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 INTRODUCTION
Autism spectrum disorder (ASD) affects an estimated 1 in 68 children in the United 
States, often with devastating effects on both patients and family members (Centers 
for for Disease Control, 2012; Leslie and Martin, 2007; Stuart and McGrew, 2009). 
From a neuroscientific perspective, ASD cannot be viewed as a single unified brain 
dysfunction (Aoki et al., 2013; Waterhouse and Gilberg, 2014); rather, it manifests 
through a series of distributed interactions across the brain (Cherkassky et al., 2006; 
Geschwind and Konopka, 2009; Sullivan et al., 2014). Behaviorally, ASD is charac-
terized by blunted sociocommunicative skill and awareness across multiple sensory 
domains (Kanner, 1943; Pelphrey et al., 2014), coupled with stereotyped patterns 
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of behaviors (Americal Psychiatric Association, 2013). However, the manifestation 
and severity of these clinical symptoms vary considerably across individuals and 
over the lifespan of each patient. In short, ASD is a complex and multifaceted dis-
order, and despite ongoing efforts, we have a limited understanding of its origin 
and pathogenesis. (Gabrieli-Whitfield et al., 2009; Hernandez et al., 2015; Sullivan 
et al., 2014).

Among its diverse behavioral presentations, social and language dysfunc-
tions are considered hallmark and unifying features of ASD (Baron-Cohen et al., 
1999; Kanner, 1943; Pelphrey et al., 2014). Social impairments are apparent in 
both verbal and nonverbal domains, and they manifest across simple (e.g., shared 
gaze) and complex (e.g., back-and-forth conversation) behaviors. On the lan-
guage side, patients with ASD have notable difficulties with the production and 
interpretation of human speech (Globerson et al., 2015; Grossman et al., 2010). 
Because these deficits emerge within the first years of life, one popular theory 
in the field suggests that ASD alters both the structural and functional develop-
ment of the brain via experience-dependent processes (Courchesne and Pierce, 
2005; Geschwind and Levitt, 2007; Just et al., 2012; Melillo and Leisman, 2011). 
Functional magnetic resonance imaging (fMRI) is one of the most popular tools 
for studying neurological changes in ASD. For example, an investigation of 
speech processing in sleeping 2- to 3-year-old children found reduced activity in 
brain regions associated with language comprehension (Redcay and Courchesne, 
2008). Likewise, a study of verbal fluency found atypical hemispheric lateraliza-
tion in ASD (Kleinhans et al., 2008). Other fMRI studies have revealed signifi-
cant changes in neural activity related to reward processing (Scott-Van Zeeland 
et al., 2010; Schmitz et al., 2008), joint attention (Belmonte and Yurgelun-Todd, 
2003; Williams et al., 2005), and working memory (Koshino et al., 2005, 2008). 
Although valuable, it is worth emphasizing that these paradigms are designed to 
trigger specific neural activation using a narrow range of experimental stimuli. 
For this reason, one can argue that task fMRI studies do not capture naturalistic 
and whole-brain interactions.

This book chapter highlights the promise of functional connectomics in the study 
of ASD. Unlike task-based paradigms, functional connectomics allows us to quantify 
the synchrony between brain regions at both local and long-range scales. This flex-
ibility offers a holistic perspective of ASD across multiple brain systems. Likewise, 
the absence of external stimuli allows us to focus on intrinsic or  steady-state com-
munication patterns. “Functional Connectomics as a Window into ASD” section of 
this chapter summarizes prior work in the field, from simple seed-based analyses to 
more complex network models. “An Unbiased Bayesian Framework for Functional 
Connectomics” section introduces our novel Bayesian framework to extract the al-
tered subnetworks associated with ASD. In “Multisite Network Analysis of Autism” 
section, we evaluate this model on a multisite study of autism. “Toward Characterizing 
Patient Heterogeneity” section presents a new extension of our framework that incor-
porates patient heterogeneity. Finally, we conclude with some general recommenda-
tions for future work in the field.
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 FUNCTIONAL CONNECTOMICS AS A WINDOW INTO ASD
Functional connectomics provides a unique glimpse into the steady-state organiza-
tion of the brain. It is based on the underlying assumption that two regions, which 
reliably coactivate, are more likely to participate in similar neural processes than two 
uncorrelated or anticorrelated regions (Buckner and Vincent, 2007; Fox and Raichle, 
2007; Van Dijk et al., 2010; Venkataraman et al., 2009). Over the past decade, func-
tional connectomics has become ubiquitous in the study of neurological disorders, 
such as schizophrenia, epilepsy, and autism (DiMartino et  al., 2014; Liang et  al., 
2006; Stufflebeam et al., 2011). From a practical standpoint, these functional rela-
tionships are often evaluated in resting-state fMRI (rsfMRI), which does not require 
patients to complete potentially challenging experimental paradigms. From a neuro-
scientific standpoint, group-level changes in the functional architecture of the brain 
may shed light on the etiological mechanisms of a disorder.

