bv) (4)

where Ψ(Xv,X−v, k) models the prior, Ψ(yv,µk, bv) models the likelihood under
the belief that Xv = k, and Z is a normalization constant that combines both
Zx and Zy. We have derived an update procedure based on maximizing the
following log-posterior over all possible network assignments:

X∗
v = argmax

k

{
− log Z + log Ψ(Xv,X−v, k) + log Ψ(yv,µk, bv)

}
. (5)

2.2 Implementation Details

We have derived an algorithm based on max product message passing to ensure
atlas stability [11]. Our algorithm iterates between two main steps: updating
the network assignments {Xv} and updating the reference signals {µk}. Let
Y ∈ Rx×y×z×T be the aggregated rs-fMRI data across all (x, y, z) spatial coor-
dinates and let X(t) ∈ Rx×y×z be the assignment information at iteration t.
Let B ∈ Rx×y×z be the binary tumor matrix. The values stored in B are 0 at
tumorous voxels and 1 elsewhere. We initialize our algorithm with the Yeo atlas
and then the Hadamard product X(0) = X � B, which defaults all tumorous
voxel assignments to 0 due to unreliable signal at these locations. We then par-
cellate Y by the assignments in X(0) and calculate the initial reference signals
µ

(0)
k for k ∈ {

1 . . . K
}

with

µ
(t)
k =

∑V
v=1 Yv · 1(X(t)

v = k)
∑V

v=1 1(X(t)
v = k)

. (6)

At each main iteration t, we determine the voxel assignments I times according
to our MAP rule in Eq. (5) initializing with X(t−1). Using the assignments in
i − 1, we employ a flooding schedule to simultaneously determine the network
values X̂(i) at iteration i. The updated assignments X(t) is given by majority
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Algorithm 1. Max product message passing procedure for atlas refinement.
Here, c is a prespecified threshold on the network consistency between iterations.
1: procedure MRFrefinement(X ,B,Y )
2: X (0) ← X � B
3:

{
µ

(0)
1 · · ·µ(0)

K

} ← Y ,X (0) � Eq. (6)
4: t ← 1
5: M ← 0 � Membership retention M ∈ [0, 1]
6: while M < c do � Convergence threshold c ∈ [0, 1]

7: X̂ (1) ← X (t−1)

8: for i = 2 : I do
9: for v ∈ V do

10: X̂
(i)
v ← argmaxk

{
log Ψ(Xv, X̂

(i−1)
−v , k) + log Ψ(yv,µ

(t−1)
k , bv)

}

11: X (t) ← mode({X̂ (i)}I
i=1)

12:
{
µ

(t)
1 · · ·µ(t)

K

} ← Y ,X (t) � Eq. (6)

13: M ←
∑

v 1(X
(t−1)
v =X

(t)
v )·Bv∑

v Bv
� Fraction of retained voxel memberships

14: t ← t + 1

15: return X t

vote over the determined network values {X̂(i)}Ii=1. Given the new assignments,
we update the network signals by Eq. (6) for k ∈ {

1 . . . K
}

and check if the
convergence criteria has been met by calculating the fraction of non-zero assigned
voxels retaining the same network membership between iterations t− 1 and t. If
the membership consistency between iterations is less than a specified stopping
criteria, we repeat the procedure. Each voxel of interest has six neighbors as
determined by adjacency in each of the three coordinate directions. Algorithm
1 presents our pseudo-code where the subject-specifc inputs are B and Y .

2.3 Baseline Comparisons

We compare our Bayesian approach with the original parcellation and with the
voxel reassignment method described by Liu [6]. We use the Yeo 17 network atlas
due to its strong reproducibility and the large sample size used for construction.
We confine our experiments to the more conservative cortical ribbon version of
the Yeo atlas to get a more detailed parcellation. The method of Liu initializes
the reference signals to the average time series defined by the original parcella-
tion. From here, Liu reassigns voxel v by considering the maximum correlation
between its time series and all K reference signals. A confidence value for each
voxel is also computed as the ratio of the maximum correlation over the second
highest correlation. The reference signal updates are only taken from voxels that
have confidence values which exceed a predetermined threshold. They are com-
puted as weighted combinations of the previous iteration’s reference signals with
the updated reference signals. The corresponding weights are nonlinear functions
of the signal-to-noise ratio, the inter-subject variability, and the iteration num-
ber. We applied the Liu baseline with the parameter suggestions provided in [6],
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which were optimized for the 17 network Yeo atlas. We initialize each method,
original, Liu, and proposed as described in Sect. 2.2.

