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Abstract. We propose a matrix factorization technique that decom-
poses the resting state fMRI (rs-fMRI) correlation matrices for a patient
population into a sparse set of representative subnetworks, as mod-
eled by rank one outer products. The subnetworks are combined using
patient specific non-negative coefficients; these coefficients are also used
to model, and subsequently predict the clinical severity of a given patient
via a linear regression. Our generative-discriminative framework is able
to exploit the structure of rs-fMRI correlation matrices to capture group
level effects, while simultaneously accounting for patient variability. We
employ ten fold cross validation to demonstrate the predictive power
of our model on a cohort of fifty eight patients diagnosed with Autism
Spectrum Disorder. Our method outperforms classical semi-supervised
frameworks, which perform dimensionality reduction on the correlation
features followed by non-linear regression to predict the clinical scores.

1 Introduction

Resting state fMRI (rs-fMRI) allows us to assess brain activity and localize
critical functions through steady state patterns of co-activation [1]. Building
predictive models at the patient level remains an open challenge due to the high
data dimensionality and to the considerable inter-subject variability. Predictive
analysis methods usually follow a two step procedure. First, feature selection is
applied to the raw correlation values; examples include graph theoretic measures,
statistical measures and embedding features obtained from unsupervised learn-
ing techniques such as PCA, k-PCA or ICA [2]. As a second step, conventional
regression techniques such as Random Forests or Support Vector Regression are
applied to the feature space representation to predict the clinical severity. These
c© Springer Nature Switzerland AG 2018
A. F. Frangi et al. (Eds.): MICCAI 2018, LNCS 11072, pp. 163–171, 2018.
https://doi.org/10.1007/978-3-030-00931-1_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-00931-1_19&domain=pdf


164 N. S. D’Souza et al.

strategies adequately capture the group-averaged functional connectivity across
the cohort but fail to account for individual variability. Consequently, the gen-
eralization power of these techniques is limited.

The recent success of Bayesian [3] and dictionary learning [4] studies on rs-
fMRI data is largely based on their ability to simultaneously model the patient
and group level information. [4] introduces a basis learning framework for patient
subtype classification, which reduces the dimensionality of T1 MR voxel based
morphometry data while preserving the anatomical interpretability. [5] intro-
duces a correlation matrix decomposition strategy, where multiple rank one
matrix outer products capturing the underlying ‘generative’ basis are combined
using patient specific coefficients. The sparse basis networks identify meaningful
co-activation patterns common to all the patients, and the coefficients model the
patient variability. Our main contribution lies in exploiting the ‘discriminative’
nature of rs-fMRI correlation matrices. We estimate the clinical severity of every
patient by constructing a regression model which maps the behavioral scores to
the functional data space. We jointly optimize for each of the hidden variables in
the model, i.e. the basis, coefficients and regression weights. We refine the valida-
tion process by quantifying the model generalizability in terms of the regression
performance on unseen data, as opposed to the correlation fit measure in [5].
Hence, our framework is less prone to overfitting.

We validate our framework on a population study of Autism Spectrum Disor-
der (ASD). Patient variability manifests as a spectrum of impairments, typically
quantified by a “behavioral score” of clinical severity obtained from an expert
assessment. Identifying sub-networks predictive of ASD severity is the key link to
understanding the social and behavioral implications of the disorder. Our inclu-
sion of behavioral data into the optimization framework guides the identification
of representative networks specific to resting state ASD characterization.

2 A Joint Model for Connectomics and Clinical Severity

Let N be the number of patients and M be the number of regions in our brain
parcellation. We decompose the patient correlation matrices Γn ∈ RM×M into a
non-negative combination of a K basis subnetworks bkbT

k . The sparse vector bk

indicates the relative contribution of each brain region to network k. The vector
cn denotes the non-negative contribution of each subnetwork for patient n. The
coefficients cn are subsequently used to model the clinical severity score yn via
the regression weight vector w ∈ RK . We concatenate the subnetworks into a
basis matrix B ∈ RM×K , the coefficients into the matrix C ∈ RK×N , and the
scores into a vector y ∈ RN . Our combined objective can be written as follows:

J (B,C,W) =
∑

n

||Γn − Bdiag(cn)BT ||2F + γ||y − CT w||22 s.t. cnk ≥ 0, (1)

Here, γ is the tradeoff between the behavioral and functional data terms, and
diag(cn) is a matrix with the elements of cn on its leading diagonal, and off
diagonal elements as 0. We impose an �1 penalty upon the matrix B in order to
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recover a sparse set of subnetworks. Since the objective in Eq. (1) is ill posed,
we add quadratic penalty terms on C and w which act as regularizers.