Univariate tests have historically been the standard approach to isolate the al-
tered functional connectivity patterns in ASD (Cherkassky et  al., 2006; Kennedy 
and Courchesne, 2008b). These methods identify statistical differences in pairwise 
similarity measures, such as Pearson correlation coefficients or seed-based correla-
tion maps, as representative biomarkers of ASD. Perhaps the most notable findings 
have been a consistent reduction in interregional connections, particularly between 
the frontal and posterior lobes (Hull et al., 2016; Just et al., 2004, 2012), and connec-
tivity differences linked to the default mode network (DMN), which activates during 
self-reflective processes (Buckner et  al., 2008; Kennedy and Courchesne, 2008a; 
Padmanabhana et al., 2017). Interestingly, many studies have reported greater intrare-
gional connectivity in some ASD subpopulations (Delmonte et al., 2013; DiMartino 
et al., 2014), which may be linked to enhanced sensory perception. Unfortunately, 
univariate results are wildly inconsistent across the ASD literature. One contributing 
factor to their low test-retest reliability is that, by construction, univariate tests ignore 
crucial dependencies across the brain (Venkataraman et al., 2010).

Graph models assume a structured relationship between the pairwise connectivity 
values to estimate surrogates of both functional specialization and functional integra-
tion (Achard and Bullmore, 2007; Bassett and Bullmore, 2009; Bullmore and Sporns, 
2009; Rubinov and Sporns, 2010). For example, modularity and clustering coefficient 
quantify the interconnectedness of local processing units (functional specialization) 
(Meunier et al., 2009; Rubinov and Sporns, 2010; Sporns and Betzel, 2016), whereas 
average path length, global efficiency, and betweenness centrality quantify the reach-
ability of each node in the network (functional integration) (Achard and Bullmore, 
2007; Estrada and Hatano, 2008). Finally, the small-world architecture balances 
these competing influences (Tononi et al., 1994). The past 5 years has witnessed a 
proliferation in graph-theoretic studies of ASD. One interesting finding is a decrease 
in clustering coefficient and “hubness” across the brain, which suggests that, on aver-
age, ASD patients have a more random network organization than neurotypical con-
trols (Itahashi et al., 2014). There has also been conflicting evidence to support the 
popular theory of local overconnectivity and long-range  underconnectivity in ASD 
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(Takashi Itahashi et al., 2015; Keown et al., 2013; Redcay et al., 2013; Rudie and 
Dapretto, 2017). Although graph measures have provided some insight into ASD, 
they are markedly removed from the original network. Therefore, it is unclear what 
neural mechanisms contribute to these measures, whether group differences reflect 
a verifiable change in the underlying functional organization, or whether they stem 
from a confounding influence (Smith, 2012).

An alternate network approach is to decompose the rsfMRI time series into a 
collection of hidden sources in the brain. The increasingly popular independent 
component analysis (ICA) relies on statistical independence and non-Gaussianity to 
guide the network decomposition (Bell and Sejnowski, 1995; Calhoun et al., 2003; 
McKeown et al., 1998). When applied to rsfMRI data, ICA returns both a spatial map 
and a representative time series for each component/source (Calhoun et al., 2003, 
2009). The anatomical organization of these components can be used to delineate 
different functional networks in the brain, and temporal fluctuations in the time se-
ries quantify the synchrony across networks. To a large extent, ICA studies for ASD 
focus on the similarity between selected ICA components (i.e., networks), such as 
the DMN (Assaf et al., 2010; Starck et al., 2013; Supekar et al., 2010), subcortical 
areas (Cerliani et al., 2015), the sensorimotor network (Nebel et al., 2014, 2016), 
and the prefrontal cortex (Starck et al., 2013). However, the main drawback of ICA 
is that it does not naturally generalize to multisubject or population level analyses 
(Calhoun et al., 2009).

Despite the breadth of analysis techniques, the previously discussed methods fol-
low a similar two-step procedure for studying ASD: they first fit a connection- or 
graph-based model to the rsfMRI data and then identify group differences post hoc. 
In practice, this strategy tends to implicate distributed, and potentially unrelated, 
changes in functional connectivity across the brain. These isolated effects are diffi-
cult to interpret and are often missing crucial details about the functional architecture 
of the brain. To this end, we have developed a novel probabilistic framework that 
identifies network-based differences in functional connectivity. Our unique method-
ology extracts robust and clinically meaningful biomarkers of ASD from multisite 
connectivity data (Venkataraman et al., 2015). We also discuss a recently proposed 
extension of our model that incorporates a patient-specific measure of ASD severity 
into the Bayesian framework (Venkataraman et al., 2017).

 AN UNBIASED BAYESIAN FRAMEWORK FOR FUNCTIONAL 
CONNECTOMICS
Given the growing perception of ASD as a system-level dysfunction (Courchesne 
and Pierce, 2005; Geschwind and Levitt, 2007), we hypothesize that the functional 
differences attributed to ASD reflect a set of coordinated disruptions in the brain. 
Although we do not specify a priori whether these disruptions occur within the same 
cognitive domain or whether they span multiple cognitive processes, we assume 
that the affected brain regions will communicate differently with other parts of the 
brain than if the disorder were not present. In the functional connectomics realm, 
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this  underlying assumption can be modeled by region hubs, which exhibit a large 
number of altered functional connections, compared with the neurotypical cohort. In 
the following, we refer to these region hubs as disease foci and the altered functional 
connectivity patterns as canonical networks.

