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Abstract: Brain connectivity studies report group differences in pairwise connection strengths. While
informative, such results are difficult to interpret since our understanding of the brain relies on region-
based properties, rather than on connection information. Given that large disruptions in the brain are
often caused by a few pivotal sources, we propose a novel framework to identify the sources of func-
tional disruption from effective connectivity networks. Our approach integrates static and time-varying
effective connectivity modeling in a probabilistic framework, to identify aberrant foci and the corre-
sponding aberrant connectomics network. Using resting-state fMRI, we illustrate the utility of this
novel approach in U.S. Army soldiers (N 5 87) with posttraumatic stress disorder (PTSD), mild trau-
matic brain injury (mTBI) and combat controls. Additionally, we employed machine-learning classifica-
tion to identify those significant connectivity features that possessed high predictive ability. We
identified three disrupted foci (middle frontal gyrus [MFG], insula, hippocampus), and an aberrant
prefrontal-subcortical-parietal network of information flow. We found the MFG to be the pivotal focus
of network disruption, with aberrant strength and temporal-variability of effective connectivity to the
insula, amygdala and hippocampus. These connectivities also possessed high predictive ability (giving
a classification accuracy of 81%); and they exhibited significant associations with symptom severity
and neurocognitive functioning. In summary, dysregulation originating in the MFG caused elevated
and temporally less-variable connectivity in subcortical regions, followed by a similar effect on parietal
memory-related regions. This mechanism likely contributes to the reduced control over traumatic
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memories leading to re-experiencing, hyperarousal and flashbacks observed in soldiers with PTSD and
mTBI. Hum Brain Mapp 00:000–000, 2017. VC 2017 Wiley Periodicals, Inc.
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INTRODUCTION

Brain imaging provides insight into the functional neu-
roarchitecture associated with psychiatric conditions such
as mild traumatic brain injury (mTBI) and posttraumatic
stress disorder (PTSD) [Costanzo et al., 2014], both preva-
lent in military service members. However, much of our
understanding of the brain is organized around properties
of neural regions, whereas our knowledge of the complex
connections between the various regions is not as mature.
Given that connectivity contains mechanistically pertinent
information, which is different from what is available
through functional magnetic resonance imaging (fMRI)
activation studies, attaining region-specific information
from connectivity data could advance our understanding
of the neural circuitry and associated brain processes.
Hence, we developed a novel framework to identify com-
promised pathological foci from directional brain net-
works, which likely represent the source(s) of network
disruption in a given disorder. We illustrate the approach
with fMRI data obtained from soldiers with PTSD and
postconcussion syndrome (PCS, a chronic outcome of
mTBI).

Exposure to blasts and subsequent head injuries result
in mTBI, which has a high comorbidity with PTSD [Hoge
et al., 2008, 2009]. As of September 2014, over 2.7 million
Americans have served in Iraq and Afghanistan, of whom
about 20% developed PTSD, 19% acquired TBI, and 7%
acquired both [Veterans statistics: PTSD, Depression, TBI,
Suicide, n.d.]. With current diagnostic procedures and
treatments centering on subjective assessments, a thorough
understanding of the mechanistic basis for both PTSD and
PCS symptom presentation is essential for accurate diag-
nosis, targeted treatments, and return-to-duty decision
making. Due to the largely overlapping symptomatology
between PCS and PTSD [Eierud et al., 2014], it is impera-
tive that objective connectivity markers of the respective
neuropsychiatric and neurologic conditions are identified
and validated to improve clinical evaluation and treatment
outcomes. Prior fMRI works on comorbid PTSD and mTBI
are limited [Spielberg et al., 2015], although its prevalence
is considerably high in general society as well as military
populations [Veterans statistics: PTSD, Depression, TBI,
Suicide, n.d.]. In this work, we study group-level differ-
ences in brain networks between participants diagnosed
with PTSD, PCS 1 PTSD (comorbid group diagnosed
with both PCS and PTSD) and matched healthy combat
controls.

Several studies have identified [Simmons and Matthews,
2012] certain key frontal and subcortical areas, among
others, and associated connections which are impaired in
both PTSD and PCS. However, a mechanistic explanation of
the affected network architecture in PTSD with and without
PCS is still under development. Specifically, given that net-
work disruption often arises from aberrations in a few focal
areas, segregation of such sources of network disruption
from the connectivity changes that happen as a consequence
of them, has been elusive. Since such foci are part of the
affected network, the disruption is propagated to other
regions connected with the foci. Therefore, we investigate
the foci of network disruption, in addition to characterizing
connectivity aberrations associated with them.

While functional connectivity (FC) is popularly used to
study brain networks, there is a need to identify networks
with causal relationships. Underlying network interactions
could be causal in nature in addition to (or rather than)
being synchronous, which are shown to exist even in fMRI
timescales [Deshpande and Hu, 2012]. As such, it is impor-
tant to discover causal networks in addition to co-
activation networks for a more complete characterization.
PTSD and PCS are generally seen as frontal dysregulation
disorders [Simmons and Matthews, 2012], in which direc-
tional (or causal) influences originating from frontal areas
are impaired. This further motivated us to employ direc-
tional causal connectivity or effective connectivity (EC).
Surprisingly, there have been no fMRI studies that have
investigated effective connectivity in either PTSD or mTBI
or the comorbid condition.

EC refers to directional relationships among brain
regions [Deshpande and Hu, 2012]. Granger causality (GC)
is an exploratory technique used to quantify EC between
brain regions [Deshpande et al., 2010a,b]. It is the most
widely used approach to quantify causal influences in nat-
ural systems [Kirchg€assner et al., 2012] including, but not
limited to, epidemiology, molecular biology, econometrics,
evolutionary biology, climate science, computer networks,
linguistics, and brain science [Illari et al., 2011]. While GC
involves assumptions and parameter choices, it has the
advantage that it is a data driven approach and there are
no requirements for specifying connectivity priors like in
dynamic causal modeling (DCM) [Deshpande and Hu,
2012; Deshpande et al., 2012; Friston et al., 2013; Roebroeck
et al., 2005]. While a wide range of applications take
advantage of DCM, it would be practically impossible to
build a DCM model with priors for whole-brain connectiv-
ity, as it would be computationally not feasible [Lohmann
et al., 2012]. Both recent simulations [Ryali et al., 2011;
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Wen et al., 2013] and experimental results [David et al.,
2008; Katwal et al., 2013; Ryali et al., 2016] indicate that
GC applied after deconvolving the HRF from fMRI data
(as we have done), is reliable for making inferences about
directional influences between brain regions. This method
has also been employed in several recent fMRI studies
[Bellucci et al., 2017; Deshpande et al., 2013; Feng et al.,
2015; Grant et al., 2014, 2015; Hutcheson et al., 2015; Lacey
et al., 2014; Sathian et al., 2013; Wheelock et al., 2014].