λ1||B||1 + λ2||C||22 + λ3||w||22. (2)

Equation (2) is added to the overall objective with λ1, λ2 and λ3 being the
sparsity, norm penalty on C, and the penalty on w respectively.

2.1 Optimization Strategy

We employ a fixed point alternating minimization strategy to optimize B, C
and w. At every iteration, the optimal solution for one variable is calculated
assuming the other variables are held constant. Proximal gradient descent [6]
is an effective strategy of optimizing a non-differentiable sparsity penalty such
as the one in Eq. (2), when the supporting terms are convex in the variable of
interest. However, the expansion of the first Frobenius norm gives rise to non-
convex bi-quadratic terms in B, which prevents us from directly computing a
proximal solution. Therefore, we introduce N constraints of the form Dn =
Bdiag(cn), which are enforced by an Augmented Lagrangian penalty:

J (B,C,w,Dn,Λn) =
∑

n

||Γn − DnBT ||2F +
∑

n

Tr
[
ΛT

n (Dn − Bdiag(cn))
]

+
∑

n

1
2
||Dn − Bdiag(cn)||2F + γ||y − CT w||22 s.t. cnk ≥ 0 (3)

where, each Λn is a matrix of Lagrangians and each of the supporting Frobenius
norm terms are regularizers on the Lagrangian constraints. The objective in
Eq. (3) is convex in B and the set {Dn} separately. Our optimization begins by
randomly initializing B, C and w and setting Dn = Bdiag(cn) and Λn = 0.
We then iterate through the following four steps until global convergence.

Step 1 - Optimizing B via Proximal Gradient Descent. Given the fixed
learning rate parameter t, the proximal update for B is:

Bk+1 = sgn(X).∗(max(|X| − t,0)) s.t. X = Bk − (t/λ1)
∂J
∂B

(4)

The derivative of J with respect to B, where Vn = diag(cn), is computed as:

∂J
∂B

=
∑

n

[
2
[
BDT

nDn − ΓnDn

] − DnVn + BV2
n − ΛnVn

]
(5)

As seen, the non-smoothness of the ||B||1 penalty is handled by performing
iterative shrinkage thresholding applied on a locally smooth quadratic model.

Step 2 - Optimizing C using Quadratic Programming. The objective is
quadratic in C when B and w are held constant. Furthermore, the diag(cn)
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term decouples the updates for cn across patients. Hence, we use N quadratic
programs of the form below to solve for the vectors {cn}:

1
2
cT

nHncn + fT
n cn s.t. Ancn ≥ bn (6)

The Quadratic Programming parameters for our problem are given by:

Hn = diag(BT B) + 2γwwT + 2λ2IK

fn = −diag(DT
nB) − diag(ΛT

nB) − 2γynw; An = −IK bn = 0

This strategy helps us find the globally optimal solutions for cn, as projected
onto the K dimensional space of positive real numbers.

Step 3 - Closed Form Update for w. The global minimizer of w computed
at the first order stationary point can be expressed as:

w = (CCT +
λ3

γ
IK)−1(Cy) (7)

Step 4 - Optimizing the Constraint Variables Dn and Λn. Each of the
primal variables {Dn} has a closed form solution given by:

Dn = (diag(cn)BT + 2ΓnB − Λn)(IK + 2BT B)−1 (8)

In contrast, we update the dual variables {Λn} using gradient ascent:

Λk+1
n = Λk

n + ηk(Dn − Bdiag(cn)) (9)

The updates for Dn and Λn ensure that the proximal constraints are satisfied
with increasing certainty at each iteration. The learning rate parameter ηk for
the gradient ascent step of the augmented Lagrangian is chosen to guarantee
sufficient decrease for every iteration of alternating minimization. In practice,
we initialize this value to 0.001, and scale it by 0.75 at each iteration.

In all of our derivations, Tr(M) is the trace operator and gives the sum of
the diagonal elements of a matrix M, and IK is the K × K identity matrix.