Fig. 1 outlines the generative process. The connectivity differences in ASD are 
explained by a set of K nonoverlapping networks, where K is a user-specified pa-
rameter that controls the model complexity. We use a probabilistic framework to 
represent the interaction between regions that describe the effects of ASD. Here, 
latent variables specify a template organization of the brain, which we cannot di-
rectly access. Instead, we observe noisy measurements of the hidden structure via 
rsfMRI correlations.

As seen, our framework is based on hierarchical variable interactions. The mul-
tinomial variable Ri indicates whether region i is healthy (Ri = 0) or whether it is a 
disease focus in network k (Ri = k). The latent functional connectivity Fij describes 
the group-wise coactivation between region i and region j in the neurotypical con-
trols based on one of three states: positive synchrony (Fij = 1), negative synchrony 
(Fij = − 1), and no coactivation (Fij = 0). Notice that our discrete representation of 
latent functional connectivity is a notable departure from conventional analysis. 
Specifically, we assume that rsfMRI correlations fall into one of three general cat-
egories, and differences in bin assignment are the relevant markers of ASD. Our 
choice of three states is motivated by the rsfMRI literature. For example, most works 
specify a threshold to determine functionally connected areas, which corresponds to 
Fij = 1 in our framework. On the other hand, although strong negative correlations do  
appear in rsfMRI data, there is no consensus about their origin and significance 
(Van Dijk et al., 2010). Therefore, we isolate negative connectivity (i.e., Fij = − 1) 
as a separate category. The latent functional connectivity Fij of the ASD population 
is also tristate and is defined via four simple rules: (1) a connection between two 
disease foci in the same network k is always abnormal, (2) a connection between two 
foci in different networks is never abnormal, (3) a connection between two healthy 
regions is never abnormal, and (4) a connection between a healthy and a diseased 
region is abnormal with probability η. Ideally F Fij ij¹  for abnormal connections and 
F Fij ij=  for healthy connections. However, due to noise, we assume that the latent 
templates can deviate from these rules with probability ε. Notice that condition 2 en-
sures that the K networks remain distinct, and conditions 3 and 4 impose an outward 
spreading topology on the altered pathways. Finally, the rsfMRI correlations Bij

l
 for 

neurotypical subject l and Bij
m for ASD patient m are sampled from Gaussian distri-

butions whose mean and variance depend on the neurotypical and ASD functional 
templates, respectively. The beauty of our proposed hierarchical model is that we are 
able to isolate the effects of ASD within the latent structure, while simultaneously 
accounting for noise and subject variability via the data likelihood.

We derive a variational expectation-maximization (EM) algorithm (Jordan 
et al., 1999) to estimate both the latent posterior probability of each region label qi 
and the nonrandom model parameters from the observed data. A full mathematical 
characterization of the model and optimization algorithm are given in our previous 
publications (Venkataraman et al., 2015, 2013a).
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FIG. 1

Generative model of functional connectivity for ASD. Parcels correspond to regions in the 
brain, and lines denote pairwise functional connections. The label Ri indicates whether 
region i is healthy (white) or a focus in one of the K abnormal networks (colored). These 
foci capture the most salient functional differences between patients and controls. The 
neurotypical template Fij provides a baseline functional architecture of the brain, whereas 

the clinical template Fij specifies the functional differences attributed to ASD. The subject 

rsfMRI correlations {Bijl} and Bij
m{ } are noisy observations of the latent functional templates.
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Our methodology circumvents the interpretability challenges of the simple sta-
tistical analyses that currently dominate the clinical neuroscience literature. For 
example, univariate tests are commonly used to identify group-wise differences in 
pairwise correlation values. However, the bulk of our knowledge about the brain 
is organized around regions and not the connections between them. Moreover, 
 connection-based results are nearly impossible to verify through direct stimulation. 
On the flipside, popular graph measures, such as modularity and small-worldness 
(Bassett and Bullmore, 2006; Honey et al., 2009; Rubinov and Sporns, 2010) col-
lapse the rich network structures onto scalar values. As a result, we cannot tie statisti-
cal differences to a concrete etiological mechanism. In contrast, we explicitly model 
the propagation of information from regions (disease foci) to connections (canonical 
networks). Both of these variables have a straightforward biological meaning and can 
be used to design follow-up studies.

 MULTISITE NETWORK ANALYSIS OF AUTISM
Our primary exploration of ASD relies on the publicly available and multisite 
autism brain imaging data exchange (ABIDE) (DiMartino et al., 2014). Given the 
variability of MR acquisition protocols across sites, we focus on four participat-
ing institutions, rather than filtering all subjects by some demographic criterion. 
These sites are the Yale Child Study Center, the Kennedy Krieger Institute, the 
University of California Los Angeles (Sample 1), and the University of Michigan 
(Sample 1).