Most studies investigate EC or directional brain connec-
tivity by assuming connectivity to be temporally station-
ary. Dynamic fluctuations of connectivity are not captured
when using static connectivity. Given that mental pro-
cesses happen within a few milliseconds to seconds’ time,
while an entire fMRI scan lasts for several minutes, it is
natural that connectivity fluctuates over time, reflecting
changing mental states, and that such variations carry bio-
logically relevant information [Hutchison et al., 2013],
which is distinct from that represented by static connectiv-
ity [Jia et al., 2014]. Some studies have even reported that
connectivity dynamics are a better predictor of disease
states than static connectivity [Jin et al., 2017]. Connectivity
dynamics has been found to be a unique and important
marker of brain functioning [Hansen et al., 2015]. Previous
studies in PTSD and PCS have not utilized dynamic con-
nectivity information in a manner that extends our under-
standing based on the information obtained from
conventional static connectivity. In this study, we used
static EC (SEC) as well as dynamic EC (DEC) measures
[Wheelock et al., 2014].

Upon obtaining these whole-brain connectivities, we
employed a probabilistic framework to identify affected
foci, i.e., regions that are the likely primary sources of net-
work disruption. This technique would also inform us on
the underlying disrupted directional network associated
with the disrupted foci. We adopted the technique devel-
oped recently for FC data [Venkataraman et al., 2013], and
made specific modifications to the model formulation to
make it suitable for both EC and dynamic connectivity
data. The modifications were necessary because the proba-
bility distributions of EC and FC metrics are different (EC
distribution is narrower), in addition to the fact that,
unlike FC, EC is directional in nature. The technique is
based on the concept that affected foci are associated with
a large number of affected connections. It identifies com-
promised foci and also provides associated compromised
connections.

We constructed separate brain networks using strength
(SEC) and temporal variability (variance of DEC [vDEC])
of directional connectivity, and then used them to identify
diseased foci separately. The obtained foci for SEC and
vDEC were then overlapped (intersection) to obtain final
foci which had both aberrant SEC and vDEC in the clinical
groups. Here onward, we would use the term “clinical
groups” instead of referring every time as “in PTSD and
PCS 1 PTSD.” The compromised connections associated

with the foci were obtained and overlapped in a similar
manner, but with certain restrictions as described next.

It has been shown that lower temporal variability of
connectivity is associated with both neurologic and psychi-
atric conditions [Garrett et al., 2013; Jia et al., 2014; Miller
et al., 2016; Rangaprakash et al., 2016, 2017a,b,c; Rashid
et al., 2016], often presenting as a lack of cognitive flexibil-
ity. Reduced temporal variance in DFC is associated with
psychiatric disorders as well as compromised behavioral
performance in healthy individuals [Jia et al., 2014;
Sako�glu et al., 2010]. We suggest that this reduction is
associated with compromised ability to dynamically adjust
(e.g., behavior, thoughts, etc.) to changing conditions. Such
a phenomenon is widely recognized in other biological
systems, for example, reduction in heart rate variability is
a marker of cardiovascular disease [Greiser et al., 2009].
Since environmental factors and bodily internal states are
changing continuously, a healthy biological system adapts
its activity in real-time to accommodate such changes. In
these terms, a connectivity path less variable across time
reflects compromised brain health. Such connectivity char-
acterization has been employed in recent works, with
higher connectomic flexibility being associated with favor-
able/better task performance in healthy adults [Jia et al.,
2014] and psychiatric disorders [Rangaprakash et al., 2015,
2017a]. Higher variability of connectivity is also considered
a marker of greater mental flexibility [Zhang et al., 2016].
In this work, we identified connections with altered SEC
and lower vDEC in the clinical groups compared to
controls.

Additionally, we presented in our earlier study that the
PCS 1 PTSD group was found to be a more severe group
compared to the PTSD group (in terms of symptom sever-
ity scores), owing to the added burden of mTBI [Rangap-
rakash et al., 2017a,b,c]. It is noteworthy that mTBI is a
result of pressure waves arising from blasts and other non-
blast events like vehicle accidents, while PCS is a behav-
ioral syndrome, which is a consequence of the injury.
Therefore, unlike TBI wherein the spatial location of injury
can be different across subjects, the common behavioral
manifestations among subjects with PTSD and mTBI sug-
gests that it is likely to have common sources of neural
network disruption in their brains. In addition, evidence
shows that PCS increases the severity of PTSD [Vasterling
et al., 2009]. Hence, we looked for connectivity paths asso-
ciated with the affected foci, which had reducing vDEC
and altered (either monotonically reducing or monotoni-
cally increasing) SEC as we moved from Control to PTSD
to PCS 1 PTSD. We hypothesized that PTSD with and
without PCS is characterized by certain affected regional
foci, and those foci are associated with connections having
altered strength (SEC) and lower variability (vDEC) of
directional brain connectivity (see Fig. 1 for an illustration
of our hypothesis). Additionally, we hypothesized that
(secondary hypothesis) these connectivities are better pre-
dictors of the disorders than the available nonimaging
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measures. We associated the connectivity paths exhibiting
lower SEC with dysregulation, given that reduced engage-
ment of certain prefrontal-cortical and prefrontal-
subcortical connectivities is seen as a consequence of
impaired regulation from prefrontal regions [Gross, 2014].
Similarly, we associated the connectivity paths exhibiting
higher SEC with overdrive, or pathologically enhanced
engagement, given that hyper-connectivity is considered
as a response to neurological disruption [Hillary et al.,
2015], and has been observed in individuals with PTSD
[Cisler et al., 2014; Hayes et al., 2012; Simmons and Mat-
thews, 2012]. The use of the word “overdrive” in such a
context is not new, and has been prevalent in the literature
[Modinos et al., 2017; Reiss et al., 2008]. The foci were
identified using whole-brain connectivity data without
imposing any priors, while the affected connectivity paths
conforming to our hypothesis were restricted to those con-
nections that were associated with the foci. Notably, we
tested the hypothesis in a data-driven manner using
resting-state fMRI, which is not task dependent.

For the connectivities that fit our hypothesis, we sought
to assess their behavioral relevance; specifically, we tested
the association of connectivity values with neurocognitive
scores and symptom severity in PTSD and PCS.