2.2 Predicting Symptom Severity

We use cross validation to evaluate the predictive power of our model. Specifi-
cally, we compute the optimal {B�,w�} based on the training dataset. We can
then estimate the coefficients ctest for a new patient by re-solving the quadratic
program in Step 2 using the previously computed {B�,w�}. Notice that we must
set the data term γ||CT w − y||22 to 0 in the testing experiments, since the sever-
ity ytest is unknown. Also, we assume that the constraint Dtest = B�diag(ctest)
is satisfied exactly for the conditions of the proximal operator to hold. Finally,
ytest = cT

testw
� is the estimate of the behavioral score for the unseen test patient.
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Fig. 1. (a) The graphical model from which we generate synthetic data (b) The network
recovery performance of our algorithm for varying levels of sparsity and correlation
matrix noise variance. For our experiments, we fix the rest of the parameters of the
model at σB = 0.2, μΓn = Bdiag(cn)BT , σc = 0.1, μy = cTnw, σy = 0.2 and σw = 0.1

2.3 Baseline Comparison Methods

We compare our algorithm with a standard machine learning pipeline to pre-
dict the target severity score. We first perform dimensionality reduction to con-
centrate the M×(M−1)

2 rs-fMRI correlation pairs into a small number of basis
elements. Then, we construct a non-linear regression model to predict clinical
severity. We consider two dimensionality reduction/regression combinations:

1 Principal Component Analysis on the correlation coefficients followed by a
Random Forest Regression on the projected features

2 Kernel Principal Component Analysis on the correlation coefficients followed
by a Random Forest Regression on the embedding features.

3 Experimental Results

Evaluating Robustness on Synthetic Data. Our optimization problem in
Eq. (1) suggests an underlying graphical model, depicted in Fig. 1(a). Notice
that the �1 penalty on B translates to a Laplacian prior with σB controlling the
potentially overlapping level of sparsity. In contrast, the �2 penalties translate
into Gaussian distributions, with the mean corresponding to the �2 argument
and the variance related to the regularization parameters. We use this model to
sample the correlation matrices {Γn} and the behavioral scores {yn}, and then
infer the latent networks generating the data. Figure 1(b) indicates the perfor-
mance of network recovery from our algorithm. We quantify the peformance in
terms of average inner-product similarity between recovered networks and gen-
erating networks, both normalized to unit norm. The number of generating and
recovery networks is chosen to be 4. Unsurprisingly, increasing the overlap in the
sparsity patterns across networks and increasing the noise in the correlation esti-
mates worsens the recovery performance. However, our optimization procedure
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is robust in the noise regime estimated from our real-world rs-fMRI correlation
matrices (0.01–0.2) and for recovered sparsity levels (0.1–0.4). The experiment
also helps us identify stable parameter settings for the next section.

rs-fMRI Dataset and Preprocessing. We evaluate our method on a cohort
of 58 children with high-functioning ASD (Age: 10.06 ± 1.26, IQ: 110 ± 14.03).
We acquired rs-fMRI scans on a Phillips 3T Achieva scanner using a single-
shot, partially parallel gradient-recalled EPI sequence (TR/TE = 2500/30 ms,
flip angle = 70◦, res = 3.05 × 3.15 × 3 mm, 128 or 156 time samples).

Rs-fMRI preprocessing [3] consisted of slice time correction, rigid body
realignment, and normalization to the EPI version of the MNI template using
SPM. We use a CompCorr strategy to remove the spatially coherent noise from
the white matter, ventricles, and six rigid body realignment parameters. We
then spatially smoothed the data (6 mm FWHM Gaussian kernel) and band-
pass filtered the time series (0.01–0.1 Hz). We use the Automatic Anatomical
Labeling (AAL) atlas to define 116 cortical, subcortical and cerebellar regions.
Empirically, we observed a consistent noise component having nearly constant
contribution from all the brain regions and low predictive power. Consequently,
we subtract out the contribution of the first eigenvector from the correlation
matrices and used the residuals {Γn} as inputs for all the methods.

We consider two measures of clinical severity: Autism Diagnostic Observation
Schedule (ADOS) total raw score [7], which captures the social and communica-
tive interaction deficits of the patient along with repetitive behaviors (dynamic
range: 0–30), and the Social Responsiveness Scale (SRS) total raw score [7] which
characterizes social responsiveness (dynamic range: 70–200).