 EXPERIMENTAL SETUP
Subject selection: Our study focuses on children and adolescents, 7 to 19 years of 
age. Inclusion criteria for subjects within the chosen sites were based on both the 
acquisition quality and successful data preprocessing. On the acquisition front, we 
required whole-brain coverage and manual inspection of the MPRAGE and BOLD 
data quality. In addition, we excluded subjects who exhibited significant head motion 
(>0.5 mm translation or >0.5° rotation) in 25% or more time points of the BOLD 
series. On the preprocessing side, we verified accurate coregistration between the 
structural MPRAGE and functional BOLD images. We also filtered individuals for 
whom the distribution of region-wise rsfMRI correlations was markedly different 
from all other subjects, as measured by the Hellinger distance. In total, 260 subjects 
(141 neurotypical, 119 ASD) were selected for analysis. Additional details about the 
MR acquisition protocols and subject demographics can be found in Di Martino et al. 
(2014), and Venkataraman et al. (2015).

Data preprocessing: Our Bayesian framework in “An Unbiased Bayesian 
Framework for Functional Connectomics” section is based on region-wise connectiv-
ity measures. Region selection remains an open problem in functional connectomics. 



8 CHAPTER 1 Unbiased functional connectomics for ASD

For example, smaller regions are more susceptible to noise artifacts, whereas larger 
regions can potentially blur the relevant functional effects. This work relies on the 
Desikan-Killany atlas native to Freesurfer (Fischl et al., 2004), which segments the 
brain into 86 cortical and subcortical regions that roughly correspond to Broadman 
areas. The Desikan-Killany atlas provides anatomically meaningful correspondences 
across subjects that relate to functional divisions in the brain. We emphasize that our 
method can be applied to any set of consistently defined ROIs across subjects (e.g., 
the Supplementary Results of (Venkataraman et al., 2015)). The structural ROIs were 
then projected onto the subject-native fMRI space for each individual.

The BOLD rsfMRI data were processed using Functional MRI of the Brain’s 
Software Library (FSL) (Smith et  al., 2004) and in-house matrix laboratory 
(MATLAB) scripts (MATLAB, 2013). We discarded the first seven rsfMRI time 
points, and performed motion correction via rigid body alignment and slice timing 
correction using trilinear/sinc interpolation. The data were spatially smoothed us-
ing a Gaussian kernel with 5-mm full width at half maximum (FWHM) and band-
pass filtered with cutoffs 0.01 and 0.1 Hz. Next, we regressed global contributions to 
the time courses from the white matter, ventricles, and whole brain to diminish the 
influence of physiological noise. Finally, we performed data scrubbing to remove 
consecutive time points with >0.5 mm translation or >0.5° rotation between them. 
We computed the observed rsfMRI connectivity measures as the Pearson correlation 
coefficient between the mean time courses within the two regions. These pairwise 
connectivity values were then aggregated into an 86 × 86 rsfMRI data matrix for each 
subject.

Evaluation criteria: We employed a rigorous evaluation strategy that included 
both quantitative measures of reproducibility and a qualitative assessment based on 
the fMRI literature.

Quantitatively, we evaluated the robustness of our approach in two ways: (1) 
nonparametric permutation tests for statistical significance and (2) bootstrapping 
experiments to confirm test-retest reliability. The permutation tests allowed us to 
estimate the null distribution of disease foci. Our procedure was to randomly assign 
the subject diagnoses (e.g., neurotypical vs ASD) 1000 times, fit the Bayesian model, 
and compute the region posterior probabilities qi for each trial. The significance of 
region i is the proportion of permutations that yield a larger value of qi for any of 
the K networks than is obtained under the true labeling. Notice that this is a particu-
larly stringent criterion for K > 1, because the previous P-value does not account for 
interdependencies between the networks. In contrast, the bootstrapping experiment 
involves fitting the model using a subset of the data while preserving the ratio of neu-
rotypical subjects to ASD patients. We intentionally did not control for other demo-
graphic or clinical variables (site, age, IQ, ADOS/ADI scores) to push the limits of 
our method on heterogeneous data. We resampled the random subsets multiple times 
and considered the average region posterior probability qi across runs.

On the qualitative side, we leveraged the Neurosynth database (http://www.neu-
rosynth.org/) to provide an unbiased and comprehensive evaluation of the functional-
ity supported by each canonical network. Neurosynth aggregates both the activation 

http://www.neurosynth.org/
http://www.neurosynth.org/
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coordinates reported in prior fMRI studies and a set of descriptive words/phrases 
pulled from the abstracts. The metaanalytic framework uses the power of large da-
tasets to calculate the posterior probability P(Feature| Activation Coordinate) for 
a given psychological feature (i.e., word or phrase) at a particular spatial location 
(Yarkoni et al., 2011). In this way, we can identify constructs that have consistently 
been associated with a particular activation coordinate across a wide variety of fMRI 
studies and subject cohorts. At the time of our analysis, Neurosynth had precomputed 
and stored 3099 brain maps based on the previously discussed posterior information; 
each map is associated with a particular linguistic feature. Additionally, the website 
creators have used Latent Dirichlet Allocation (LDA) (Chang et al., 2013) to gener-
ate a set of high-level topics from the original 3099 words and phrases.