Our hypothesis is based on an analysis framework,
which relies on statistical separation between groups.
However, statistical separation of between-group connec-
tomics does not necessarily imply that they have predic-
tive diagnostic ability [Deshpande et al., 2010a,b]; that is,
they may not be able to predict group membership at an
individual level with reasonable accuracy. Consequently,
those connections that are both statistically significant and
possess the discriminative power to classify subjects with
high accuracy are more powerful. Several studies report
successfully using machine learning classifiers on fMRI
data for diagnostic prediction, including, but not limited
to, major depressive disorder [Deshpande et al., 2009], Par-
kinson’s disease [Marquand et al., 2013], PTSD [Liu et al.,
2015], dementia [Chen et al., 2011], autism [Deshpande
et al., 2013], ADHD [Deshpande et al., 2015] and prenatal
cocaine exposure syndrome [Deshpande et al., 2010a,b].
However, to the best of our knowledge, there have been
no studies that have used connectivity markers for the
classification of both PTSD and PCS subjects. For

psychiatric disorders like PTSD and PCS, classification
using neuroimaging signatures could be employed to
obtain more accurate diagnoses by assisting the clinician
with additional information. Therefore, we employed a
machine learning technique, which, in a data-driven fash-
ion, recursively eliminates unimportant connectivity fea-
tures from whole-brain connectivity data to identify those
SEC and vDEC features that can predict the diagnostic
membership of a novel subject with high accuracy. We
specifically investigated whether there was an overlap
between connectivities satisfying our primary hypothesis
(Fig. 1) and those identified as having high predictive abil-
ity using machine learning. As stated earlier, we hypothe-
sized that (secondary hypothesis) these connectivities will
better predict the diagnostic membership of a novel sub-
ject than the available nonimaging measures (behavioral,
neurocognitive and self-report measures), thus highlight-
ing their relevance to the neuropathology of PTSD and
PCS. We lay emphasis on the compromised foci and their
associated connections that have high statistical separation
as well as high predictive ability in addition to having
behavioral relevance.

METHODS

A schematic of the entire processing pipeline is available
at the end of the methods section (Fig. 5).

Participants

Active-duty U.S. Army soldiers (aged between 18 and
50 years) were recruited from Fort Rucker, AL, USA and
Fort Benning, GA, USA to voluntarily participate in the
study. The study was conducted in accordance with the
Declaration of Helsinki. The procedures were approved by
Auburn University’s Institutional Review Board (IRB), and
the Headquarters U.S. Army Medical Research and Mate-
riel Command, IRB (HQ USAMRMC IRB).

Eighty-seven male, active-duty U.S. Army soldiers were
enrolled in the study, which included 17 with PTSD, 42
with both PTSD and PCS (PCS 1 PTSD), and 28 combat
controls (all groups matched in age, race and education),
all having combat experience in Afghanistan (Operation
Enduring Freedom, OEF) and/or Iraq (Operation Iraqi
Freedom, OIF). Participants were grouped based on post-
concussive symptoms using the Neurobehavioral Symp-
tom Inventory (NSI) score, PTSD symptom severity using
the PTSD Checklist-5 (PCL5) score, clinician referral and
medical history. (i) Participants with no history of mTBI in
the last five years, a total score� 38 on the PCL5 and< 26
on the NSI were grouped as posttraumatic stress group
(PTSD group). (ii) Participants with a history of medically
documented mTBI, postconcussive symptoms, and score-
s� 38 on the PCL5 and� 26 on the NSI were grouped as
the comorbid PCS 1 PTSD group. (iii) Participants with a
score< 38 on the PCL5 and< 26 on the NSI, no DSM-IV-

Figure 1.

Illustration of our hypothesis showing monotonically decreasing

temporal variability of dynamic effective connectivity, and either

increasing (overdrive) or decreasing (dysregulation) static effective

connectivity as we move from Control to PTSD to PCS 1 PTSD.

Font sizes are symbolic of the increasing/decreasing trend. [Color

figure can be viewed at wileyonlinelibrary.com]
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TR or DSM-V diagnosis of a psychiatric disorder, no mTBI
within the last 5 years, and no history of a moderate-to-
severe TBI, were grouped as combat controls. None of the
participants had a reported or documented diagnosis of
substance dependency, mood and/or personality disorder.
All participants reported being deployed to a combat envi-
ronment. Time since the most recent mTBI was no earlier
than three months and within the last five years for the
PCS 1 PTSD group. PCL5 scores were significantly differ-
ent between the control group and the PTSD and
PCS 1 PTSD groups combined (F(1, 172) 5 20.6443, P 5 3.64
3 10244). Such a comparison was done since PTSD is the
common factor between PCS 1 PTSD and PTSD groups,
and PCL5 score reflects only PTSD symptom severity.
Similarly, NSI scores were significantly different between
the PCS 1 PTSD group and the PTSD and control groups
combined (F(1, 172) 5 32.6878, P 5 1.32 3 10229).

Measures

Prior to their MRI scan, a battery of psychological health
measures were administered to the participants, which
consisted of the PTSD Checklist-5 (PCL-5; [Blevins et al.,
2015]), Brief Traumatic Brain Injury Screen (BTBIS;
[Schwab et al., 2007]), Neurobehavioral Symptom Inven-
tory (NSI; [Cicerone and Kalmar, 1995]), Combat Exposure
Scale (CES; [Guyker et al., 2013]), Life Events Checklist
(LEC; [Gray et al., 2004]), Childhood Environment (CE;[K-
ing et al., 2003]), Zung Anxiety Scale (ZAS; [Zung, 1971]),
Zung Depression Scale (ZDS; [Zung et al., 1965]), the
Epworth Sleepiness Scale (ESS; [Johns, 1991]), and Alcohol
Use Dependency Identification Test (AUDIT;[Saunders
et al., 1993]). We next present, in further detail, those mea-
sures that were considered most relevant for the current
study.

PTSD checklist-5 (PCL5, [Dickstein et al., 2014])

PCL5 is a 20-item self-report measure that assesses DSM-5
symptoms of PTSD. It has a variety of purposes like screen-
ing individuals for PTSD, making PTSD diagnoses and mon-
itoring symptom change during and after treatment. Items
are rated using a 5-point Likert scale; 1 5 “Not at all”
through 5 5 “Extremely.” A total symptom severity score
(range: 20–100) is obtained by summing the scores for each
of the 20 items, with a cut score of 38 for a precursory diag-
nosis of PTSD [Weathers et al., 2015]. PCL5 has been shown
to be able to differentiate between soldiers with PTSD and
healthy controls [Dretsch et al., 2016].

Neurobehavioral symptom inventory

(NSI, [Cicerone and Kalmar, 1995])

This 22-item self-report questionnaire is designed to
assess postconcussive symptoms in individuals who have
sustained a TBI. Participants rate the severity of each
symptom within the past month on a 5-point Likert scale,

ranging from 0 (none) to 4 (very severe). The score (range:
0–88) is obtained by summing the individual scores of the
22 items.

CNS-Vital Signs
VR

(CNS-VS, [Gualtieri

and Johnson, 2006])

CNS-VS is a computerized neurocognitive assessment
battery. In this work, we used five CNS-VS sub-tests (ver-
bal memory, symbol digit coding, Stroop test, continuous
performance test, and shifting attention test). The follow-
ing CNS-VS domain scores were calculated: verbal mem-
ory (VM), complex attention (CA), reaction time (RT),
processing speed (PS), cognitive flexibility (CF), and execu-
tive functioning (EF). Domain scores possess a mean of
100 and standard deviation of 15, which were averaged to
form a single score or neurocognitive composite index
(NCI) [Gualtieri and Johnson, 2006].