3 Experimental Results

Dataset and Preprocessing: Our dataset includes task and rs-fMRI for 67
glioma patients who underwent preoperative mapping as part of their clinical
workup. The fMRI were acquired using a 3.0 T Siemens Trio Tim (TR = 2000 ms,
TE = 30 ms, flip angle = 90◦, field of view = 24 cm, acquisition matrix = 64 ×
64×33, slice thickness = 4 mm, and slice gap of 1 mm). We manually segmented
each patient’s tumor using MIPAV. Figure 2 illustrates tumor segmentations for
three different patients to motivate the heterogeneity of our cohort. The fMRI
was processed using SPM8. Both rs-fMRI and task-fMRI underwent slice timing
correction, motion correction and registration to the MNI-152 template. The
rs-fMRI was scrubbed using the ArtRepair toolbox in SPM, linearly detrended,
underwent nuisance regression utilizing CompCor [12], bandpass filtered from
0.01 to 0.1 Hz, and spatially smoothed with a 6 mm FWHM Gaussian kernel.

General Linear Model (GLM) in SPM8 was used to derive activation maps for
the three motor tasks [2]. Our dataset includes three different motor paradigms
that were designed to target distinct parts of the motor homonculus [13]: fin-
ger tapping, tongue moving, and foot tapping. Since the task-fMRI data was
acquired for clinical purposes, only 42 patients performed the finger task, 35
patients performed the tongue task, and 20 patients performed the foot task.

The population-based atlas contains 17 distinct functional networks confined
to the cortical ribbon [9]. For both methods, a network retention convergence
criteria of 0.98 was used. We chose β = −0.5 and I = 100 iterations for our
model and a confidence value of 1.5 for the Liu baseline. Different combinations
of reference signal calculation between updates for both our method and the Liu
baseline were explored; we have reported the optimal results in each case.

3.1 Evaluating Resting State Network Cohesion

Our intra-network cohesion metric quantifies the temporal synchrony between
voxels that belong to the same network [1]. Let Vk be the voxels assigned to

Fig. 2. The tumor segmentations (yellow) for three different patients are shown. (Color
figure online)
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network k, we define the Network Cohesion (NC) as the average correlation
between voxels assigned to network k with the network signal µk.

NCk =

∑
j∈Vk

ρyj ,µk

|Vk| (7)

Figure 3 illustrates the difference in NC between our proposed method and both
the original parcellation (left) and the Liu baseline (right). A value greater than
zero is considered to be more temporally synchronous while a value less than zero
is considered to be less temporally synchronous. In all 17 networks, our method
outperforms the original atlas with significance p < 0.005. This highlights the
importance of our subject-specific approach for glioma patients, whose functional
networks are substantially reorganized due to tumor presence.

Fig. 3. Difference in intra-network cohesion between our method and the original par-
cellation (left) and the Liu baseline (right).

Naturally, the Liu baseline achieves higher NC due to its correlation-based
voxel reassignment procedure. Figure 4 shows the original parcellation, and the
final network assignment using our method and Liu’s method in a single patient.
Each distinct color represents one of the 17 networks. We observe an overall lack
of spatial contiguity in the Liu baseline, as highlighted in the white circle. This
might be due to spurious noise within rs-fMRI signal at the voxel level, resulting
in some spatially discontiguous reassignment. The large grey area in the right
hemisphere is the excluded tumorous region for this subject.

Figure 5 shows the proportion of voxels retained in the original network mem-
bership between our method (left) and the Liu baseline (right). We observe sub-
stantial reorganization in the networks defined from our method. Along with
higher NC, this further motivates our approach, showing that many voxels in
the original parcellation may not belong to the proper RSN for this cohort.
We observe an even larger reorganization in the Liu networks. In the following
section we conjecture that the displacement in the Liu networks may be too
large, because while the Liu baseline provides more temporally cohesive RSNs,
it fails to identify functionally consistent motor networks.
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Fig. 4. Left: Original network assignment. Middle: Our final network assignment.
Right: Liu’s final network assignment. For visualization, we have dilated the networks
according to the liberal Yeo mask.