 NETWORK-BASED DIFFERENCES IN ASD
From “An Unbiased Bayesian Framework for Functional Connectomics” section, 
we observe that the single free parameter of our model is the number of canonical 
networks K. This parameter can be set based on prior clinical knowledge, or we can 
sweep its value to track the evolution of canonical network foci with varying model 
complexity. This book chapter focuses on our result for K = 2 networks, which re-
veals a decoupling between social and language dysfunction in ASD. We refer the 
reader to our original publication (Venkataraman et al., 2015) and Supplementary 
Results for a more detailed exposition.

Canonical networks: Fig. 2 (left) illustrates the detected foci (region posterior 
probability qi > 0.5) for K = 2 canonical networks. We have colored each region ac-
cording to the uncorrected − log (P − value), such that red indicates low significance 
and yellow corresponds to high significance. Given the region foci, we can estimate 
the abnormal functional pathways based on the posterior differences between the 
neurotypical and ASD functional templates. These connections are shown in Fig. 2 
(right) using the BrainNet Viewer toolbox for MATLAB (Xia et al., 2013).

Our primary network consists of four disease foci: the left middle temporal gyrus 
(qi = 0.97, P < .001), the left posterior cingulate (qi = 1.00, P < .01), the left supra-
marginal gyrus (qi = 1.00, P < .01), and the right temporal pole (qi = 1.00, P < .05). 
Interestingly, the abnormal pathways indicate a general reduction in long-range con-
nectivity (blue lines) and an overall increase in short-range connectivity (magenta 
lines) in ASD. Our second network has lower significance and consists of the left 
banks of the middle superior temporal sulcus (qi = 1.00, P < .04), the right posterior 
superior temporal sulcus extending into inferior parietal lobule (qi = 0.86, P < .08), 
and the right middle temporal gyrus (qi = 0.98, P < .07). We accepted a lower signifi-
cance threshold for this network due to our stringent criteria of computing p-values 
for K > 1. The corresponding functional pathways demonstrate reduced interhemi-
spheric connectivity but largely increased intrahemispheric connectivity.

Model robustness: Fig.  3 reports the average posterior probability in our test-
retest experiments. We use half of the subjects in each trial while preserving the ratio 
of ASD patients to neurotypical controls. We have displayed only the regions for 
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FIG. 2

Canonical networks inferred by our Bayesian model for K = 2 using the ABIDE dataset. 
Left: Significant regions based on permutation tests (region posterior probability qi > 0.5, 
uncorrected P < .08). Significance is computed via the likelihood of a region appearing in 
either network. The color bar corresponds to the negative log P-value. Right: Estimated 
graphs of abnormal functional connectivity in ASD. The yellow nodes correspond to 
disease foci. Blue lines indicated reduced functional connectivity in ASD, and magenta 
lines denote increased functional connectivity in ASD.
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FIG. 3

Average marginal posterior probability qi for each network across 50 random samplings 
from the ABIDE dataset. Each subset includes 50% of the subjects, such that the ratio 
of ASD patients to neurotypical controls is preserved. The color bar denotes the average 
posterior probability. The highlighted regions correspond to the supramarginal gyrus 
(L.SupM), the inferior parietal cortex (R.InfP), the middle temporal gyrus (R.MidT), and the 
posterior cingulate (L.PCC and R.PCC).
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which the average posterior probability across 50 random trials is >0.15—thereby 
emphasizing only the most prominent patterns. The color bar indicates the average 
probability, such that yellow denotes the strongest foci and red corresponds to the 
weakest influence. Remarkably, despite using only half of the data, our test-retest 
experiments are able to recover many of the disease foci from Fig. 2. This result 
verifies the generalizability of our framework for localizing robust functional con-
nectivity differences in ASD.

Metaanalysis of the fMRI Literature: Fig.  4 illustrates our Neurosynth results. 
The upper panel describes the top 10 LDA topics implied by each set of network foci. 
We omitted topics that describe brain anatomy (e.g., default mode) or a neurologi-
cal disorder (e.g., autism, which was among the top 10 for both networks). These 
mental states reveal both overlap and clear functional distinctions between the two 
intrinsic networks. Network 1 was associated with language-related topics, including 
comprehension and semantic processing. Network 2 also loaded heavily on language 
constructs but was uniquely associated with social-related topics, such as person and 
self-referential processing. The bottom panels of Fig. 4 display the relative correla-
tion strengths of each topic generated by the Neurosynth decoder.