Procedures

Participants arriving at the research lab for their scheduled
testing appointment were re-screened for eligibility, thor-
oughly screened for MRI contraindications and re-consented
to ensure full comprehension of the study’s procedures, bene-
fits and their rights.fMRI: Participants were scanned in a 3T
MAGNETOM Verio scanner (Siemens Healthcare, Erlangen,
Germany) using T2* weighted multiband echo planar imag-
ing (EPI) sequence in resting-state (the participants were
required to keep their eyes open and not think of anything
specific, and fixated on a white cross displayed in dark back-
ground on the screen using an Avotec projection system),
with TR 5 600 ms, TE 5 30 ms, FA 5 558, slice gap 5 1 mm,
anterior to posterior phase encoding direction, voxel size5 3
3 3 3 4 mm3, multiband factor 5 2 and 1,000 volumes. Brain
coverage was limited to cerebral cortex, subcortical struc-
tures, midbrain and pons (with cerebellum being excluded).
For each participant, two identical but separate scans were
done and were processed independently, hence providing
174 sessions of resting-state data for the 87 participants. Math-
ematically this boosted the statistical power of our analysis
beyond what would have been possible from single scans of
87 participants, since statistics were carried out with connec-
tivity values which were double the number (per connectivity
path) in comparison to the number of participants in each
group.

Data Analysis

Nonimaging measures

Mean, median, range and standard deviation were calcu-
lated for self-report and neurocognitive measures. Ordinal
data were analyzed using Kendall’s Tau B (sb) test, and sep-
arate one-way analyses of variance (one-way ANOVA) with
Dunnett’s C correction for multiple comparisons were
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evaluated when comparing continuous variables between
groups.

fMRI data preprocessing

Standard resting-state fMRI preprocessing steps were car-
ried out, including realignment, normalization to MNI
space, detrending and regressing out nuisance covariates
such as six head-motion parameters, white matter signal
and cerebrospinal fluid signal, and temporal band-pass fil-
tering (0.01–0.1 Hz). The maximum allowed head-motion
was half of the voxel size (1.5 mm), with no significant group
differences in participant head motion (P> 0.05). Prepro-
cessing was carried out using Data Processing Assistant for
Resting-State fMRI (DPARSF, v1.7) [Chao-Gan and Yu-Feng,
2010], which is based on Statistical Parametric Mapping
(SPM8) [Friston et al., 2007] and Resting-State fMRI Data
Analysis Toolkit [Song et al., 2011].

The data were temporally normalized, rendering each
timeseries with zero mean and unit variance. Deconvolution
was then performed on voxel-wise data, since confounds
emerging from inter-subject and spatial variability of the
hemodynamic response function (HRF) [Handwerker et al.,
2004] could give rise to a scenario wherein two fMRI times-
eries have high directional connectivity while the underly-
ing neural variables do not and vice versa (please refer to
Fig. 2 for an illustration). Differences in HRF have been spe-
cifically reported in the case of PTSD and PCS, and such dif-
ferences have been shown to impact connectivity findings

[Rangaprakash et al., 2017a,b,c]. Further, causal connections
could readily switch directions if the underlying HRFs have
different time-to-peak. To this effect, it has been shown that
deconvolution produces improved estimation of effective
connectivity [David et al., 2008; Ryali et al., 2012]. In fact, a
recent paper presenting the viewpoint of cellular neurosci-
ence on BOLD fMRI [Hall et al., 2016] discussed about sev-
eral caveats in interpreting fMRI findings that deserve
careful consideration based on the underlying cellular mech-
anisms. One such chief issue pertains to neurovascular
dynamics or HRF variability, about which they say as fol-
lows: “advances in cellular neuroscience demonstrating dif-
ferences in this neurovascular relationship in different brain
regions, conditions or pathologies are often not accounted
for when interpreting BOLD.” They suggest the use of
computational modeling (e.g., deconvolution) to mitigate
the issue.

We employed a popular blind deconvolution algorithm
[Wu et al., 2013] to reduce non-neural variability of the
HRF and estimate latent neuronal timeseries. This decon-
volution is blind since both HRF and the underlying latent
neural timeseries are estimated from only the observed
fMRI data. Specifically, we employed the method demon-
strated by Wu et al. [2013], which has gained wide usabil-
ity and acceptance owing to its interpretability, simplicity,
robustness, validity and an ever increasing awareness in
the community on the importance of deconvolution. Sev-
eral recent papers have employed it (see for example
[Amico et al., 2014; Boly et al., 2015; Lamichhane et al.,

Figure 2.

Illustration of the importance of performing hemodynamic

deconvolution, using two time series from our real fMRI data.

The latent neural signals were convolved with the hemodynamic

response function (HRF) to give the BOLD fMRI time series.

Within-subject HRF variability across the brain could potentially

give rise to a scenario wherein, (a) the underlying neural signals

have true high directional connectivity (measured using Granger

causality [GC] from blue to red signal, wherein it is evident that

the red signal consistently follows after the blue signal) while

the BOLD fMRI time series show low GC value, and (b) the

latent neural signals have true low directional connectivity while

the BOLD fMRI time series show high GC value. In the former

case, the delay observable in the neural signals (red signal leads

blue) is negated by the delay in the HRF (blue signal leads red)

to give nearly overlapping BOLD time series. In the latter case,

while the neural signals are nearly overlapping, the delay in the

HRF results in an observable delay in the BOLD time series.

[Color figure can be viewed at wileyonlinelibrary.com]
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2014]. Briefly, the method models resting-state fMRI data
as event-related with randomly occurring events using
point processes, and then estimating voxel-specific HRFs
using Weiner deconvolution.

Given the high dimensionality of whole-brain fMRI data,
mean deconvolved fMRI timeseries were obtained from 125
functionally homogeneous brain regions encompassing the
cerebral cortex completely and spread out across it, deter-
mined from spectral clustering of resting-state fMRI data
(known as the cc200 template [Craddock et al., 2012].
Supporting Information Table S1 provides the names and
MNI coordinates of these regions. The template can be
downloaded at: http://ccraddock.github.io/cluster_roi/.
Further connectivity analysis (performed on MatlabVR plat-
form) utilized these 125 timeseries from each participant.

Effective Connectivity Analysis

Whole-brain SEC was obtained using Granger causality
(GC) [Deshpande et al., 2010a,b]. GC is an exploratory tech-
nique used to quantify directional influences between brain
regions. The underlying concept is that, if past values of a
timeseries “T1” can, in a mathematical sense, predict the
future values of another timeseries “T2,” then a causal
influence from timeseries T1 to timeseries T2 is inferred
[Granger, 1969]. GC employs a multivariate vector
autoregressive (MVAR) model to quantitatively predict one
timeseries using the other, which is briefly described next.

Given a system defined by k different timeseries X(t) 5

[x1(t), x2(t), . . . xk(t)], with k being 125 ROIs in this study,
the traditional MVAR model of order p is given by:

X tð Þ5A 1ð ÞX t21ð Þ1A 2ð ÞX t22ð Þ1 � � �1A pð ÞX t2pð Þ1E tð Þ
(1)

Where E(t) is the model error and A(1) . . . A(p) are the model
coefficients. The coefficients were estimated through multi-
variate least squares estimation, which calculates the opti-
mal set of coefficients that minimizes the model error in the
least squares sense. Model order p must be chosen either by
employing a mathematical principle such as the Bayesian
Information Criterion (BIC) [Roebroeck et al., 2005] or based
on the requirements of the application under consideration.
In neuroimaging, the interest is in causal relationships
within neural delays of a TR [Deshpande et al., 2013], thus
we chose a first order model. Since fMRI’s temporal resolu-
tion is low, a first order model is shown to capture the most
relevant causal information [Deshpande and Hu, 2012].