Fig. 5. Network retention for our method (left) and Liu’s method (right).

3.2 Motor Network Concordance, as Validated by Task-fMRI

Our second experiment quantifies the rs-fMRI concordance between the pseudo-
ground truth motor network in each patient and the motor RSN identified by
each of the methods. Specifically, we will use the GLM activation map across
three distinct motor tasks to define seed locations for motor functionality. The
seed is defined as a group of highly activated voxels within the activation map.
The Yeo atlas separates the motor network into two different parcels [9]. Our
measure of task concordance will be the maximum correlation between the ref-
erence signals of these two RSNs and the average time series associated with the
GLM activation seed. We determine that a method is better at motor network
identification by having a higher positive correlation with significance p < 0.05.

Figure 6 illustrates the performance gain of our method. The pink boxplots
show the difference in task concordance between our method and the origi-
nal atlas, while the blue shows the difference in task concordance between our
method and the Liu baseline. The tasks are ordered as finger, tongue, and foot
from left to right. Table 1 summarizes the results and corresponding p-values for
this experiment. The values in bold show when our method outperforms other
methods with a student t-test with significance threshold α = 0.05.
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Fig. 6. Difference in task concordance between our method and both the original atlas
(pink) and the Liu baseline (blue). Our method achieves significantly better perfor-
mance in five out of the six comparisons. (Color figure online)

Table 1. P-values for our method vs. the original atlas and the Liu baseline.

Task Sample size Ours vs. Original Ours vs. Liu

Finger 42 3.6e−3 1.2e−5

Tongue 35 7.0e−3 3.7e−2

Foot 20 0.45 9.8e−5

Our method outperforms the Liu method in each of the three tasks. In addi-
tion, our method performs better than the original atlas in the finger and tongue
task, but not the foot task. This latter result can be due to the local area of
the motor homonculus that foot activaton lies in [13] or the smaller sample size.
By observing p-values reported for the finger and foot task, we conclude that no
reassignment would be preferrable to the Liu baseline in this experiment. How-
ever, the Liu method RSNs were the most temporally cohesive. Though network
cohesion is a desirable property for RSNs [1], we have demonstrated that higher
cohesion does not always lead to a functionally consistent motor network. We
conjecture that (1) Liu is too liberal in the voxel reassignment, and (2) both
spatial and temporal consistency are required for RSN identification.

In summary, our method balances both spatial contiguity with temporal
synchrony to help describe functional networks in patients who have undergone
localized neural plasticity. We observe that our method shows more cohesive
RSNs for tumor patients than a population-based functional atlas. We also deter-
mine that the motor network refined by our method is a closer representation
to the actual motor network in these patients. This combination of results give
us confidence in our method for characterizing RSNs in a lesional population.

4 Conclusion

We have formulated a Bayesian model that can refine a population atlas on a
patient-specific basis. Our model considers both spatial contiguity as well as
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temporal synchrony between voxels, all while handling large and variable brain
lesions. Our method outperforms established baselines for identifying a func-
tionally consistent motor network. The use of the MRF prior along with itera-
tive voxel reassignment shows a viable balance between properties of interest in
resulting RSNs. These methodological improvements broaden the applications
in which one can use rs-fMRI for analysis. We have generated a method that
can be translated to other patient cohorts with anatomical brain lesions, like
stroke or traumatic brain injury. Our performance in assessing RSN cohesion
shows that our method captures subject-specific functional organization well,
even in a pathological population. Our method outperforms both baselines in
terms of motor network identification, which is an important step for preoper-
ative planning for neurosurgical resections to avoid permanent motor network
damage.

Future work with our method will involve different initial atlases. Specifically,
we aim to observe how our method performs with atlases of different network
numbers, and different initial size (voxel membership) of networks. Methodolog-
ically, we aim to vary the number of neighbors considered in our prior model,
assigning varying weights to neighbors of different geodisic distances from the
center voxel. Clinically, we aim to study reorganization of sites near the glimoa,
which is known to show the most neural plasticity in these patients [3].
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