Implications for ASD: Language and communication deficits are among the de-
fining features of ASD, as supported by our highly significant canonical network 1. 
Task-based fMRI has shed light on the system-level organization of language pro-
cessing. For example, the upper band of the STS responds preferentially to the hu-
man voice, in comparison to other acoustic signals (Boddaert et al., 2003; Hickok, 
2009). Going one step further, perception of meaningful speech localizes to the 
middle and inferior temporal cortices, whereas sentence comprehension tasks acti-
vate the bilateral superior temporal gyri (Price, 2009). On the other hand, canonical 
network 2 pinpoints a well-known social perception pathway centered in the right 
posterior STS, extending into the inferior parietal lobule and right middle temporal 
gyrus (Yang et al., 2015). The posterior STS is sensitive to and selective for social 
stimuli that signal intent in humans (Jastorff et al., 2012). In the visual domain, it 
activates preferentially to faces versus objects and to socially meaningful human 
actions versus nongoal-directed movements (Bahnemann et al., 2010; Gobbini and 
Haxby, 2007; Watson et  al., 2014). In the auditory domain, the posterior STS re-
sponds to auditory speech (Ethofer et  al., 2006; Wildgruber et  al., 2006). Finally, 
the posterior STS is functionally interconnected to all the key regions of the “social 
brain” (Yang et al., 2015).

In addition to the region foci, the altered functional pathways are highly relevant 
to current theories of ASD. Specifically, our canonical networks support a general 
reduction in long-range connectivity, both within and across the hemispheres. These 
long-range connections likely correspond to integration processes, which are essen-
tial to higher order social, emotional, and communicative functioning (Oberman and 
Ramachandran, 2008; Rippon et al., 2007; Wolff et al., 2012). It is believed that disrup-
tions in long-range connectivity play a key role in the hallmark dysfunctions of ASD. 
Likewise, hemispheric abnormalities are prevalent in the ASD literature, particularly 
within the language domain (Dawson et  al., 1989; Redcay and Courchesne, 2008). 
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In contrast, both canonical networks also find a general increase in short-range connec-
tivity, which may contribute to enhanced cognitive and pattern recognition skills often 
reported in high-functioning ASD subpopulations (Johnson et al., 2002).

It is worth mentioning that our framework does not implicate certain regions that 
have been previously reported in the ASD literature. Examples include the prefrontal 
cortex, as related to working memory and executive function (Baron-Cohen et al., 1999; 

FIG. 4

Upper: correlation values of the top 10 topics for each network, which represent the 
specificity of neurocognitive functions derived from metaanalytic decoding. We include 
words that overlap between networks, resulting in 14 total features. Lower: relative rankings 
of the psychological constructs. Word size reflects rank-ordered correlation coefficients, 
which emphasizes terms most associated with each network (Poldrack et al., 2009).
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Courchesne and Pierce, 2005; Gilbert et al., 2008; Just et al., 2004), and the visuomotor 
cortex (Dowell et al., 2009; Koshino et al., 2008; Mostofsky and Ewen, 2011; Nebel 
et al., 2016). One possibility is that such differences are overwhelmed by the intersite 
variability, including scanner model, acquisition procedures, and subject recruitment. 
Another possibility is that there is weak evidence in our cohort to support the prefrontal 
and visuomotor cortices acting as foci. Recall that our model is completely data-driven 
and does not impose spatial constraints on the canonical networks. Finally, it is pos-
sible that our region parcellation is too coarse to identify these additional effects.

We conclude this section by addressing the model complexity parameter K, which 
specifies the number of canonical networks that explain the data. Intuitively, there 
will be a tradeoff between model robustness and our ability to pinpoint weaker ef-
fects. Due to the lack of ground-truth connectivity information, we have constructed 
both quantitative and qualitative proxies for generalizability and relevance, which 
can be used to evaluate the impact of K. Taken together, the results in this chapter 
demonstrate the power of our hierarchical Bayesian framework as a future analysis 
tool for ASD.

 TOWARD CHARACTERIZING PATIENT HETEROGENEITY
As described earlier in this chapter, ASD is a notoriously heterogeneous dis-
order that includes both a wide variety of behavioral symptoms and a range of 
clinical severity. As previously alluded to, the existing ASD literature implicitly 
treats the patient group as homogenous, for example, by conducting a statistical 
evaluation that separates patients from controls. Even our unbiased Bayesian 
framework infers a single functional template for the entire ASD cohort. It has 
been argued that this gross simplification is partially responsible for the lack 
of reproducible fMRI findings in much of the clinical neuroscience literature 
(Horga et al., 2014).

This section tackles a fundamental yet commonly overlooked question in the 
study of functional connectomics: how do we identify the altered functional path-
ways given a heterogeneous patient cohort? As a first step, we consider a one- 
dimensional measure of clinical severity and a single canonical network (K = 1). We 
fold the behavioral information into our probabilistic framework by stipulating that 
the canonical network influence on an individual patient is moderated by their scalar 
severity score. Said another way, patients with higher ASD severity scores will mani-
fest more network dysfunction than patients with lower ASD severity. Hence, rather 
than dismissing or regressing out the clinical scores, these measures will crucially 
guide our network estimation procedures.

Fig. 5 illustrates the revised interactions. As seen, the strengths of the canonical 
network edges are proportional to behavioral score βm ∈ [0, 1], which can be quan-
tified via neuropsychiatric testing or parent questionnaires. Effectively, the patient 
likelihood weighs the relative contributions of the clinical and neurotypical tem-
plates via βm. Mathematically, the patient rsfMRI correlation Bij

m is sampled from 
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the Gaussian distribution specified by the ASD template with probability βm, and it 
is sampled from the Gaussian distribution associated with the neurotypical template 
with probability 1 − βm.