Coefficient A(p) indicates the degree to which the past
X(t-p) can predict the present X(t). Then, the sum of coeffi-
cients of all delays would represent the degree to which
all the past values together can predict the present. This
formulation is used to evaluate GC by predicting the pre-
sent value of timeseries-2 (T2) using the past values of
timeseries-1 (T1). If, for example, the sum of resulting
model coefficients is large, then it implies that T1 can
predict T2 very well. If T1’s past can predict T2’s present,

then that implies a causal relationship from T1 to T2. As
in previous studies [Kaminski et al., 2001], GC was
derived formally, based on the model coefficients, as:

GCij5
Xp

n51

aij nð Þ (2)

Where GCij is the SEC value from ROI i to ROI j and aij are
the elements of matrix A. It is notable that a single coefficient
matrix is obtained for the entire duration of data, and the
coefficients do not vary over time. This traditional formula-
tion of GC was slightly modified, as in earlier studies [Desh-
pande et al., 2010a,b], to remove the effect of zero-lag cross-
correlation between timeseries. For this, we included the
zero-lag term in Eq.1 as shown below.

X tð Þ5A0 0ð ÞX tð Þ1A0 1ð ÞX t21ð Þ1A0 2ð ÞX t22ð Þ1 � � �
1A0 pð ÞX t2pð Þ1E tð Þ (3)

The diagonal elements of A(0) are set to zero, such that only
the instantaneous cross correlation, and not auto correlation,
between the timeseries are modeled. The model coefficients
obtained from Eq.3 would not be equal to those obtained
from Eq.1, since the inclusion of zero-lag term affects other
coefficients by removing cross-correlation effects from them.
The zero-lag term is thus not used in the evaluation of GC.
GC thus obtained would be free from zero-lag correlation
effects and is defined as correlation-purged GC (CPGC),
which has been widely used in recent times (for example,
see [Deshpande et al., 2011, 2015]. A 125 3 125 SEC matrix
was obtained for every participant by employing CPGC.

A GC value of 0 represents no causal relationship from
the source to the destination region, a value of 1 repre-
sents strong positive causality (increase in BOLD response
of the source region causes an increase in BOLD response
of the destination, and vice versa), and a value of 21 rep-
resents strong negative causality (increase in BOLD
response of the source region causes decrease in BOLD
response of the destination, and vice versa).

Next, DEC was obtained using time-varying dynamic
Granger causality (DGC), evaluated in a Kalman filter
framework. We employed a dynamic multivariate vector
autoregressive (dMVAR) model for estimating DEC
[Wheelock et al., 2014; Grant et al., 2014]. The model is
“dynamic” because, unlike CPGC formulation, its model
coefficients vary as a function of time. Here, DEC is the
time-varying physiological process, which is quantified
through the DGC measure, which employs the dMVAR
model solved in the Kalman filter framework. In DGC,
coefficients A0(p) are allowed to vary over time, thus giv-
ing coefficients A0(p,t) in the dMVAR model as:

X tð Þ5A0 1; tð ÞX t21ð Þ1A0 2; tð ÞX t22ð Þ1 � � �
1A0 p; tð ÞX t2pð Þ1E tð Þ (4)

The dynamic model coefficients are estimated in a Kalman
filter framework using variable parameter regression
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[B€uchel and Friston, 1998]. This involves imposing a for-
getting factor, which in our case was chosen to be 1. DGC
is then computed as:

DGCij tð Þ5
Xp

n51

a0ij n; tð Þ (5)

Where DGCij(t) is the DEC value from ROI i to ROI j at a
given time point t, and a0ij are the elements of matrix A0.
Size of the DEC vector for each connection would be equal
to the number of time points in the fMRI data. We com-
pensated for zero-lag cross-correlation effects here also,
like in CPGC. Given that our data had 1000 time points,
we obtained a 125 3 125 3 1000 DEC matrix for every
participant by employing DGC.

Recent simulations [Ryali et al., 2011; Wen et al., 2013] as well
as experimental results [David et al., 2008; Katwal et al., 2013;
Ryali et al., 2016] suggest that GC applied after deconvolving
the HRF from fMRI data (as we have done), is reliable for mak-
ing inferences about directional influences between brain
regions. This method for obtaining SEC and DEC has also been
employed in several recent fMRI studies [Bellucci et al., 2017;
Deshpande et al., 2013; Feng et al., 2015; Grant et al., 2014, 2015;
Hutcheson et al., 2015; Lacey et al., 2014; Sathian et al., 2013;
Wheelock et al., 2014]. Variance of DEC (vDEC) was taken as
the measure of variability in directional connectivity over time
(125 3 125 matrix per participant), which, along with SEC, was
used further in identifying disease foci. To comprehend the
idea of SEC and DEC from a neuroimaging standpoint, we
provide an illustration using a simple example of a pair of real
fMRI timeseries (please see Fig. 3).

Identifying Disease Foci

As noted earlier, connectivity modeling identifies inter-
relationships through connections between brain regions,
while our insights on the brain center on functions of
regions. Hence, we sought to identify disrupted regional
foci in PTSD and PCS 1 PTSD using EC data.

We used a Bayesian probabilistic model to identify disorder
foci from connectivity data [Venkataraman et al., 2013], which
assumes that disrupted regions are associated with large num-
ber of abnormal connections. The efficacy of this method has
been demonstrated earlier with simulations as well as real
fMRI data [Zhao et al., 2017], in particular using static func-
tional connectivity (FC) [Venkataraman et al., 2013]. However,
their model made certain assumptions on the priors, which
were suited for FC data’s probability distribution. Here we
extend this method to identify disease foci using both static
and dynamic EC, albeit with certain modifications in the
model formulation given that EC matrices are not symmetric,
unlike FC, and that the distributions of FC and EC data are dis-
similar. In addition, static and dynamic connectivity data have
dissimilar distributions as well. We explain the method briefly
before addressing these issues. For a detailed account of the
method, please refer to Venkataraman et al. [2013].