Predicting ASD Severity. We employ a ten fold cross validation strategy
for each of the methods, whereby, we train the model on a 90% data split and
evaluate the performance on the unseen 10% test data. We perform a grid search
to find the optimal parameter setting for each method. Based on these results,
we fix the regression tradeoff at γ = 1, and the three regularization parameters
at {λ1 = 40, λ2 = 2, λ3 = 1} for SRS, and {λ1 = 30, λ2 = 0.2, λ3 = 1} for ADOS,
and the learning rate at t = 0.001 for proximal gradient descent. The number of
components was fixed at 15 for PCA and 10 for k-PCA. For k-PCA, we use an
RBF kernel with the coefficient parameter varied between 0.01–10.

As seen from the Fig. 2, the baseline methods have poor validation perfor-
mance and track the mean value of the held out data (shown by the black line).
In comparison, our method not only consistently fits the training set more faith-
fully, but also generalizes much better beyond the training data. The major
shortcoming of the baseline data-driven analysis techniques is in their failure
to identify representative patterns of behavior from the correlation features. In
contrast, our basis learning technique exploits the underlying structure of the
correlation matrices and leverages patient specific information to map the ASD
behavioral space, thus improving the prediction performance. As reported in
Table 1, our method quantitatively outperforms the baselines approaches, both
in terms of the root median square error (rMSE) and the R2 performance.
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Table 1. Performance evaluation using root median square error (rMSE) & R2 fit,
both for testing & training. Lower MSE & higher R2 score indicate better performance.

Score Metric Our method PCA + RF Reg k-PCA + RF Reg

ADOS rMSE train 0.088 1.07 1.017

R2 train 0.99 0.94 0.96

rMSE test 2.53 2.93 2.70

R2 test 0.096 0.031 0.01

SRS rMSE train 0.13 6.43 6.90

R2 train 0.99 0.95 0.97

rMSE test 13.26 20.51 20.30

R2 test 0.052 0.023 0.008

Fig. 2. Prediction performance of each method for ADOS (TR) & SRS (BR) Left: Our
Method (K = 8) Middle: PCA (comp = 15) & RF Regression on the projected data
Right: k-PCA (comp = 10, rbf C = 0.1) & RF Regression on the embedding features.
Red & Green points correspond to the training & testing performance respectively

Subnetwork Identification. Figure 3 illustrates the basis subnetworks in B
trained on the ADOS data. The colorbar indicates subnetwork contribution to
the AAL regions. Regions storing negative values are anticorrelated with regions
storing positive ones. Subnetwork 1 includes competing i.e. anticorrelated con-
tributions from regions of the default mode network (DMN) and somatomotor
network (SMN). Abnormal connectivity within the DMN and SMN has been pre-
viously reported in ASD [8]. Additionally, subnetwork 5 appears to be comprised
of competing contributions from SMN regions and higher order visual process-
ing areas in the occipital and temporal lobes, consistent with behavioral reports
of reduced visual-motor integration in ASD. Subnetwork 2 includes compet-
ing contributions from prefrontal and subcortical regions (mainly the thalamus,
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Fig. 3. Eight subnetworks identified by our model from ADOS prediction. The blue &
green regions are anticorrelated with the red & orange regions for each subnetwork.

amygdala and hippocampus), that may be important for social-emotional reg-
ulation in ASD. Finally, subnetwork 3 is comprised of competing contributions
from the central executive control network and the insula, which is thought to
be critical for switching between self-referential and goal-directed behavior [9].

4 Conclusion

Unlike generic machine learning analysis, our matrix decomposition elegantly
combines multimodal information from the imaging and behavioral domains.
The key to our model is its ability to capture and learn from the structure of
correlation matrices. Conventional analysis methods dramatically fall short of
unifying the two data viewpoints reliably enough to implicate predictive func-
tional patterns in the brain. Our joint optimization framework robustly identifies
brain networks characterizing ASD and provides a key link to quantifying and
interpreting the spectrum of manifestation of the disorder across a wide range
of population. In the future, we will explore extensions of this model that jointly
classify patients versus controls in addition to predicting symptom severity.
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