 EXPERIMENTAL SETUP
Study participants: To avoid site artifacts, we rely on a much tighter sample drawn 
from the Kennedy Krieger Institute in Baltimore, MD. Our dataset consists of 66 
high-functioning, school-aged children with ASD and 66 neurotypical controls, who 

FIG. 5

Conceptual diagram of behavioral influence. Red regions correspond to the disease foci, 
and red edges specify the canonical functional network. Green edges are normal (i.e., 
healthy) connections. The canonical network contribution for each patient m is specified 
by the clinical severity, βm ∈ [0, 1]. Here, β1 > βM, as indicated by the darker edges.
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were matched on the basis of age, gender, and IQ. The severity measures βm in our 
analysis correspond to the Autism Diagnostic Observation Schedule (ADOS) total 
raw score (Gotham et al., 2007), normalized by the maximum possible test score.

Data preprocessing: Once again, we must define consistent region boundar-
ies for our model. In this section, we rely on the Automatic Anatomical Labeling 
(AAL) atlas (Tzourio-Mazoyer et  al., 2002) to delineate 116 cortical, subcortical, 
and cerebellar regions. RsfMRI preprocessing was implemented using the Statistical 
Parametric Mapping (SPM) toolbox, in-house MATLAB scripts, and the Analysis 
of Functional NeuroImages (AFNI) package (Cox, 1996). Our basic fMRI pipeline 
included slice timing correction, rigid body realignment, and normalization to the 
EPI version of the MNI template. To facilitate the connectivity analyses, we tempo-
rally detrended the time series and used CompCorr to estimate and remove spatially 
coherent noise from the white matter, ventricles, motion parameters, and their first 
derivatives (Behzadi et al., 2007). The cleaned data was spatially smoothed with a 
6-mm FWHM Gaussian kernel, temporally filtered and spike-corrected. Similar to 
the previous section, our rsfMRI measures are computed as the Pearson correlation 
coefficients between the mean time courses in the two regions. We focus on devia-
tions from baseline synchrony by centering the whole-brain correlation histograms 
for each subject.

Evaluation criteria: Similar to the previous section, we evaluated the test-retest 
reliability of our region assignments qi via bootstrapping. Specifically, we fitted the 
heterogeneous model to random subsets of the data while preserving the ratio of 
ASD patients to neurotypical controls. We ran two analyses, which corresponded 
to subsets with 90% and 50% of the overall cohort. Our quantitative measure of 
robustness is the average region posterior probability across 100 random trials. In 
addition to bootstrapping, we performed a qualitative comparison of this revised 
Bayesian model with our original framework in “An Unbiased Bayesian Framework 
for Functional Connectomics” section and with univariate t-tests on the pairwise 
rsfMRI correlation values.

 NETWORK DYSFUNCTION LINKED TO ASD SEVERITY
Heterogeneous network architecture: Fig. 6 illustrates the single canonical network 
inferred by our model. The yellow nodes correspond to the disease foci, and we have 
displayed connections consistently implicated across bootstrapping trials. Similar to 
the previous section, the magenta and blue lines denote increased and reduced la-
tent connectivity in ASD relative to the neurotypical population. As seen, our model 
identifies four disease foci: the right precentral gyrus (R.PreCG), the right posterior 
cingulate gyrus (R.PCG), the right angular gyrus (R.ANG), and vermis 8 of the cer-
ebellum (Verm8).

Our results are closely aligned with recent findings in ASD. For example, 
the right precentral gyrus and cerebellar vermis represent foci specialized in the 
production of actions, a core behavioral feature consistently reported in ASD 
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(Mostofsky and Ewen, 2011; Nebel et al., 2016). Moreover, the right angular gyrus 
and posterior cingulate are common to the DMN, which is believed to  moderate 
internal reflective processes (Buckner et  al., 2008). Converging multimodal evi-
dence suggests that the altered functional and structural organization of the DMN 
contributes to social cognitive dysfunction in ASD (Padmanabhana et al., 2017). In 
this manner, our canonical network seems to represent the consequence of abnormal 
development and compensatory mechanisms for the expression of social and com-
municative functions.

Model robustness: Fig. 7 reports the average posterior probability qi of each re-
gion across 100 bootstrapped trials. We display only the regions for which qi > 0 3.  to 
emphasize the most prominent patterns. Notice that our model consistently recovers 

FIG. 6

Results of our heterogeneous patient model. Left: disease foci projected onto the inflated 
cortical surface. Right: canonical network of abnormal functional connectivity. Yellow 
nodes correspond to the disease foci. Blue lines signify reduced functional connectivity in 
ASD; magenta lines denote increased functional connectivity in ASD.
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FIG. 7

Average marginal posterior probability qi for each community across 100 random 
samplings of the rsfMRI dataset. Top row includes 90% of the subjects in each subset, and 
the bottom row includes 50%. Reproducibility of cerebellar regions are listed underneath.
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the canonical network foci in Fig. 6 when trained on 90% of the data. Remarkably, 
we are still able to detect the original network foci using just half the dataset, which 
further validates the reproducibility of our revised Bayesian framework. In fact, we 
note that the robustness in Fig. 7 is markedly higher than in our initial ABIDE study, 
in part due to stricter control over the subject recruitment and MR acquisition proto-
cols. Finally, our bootstrapping experiments also implicate cerebellar regions adja-
cent to Vermis 8, which ties into broader theories of altered cerebellar functioning in 
ASD (Becker and Stoodley, 2013).