The model was originally developed for FC [Venkatara-
man et al., 2013]. FC measured from fMRI data was seen
as a noisy measurement of the unknown latent FC, and
was modeled as a Gaussian random variable with the
mean and variance dependent on the latent FC. The latent
FC was modeled as a tristate variable from a multinomial
distribution with three distinct states: positive connection
(11), negative connection (–1) and no connection (0). The
model associated the state of each brain region with a
binary vector (healthy 5 0, disrupted 5 1), whose elements
followed an independent and identically distributed (i.i.d.)
Bernoulli distribution. The model made the following
three assumptions: (i) a connection between two disease
foci was abnormal with probability 1, (ii) a connection
between two nonaffected regions was normal with proba-
bility 1, and (iii) a connection between a disease focus and
a nonaffected region was abnormal with probability p. The
joint likelihood of all the configurations of latent connec-
tions between brain regions was modeled as a multinomial
distribution model. Upon initiating the model with stan-
dard priors (such as the Bernoulli prior for binary state
vector, prior for latent FC, etc.), a variational expectation
maximization (EM) algorithm was employed [Dempster
et al., 1977] for updating the posterior distributions and to
solve for the model parameters until they converged. The
relative change in free energy of the model by less than
1024 between successive iterations was chosen as the con-
vergence criteria. The model produced posterior probabili-
ties for every region and every connection, using which
foci disrupted due to disease and associated connections
were identified.

SEC’s probability distribution resembled a Gaussian
(verified using the Lilliefors normality test), similar to
Pearson’s correlation. While correlation usually has a dis-
tribution with mean 6 SD of 0 6 0.25, SEC’s distribution
had mean 6 SD of 0 6 0.19, which is acceptable. However,
it is not a bounded measure, unlike correlation which is
bounded by [–1,1]. The model assumes a tri-state distribu-
tion, with default states set to [–1,0,1]. In our entire data,
we found a very small number of SEC values that were
greater than 1 or smaller than 21 (0.0026%). Hence, we
performed inverse Fisher-Z transformation on SEC values
to have its distribution bounded by [–1,1]. Similar proce-
dure was followed for vDEC. With both SEC and vDEC,
the connectivity matrix is asymmetric, unlike FC, which is
a directionless quantity with a symmetric matrix. Hence,
the entire matrix was fed into the model, unlike with FC
where only the lower or upper triangular part would be
used. Put together, these modifications allowed the model
to be applied to effective connectivity as well as dynamic
connectivity data. Persons interested in the source code
(implemented in MatlabVC ) could contact the corresponding
author or Dr. A.V. (archana.venkataraman@jhu.edu).

The Bayesian probabilistic model to determine the foci
was evaluated for one thousand times (with different ran-
dom initiation of priors). Statistical significance of the foci
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were determined based on a nonparametric permutation
test, as described next. We took the entire dataset and ran-
domly assigned groups. We then fit the model using the
standard approach and extracted the posterior probabili-
ties of each region being disrupted by the disease with
random group assignment. This was repeated (randomly
assigning labels, fitting model, extracting posterior proba-
bilities) for ten thousand iterations to obtain the posterior
null distribution for each region. The p-value for each
region was then estimated as the proportion of the thou-
sand iterations of model evaluation for which the null pos-
terior (i.e., random assignment) was greater than the foci
posterior we had observed when we fit the model with
the true labels. We thus obtained significantly affected dis-
ease foci in the clinical groups (P< 0.05, Bonferroni
corrected).

The method also provided affected connectivities associ-
ated with the disease foci, which would help in interpret-
ing affected networks from the point of view of the
compromised foci. Among such connectivities, we retained
only those connections which crossed our statistical

significance threshold for effective connectivity values out-
side of the foci method, in accordance with our primary
hypothesis (P< 0.05, whole-brain FDR-corrected; con-
trolled for age, education, race and head-motion [using
mean frame-wise displacement obtained as defined by
Power et al. [2012]. The statistical tests did not control for
the comparison of having three groups. This procedure
ensured that, irrespective of the model used by us, the sig-
nificant connections that emerged in this work would have
crossed whole-brain multiple comparisons corrected statis-
tical threshold like in most studies, in addition to the fact
that the model quantitatively selected these paths using
the posteriors. This ensured that our results conformed to
multiple layers of verification and statistical standards, in
addition to providing novel insights through the foci
method.

The model is, in its original form, applicable only for
comparison between two groups. Since we were compar-
ing three groups, we overlapped the foci and connections
obtained in the three pairwise comparisons to extract only
the common foci and connections (intersection). In a

Figure 3.

Illustration of SEC and DEC from a neuroimaging standpoint

using two real fMRI time series. In (a), the red timeseries con-

sistently seems to follow after the blue timeseries (top-left fig-

ure), indicating that red’s associated brain region activates (and

deactivates) as soon as blue’s region activates (and deactivates),

hence a causal influence is inferred and a high SEC value

(SEC 5 0.88) is observed (note that correlation, which measures

zero-lag functional connectivity, is low [R 5 0.03]). DEC provides

further insight (bottom-left figure), which shows that steady cau-

sality is maintained mainly in the middle phase, and that causality

is lost on three brief instances (where it dips due to observable

loss of causality between the timeseries’ of those sections

[please follow the arrows]). This variability of DEC is quantified

in vDEC (vDEC 5 0.083). In (b), the two timeseries are nearly

overlapping hence highly correlated with R 5 0.86 (top-right fig-

ure). However, the variations in the red timeseries do not occur

after (or before) the variations in blue timeseries (and vice

versa). This lack of causal relationship results a low SEC value

(SEC 5 0.02). Correspondingly, DEC (bottom-right figure) lin-

gers around the zero-mark since a causal relationship does not

seem to emerge at any point in time. vDEC is also low

(vDEC 5 0.004). [Color figure can be viewed at wileyonlineli-

brary.com]
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statistical sense, this was the most conservative approach
possible. In accordance with our hypothesis, we identified
those connectivity paths associated with the compromised
foci which exhibited altered SEC (either monotonically
reducing or increasing from control to PTSD to comorbid
groups) and lower vDEC as we moved from Controls to
PTSD to PCS 1 PTSD. Such a network would disentangle
the effects of PTSD as well as comorbid PTSD and PCS,
providing novel insights through directional and dynamic
connectivity. Results from FC analysis have been reported
elsewhere (analysis pipeline is different from what is done
in this article) [Rangaprakash et al., 2017a,b,c] and hence
we concentrated on directional (or effective) connectivity
networks in this report.

Behavioral Relevance of Connectivity Values

To assess the behavioral relevance of connectivity val-
ues, we first correlated SEC and vDEC values of each of
the identified connectivity paths with symptom severity in
PTSD (PCL5 score) and PCS (NSI score), and neurocogni-
tive functioning (NCI score and subtests). Neurocognitive
functioning (e.g., cognitive flexibility, executive function-
ing) is affected in psychiatric disorders such as PTSD and
PCS, hence identifying behaviorally relevant connections
associated with it carries importance. We report significant
correlations, thus associating such connections with altered
behaviors.

to get further insight into how the ensemble of identified
connections mapped onto the ensemble of behaviors, we
performed partial least squares regression (PLSR) analysis
[Krishnan et al., 2011]. Using PLSR, we tried to predict
symptom severity (PCL5, NSI) and neurocognitive function-
ing (NCI and subtests) from SEC and vDEC connectivity val-
ues of the connections identified from prior analysis. We
report the percentage of variance in behaviors explained by
the connectivities

Classification Using Support Vector Machine

Statistical separation between neural markers (e.g., a t-
test) need not necessarily ensure generalizability or predic-
tive ability of those markers for diagnosis [Deshpande et al.,
2010a,b]. Statistically significant connectivity paths need not
necessarily have high predictive ability and vice versa. Con-
sequently, those connectivities that are both statistically sig-
nificant (in accordance with our hypothesis) and are top-
predictors (high predictive ability) assume superior impor-
tance and relevance. We have thus used machine learning
approaches to identify such connectivity paths (features)
which could accurately classify individuals between con-
trols, PTSD and PCS 1 PTSD. A Recursive Cluster Elimina-
tion based Support Vector Machine (RCE-SVM) classifier
[Deshpande et al., 2010a,b] was employed to classify partici-
pants based on whole-brain SEC and vDEC values. Notably,

findings from prior foci-identification analysis were not
used to bias the machine learning algorithm.

First, the data was divided into training data (used to
learn patterns in the data) and testing/validation data
(used to independently test the learned pattern to assess
the quality of the learning). Then, significant group differ-
ences were found for all the three comparisons (control vs.
PTSD, control vs. PCS 1 PTSD and PTSD vs. PCS 1 PTSD)
from the training data only, using a threshold of P< 0.05
(controlled for age, race, education and head motion) for
both SEC and vDEC, and an uncorrected P< 0.05 thresh-
old was used since we wanted to be liberal about which
features are fed into the classifier, thus letting the classifier
choose the most predictive features. We next found over-
lapping connectivity paths between the three comparisons.
The resulting SEC and vDEC features were combined to
provide the input features to the classifier. This initial fil-
tering is known to enhance the quality of classification
[Craddock et al., 2009] by ensuring that nondiscriminatory
features are not input into the classifier.

Our choice of support vector machine (SVM) [Vapnik,
1995] for classification was driven by its wide applicability
and acceptance for classification in several fields, including
neuroimaging [Wang, 2005]. Prior studies showed that the
use of discriminatory features enhances classification perfor-
mance of SVMs [Craddock et al., 2009; Deshpande et al.,
2010a,b]. We thus employed recursive cluster elimination
(RCE), a wrapper method, which iteratively eliminates fea-
tures to minimize prediction error, wherein feature selection
and classification steps are embedded together. The RCE-
SVM classification technique involves the clustering step,
the SVM scoring step and the RCE step. Features that were
initially fed into the classifier were divided into training and
testing datasets. The classifier was trained using the training
data, while the testing data was totally kept blinded to the
classifier. Once training was complete, the testing data was
fed into the classifier and classification accuracy was
obtained. This ensured generalizability of the results.

In the clustering step, k-means algorithm was employed
to cluster the training data into “n” clusters. The “n”
obtained through this iteration served as the initial “n” for
the RCE-SVM loop. The initial number of clusters were
the number of clusters into which the k-means algorithm
would cluster the input connectivity features. Choosing
smaller number of clusters would assign more number of
features to each cluster, thus eliminating more features in
each successive recursive cluster elimination (RCE) step.
Though this may speed up the execution, it would leave
fewer good features as the RCE steps advance towards the
end, which may reduce the classification accuracy. Choos-
ing larger number of clusters would assign smaller num-
ber of features to each cluster, which would increase the
execution time. Assessing this tradeoff, prior studies
[Deshpande et al., 2010a,b] have recommended using
about 40 initial number of clusters. We used the value of
40 in this study. In the SVM-scoring step, each cluster was
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scored based on its ability to differentiate between the
groups by employing linear SVM. To assess the perfor-
mance of clusters, the training data was randomly parti-
tioned into six nonoverlapping subsets of equal sizes (six
folds). The SVM was trained using 5 of the 6 subsets. Per-
formance (accuracy) was calculated using the remaining
subset. As such, given that we had 174 fMRI scans, each
iteration included the training data of 174*5/6 (5145) ran-
domly chosen from each group (5/6th of each group), and
the remaining 29 as the testing data. All possible partitions
were generated by repeating the clustering and cross-
validation procedures hundred times. Such independent
repetitions have no theoretical limits and no stopping cri-
teria, and we chose to repeat it 100 times based on previ-
ous reports [Deshpande et al., 2010a,b] that found that 100
repetitions are sufficient to reliably estimate the classifica-
tion accuracy. For each of these hundred repetitions, clas-
sification accuracy was obtained using the testing data.

Utilizing the outcome of hundred repetitions and six
folds for each repetition, the average accuracy was

assigned as the cluster’s score. The bottom 20% of low
scoring clusters were discarded in the RCE step. The
remaining features were merged and the value of “n”
was reduced by 20%. This ensured that only certain top
classifying features qualified for the next iteration. The
clustering step, the SVM-scoring step and the RCE step
were again iteratively repeated. After each iteration, per-
formance of the classifier was computed using the
reduced number of features compared to the earlier itera-
tions. Once the number of clusters reached two, the pro-
cedure was terminated. Figure 4 illustrates the RCE-SVM
procedure through a flowchart. Complete separation of
training and testing datasets eliminates bias in the evalu-
ation of classification accuracy [Kriegeskorte et al., 2009].
Further, the features obtained in the final two clusters
would be those with highest discriminative ability and
hence carry predictive value for diagnosis. Complete
details of the RCE-SVM algorithm can be obtained from
previous reports [Deshpande et al., 2010a,b; Yousef et al.,
2007].

Figure 4.

Flowchart illustrating the recursive cluster elimination based support vector machine (RCE-SVM)

classification procedure.
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In this study, the following parameter choices were made.
80% of the participants were marked as the training set, with
20% being marked as the testing set. We started the algorithm
with 40 clusters in the first RCE step. The bottom 20% of clus-
ters (based on performance) were eliminated in each of the
subsequent RCE steps. The final RCE step consisted of two
clusters containing the top-predictive features. Over 100 ran-
dom iterations, six-fold cross validation was performed, result-
ing in an aggregate of 600 iterations over the entire execution.

To be conservative, we evaluated the worst-case classifi-
cation accuracy by considering the least accuracy value
obtained from the test data among all 600 iterations (100
repetitions 3 6 folds). Statistical significance of accuracies
was obtained by estimating p-values using a binomial null
distribution B(h,q), h being the number of participants and
q being the probability of accurate classification, as in pre-
vious studies [Pereira et al., 2009]. Only those accuracies
with p-values less than 0.05 (Bonferroni corrected) were
considered as statistically significant for reporting. The
Bonferroni p-value threshold was determined as 0.05
divided by: (number of groups 3 number of clusters).

Machine learning classification was utilized in this work
to serve two purposes: (i) determine predictive ability of the
features, and (ii) identify top predictive features. While we
primarily performed this with connectivity features, we
wanted to compare our findings against those measures that
are more commonly used clinically today. Hence we chose

to perform classification with the nonimaging measures. We
predicted that that connectivity will better predict the diag-
nostic membership of a novel subject than the available non-
imaging measures, given that connectivity features are
derived from brain data. We repeated the aforementioned
procedure to perform classification independently by using
32 available nonimaging measures as input features instead
of SEC and vDEC features. The 32 measures were: (i) behav-
ioral measures: all CNS-VS measures including the NCI
score; (ii) exposure/injury descriptives: Combat Exposure
Scale, lifetime concussions and Life Events Checklist (iii)
psychological health measures: Perceived Stress Scale, Pitts-
burgh Sleep Quality Index, Epworth Sleepiness Scale, Zung
Anxiety Scale, and Zung Depression Scale. Worst-case clas-
sification accuracies and top-classifying features were
obtained, and these were compared with the results
obtained using connectivities. In Figure 5, we have summa-
rized the processing pipeline of all methods used.