Baseline comparisons: Fig.  8 compares our heterogeneous canonical network 
(left) with our original Bayesian model (middle), which assumes a homogeneous 
patient group, and with standard univariate tests (right). Notice that the homogeneous 
model identifies a single disease focus in the DMN (R.ANG). However, incorporat-
ing the severity scores βm seems to provide an additional level of flexibility, which 
allows us to find more subtle effects in other brain regions. On the other hand, con-
nections implicated by two-sample t-tests form a markedly different pattern than our 
network model results. First, the univariate tests implicate several isolated connec-
tions, which are difficult to interpret. Second, the connections tend to concentrate in 
the frontal cortex and anterior cingulate gyrus, rather than the DMN. This observa-
tion suggests that our disease foci are unveiling a unique facet of the rsfMRI data.

 CONCLUDING REMARKS
Functional connectomics has become a universal tool to noninvasively assess neu-
ral interactions on a global scale. Going one step further, it allows us to isolate 
system-level dysfunctions induced by a complex neurological disorder, such as 
ASD. Recent findings have confirmed a general reduction in long-range connectivity 

FIG. 8

Qualitative comparison of our heterogeneous patient model (left), the original Bayesian 
model described in “An Unbiased Bayesian Framework for Functional Connectomics” 
section, and the top connections (P < .001 uncorrected) identified via two-sample t-tests 
on the pairwise correlation values (right).
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 between functional systems, which may be linked to integrative processes, such as so-
cial  awareness and emotional perception. Graph theoretic studies suggest that the au-
tistic brain might be more “randomly” organized than a neurotypical brain. However, 
despite the wealth of research and publications, we have yet to identify robust rsfMRI 
biomarkers for the disorder. This paradox can be explained by one of two possibilities: 
either the null hypothesis is true and rsfMRI does not contain enough information to 
be clinically relevant for ASD, or we have not sufficiently explored the methods that 
can describe the functional abnormalities, while handling the quirks of rsfMRI data.

In an effort to address this conundrum, we have devoted the bulk of this chapter to 
a novel probabilistic framework that contributes two unexplored dimensions to cur-
rent network analytics: (1) we assume that the functional differences attributed to ASD 
form their own subnetwork, and (2) we explicitly model clinical severity. The cor-
responding network architectures confirm theories of both impaired social commu-
nication and reduced sensorimotor integration in ASD. Our results are quantitatively 
verified via nonparametric permutation testing and test-retest reliability experiments. 
Equally exciting, our Bayesian model can be adapted to a variety of technical chal-
lenges from detecting abnormal patterns in task fMRI (Venkataraman et al., 2016a, b), 
evaluating pre- versus posttreatment connectivity differences (Venkataraman et al., 
2016a, b), multimodal integration with diffusion MRI (Venkataraman et al., 2013b), 
and a patient-specific analysis (Sweet et al., 2013). On the clinical side, our frame-
work has been applied to ASD, schizophrenia, posttraumatic stress disorder, mild 
traumatic brain injury, and epilepsy.

Looking forward, there are a number of challenges that we, as a field, must ad-
dress with respect to the functional connectomics of ASD. One obvious factor is pa-
tient heterogeneity. “Toward Characterizing Patient Heterogeneity” section takes a 
first step of incorporating clinical severity into the network decomposition. However, 
ASD is characterized by a multitude of behavioral and cognitive symptoms, from 
impaired social skills to language problems to stereotyped behaviors. To complicate 
matters, full-scale intelligence also plays a role in functional connectivity. Future 
methods should leverage this variability to provide a more complete picture of the 
disorder. A second challenge is to develop methods that are robust to data acquisi-
tion and image quality, while providing interpretable information about ASD. The 
issue of interpretability will become increasingly relevant in the next few years given 
the rise of artificial intelligence. In particular, while neural networks and deep learn-
ing can achieve impressive detection and regression performance, they are essentially 
black-box functions, which provide little insight as to what patterns in the data are 
meaningful and why. Along the same lines, a third goal is to formalize new evalu-
ation metrics. At present, statistical significance dominates the ASD literature, but 
p-values are often poor indicators of test-retest reliability (Venkataraman et al., 2010). 
Finally, we close this chapter on a philosophical note. Functional connectomics has 
been invaluable to studying and probing complex questions related to ASD. We have 
found, albeit contradictory, patterns related to higher level cognitive functions, such as 
social awareness and sensory integration. But what comes next? How do we translate 
these findings into a real-world impact at the patient level? These questions should 
fuel the next great wave of autism research.
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