RESULTS

Demographics

Demographics for the three groups are presented in
Table I. There were no significant differences between the
groups in age, P 5 0.699, or education, P 5 0.152. Results
indicated that there was a difference in the frequency of

Figure 5.

Schematic of the entire processing pipeline employed in this work. [Color figure can be viewed

at wileyonlinelibrary.com]
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reported psychotropic use between groups, sb 5 0.24,
P 5 0.011, with the comorbid group having highest per-
centage of medicated participants. There was significant
difference between groups in the number of reported life-
time mTBIs, F(2, 171) 5 5.81, P 5 0.004, specifically between
control and PCS 1 PTSD groups, but not the PTSD and
PCS 1 PTSD groups or control and PTSD groups, P> 0.05.

Psychological Health and Neurocognitive

Function

Results revealed statistically significant differences
between all three groups in posttraumatic symptoms
(PCL5), F(2, 81) 5 101.65, P< 0.001, postconcussive symp-
toms (NSI), F(2, 78) 5 49.79, P< 0.001, and combat expo-
sure (CES), F(2, 79) 5 40.69, P< 0.001. All P-values retained
significance after multiple comparisons correction. As
observed in Table II, the PCS 1 PTSD group had the high-
est scores out of the three groups on these measures.

Results indicated that after multiple comparisons correc-
tion, the control group had significantly higher scores than
PCS 1 PTSD group on all neurocognitive measures, P< 0.05,
with the exception of Verbal Memory and Reaction Time,
P> 0.05. PCS 1 PTSD group also had significantly lower
scores in Cognitive Flexibility, Executive Functioning, and
the NCI compared to PTSD group, P< 0.05. The findings
suggest that both PTSD and PCS 1 PTSD groups have lower
scores than controls, but also that the comorbid group has
greater impairments than the PTSD group (see Table II).

FMRI Connectivity Results

We evaluated SEC and vDEC from resting-state fMRI
data, and used that in a novel framework to identify dis-
rupted regional foci and their associated disrupted

connections in the clinical groups in accordance with our
hypothesis. We identified three foci: (i) left middle frontal
gyrus (MFG), which mainly included parts of BA9 and
BA10, which overlaps with the dorsolateral prefrontal
cortex (DLPFC) (ii) left anterior insula, and (iii) right hip-
pocampal formation (included anterior parts of hippocam-
pus, parahippocampal gyrus, entorhinal and perirhinal
cortices). These affected foci were connected to/from other
brain regions that were part of the disrupted network (see
Fig. 6 for the affected ROIs and Table III for the affected
connections with MNI coordinates).

Figure 7 shows the networks associated with each focus.
It shows widespread dysregulation originating from the
MFG (Fig. 7a), information from frontal and hippocampal
regions relayed to the amygdala via the insula (Fig. 7b),

TABLE I. Basic demographics

Variable Controls PTSD PCS 1 PTSD

Age, years Mean 32.6 32.2 33.7
Median 31 32 33
SD 6.7 7.6 6.8
Range 24 24 30

Education,
years

Mean 15.1 14.5 14.1
Median 16 14 14
SD 1.9 2.2 1.9
Range 8 9 8

Race White 18 (66.7%) 11 (64.7%) 26 (66.7%)
Black 2 (7.4%) 3 (17.6%) 9 (22.0%)
Hispanic 3 (11.1%) 3 (17.6%) 2 (4.9%)
Asian 2 (7.4%) 0 1 (2.4%)
Other 0 0 1 (2.4%)

Medication 2 (7.4%) 4 (23.5%) 13 (31.7%)a

Lifetime mTBIs Mean
(Range)

0.3 (2) 1.1 (6) 2.5 (15)a

aStatistically significant (corrected P< 0.05), Controls vs.
PCS 1 PTSD.

TABLE II. Mean, median, and standard deviation on

PCL5, NSI, CES, and CNS-VS neurocognitive measures

for each of the groups

Controls PTSD PCS 1 PTSD

Psychological

Traumatic stressa

(PCL5 score)
Mean 23.5 56.6 70.9
Median 21.5 48.5 70.5
SD 4.2 17.8 15.2

Postconcussive
Symptomsa

(NSI score)

Mean 6.6 25.9 43.4
Median 5 17.5 41.5
SD 4.8 19.2 16.1

Combat exposurea Mean 7.2 16.7 28.6
Median 2.5 15 29
SD 9.8 11.2 8.6

Neurocognitive

Neurocognitive
Composite indexb

Mean 101.2 94.3 81.7
Median 100.7 94.6 82.2
SD 12.9 12.5 20.7

Reaction time Mean 97.4 95.3 84
Median 101 92 91
SD 23 11.9 32.8

Complex attentionc Mean 94.2 78.1 70
Median 99.5 92 80
SD 23.3 30.9 31.3

Cognitive flexibilityb Mean 103.6 97.1 80.5
Median 103 93 86
SD 16.3 15.2 26.7

Processing speedc Mean 104.8 100.1 89.9
Median 104 98 92
SD 20.9 11 20.1

Executive functioningb Mean 106 101 84.1
Median 104.5 104 90
SD 13.3 13.2 24.8

Verbal memory Mean 99.6 92.1 83.6
Median 106.5 103 83
SD 12.5 9.5 13.9

aDenotes P< .05, all three groups.
bDenotes P< .05, PCS 1 PTSD vs. Control and PTSD groups.
cDenotes P< .05, PCS 1 PTSD vs. Controls.
Note: Traumatic Stress 5 PCL5; Postconcussive Symptoms 5 NSI;
Combat Exposure 5 CES.
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followed by an overdrive of memory-related regions
driven by the hippocampus (Fig. 7c). Further clarity was
obtained by splitting the network into three, based on

dominant functionality (Fig. 8): (i) prefrontal top-down
dysregulation network, with disruption originating from
the MFG, causing direct and indirect (through OFC and

Figure 6.

Brain regions (with exact region boundaries) involved in the

affected network. The regions were defined based on the cc200

functional brain atlas (Craddock et al., 2012). Regions in red are

the affected foci and those in blue are the regions connected to/

from the affected foci. MFG 5 middle frontal gyrus, OFC 5 orbito-

frontal cortex, TPJ-temporo-parietal junction, DLPFC 5 dorsolat-

eral prefrontal cortex. This visualization was performed using

BrainNet Viewer (Xia et al., 2013). [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE III. The 12 paths whose effective connectivity values were found to be significantly different between the

three groups, in accordance with our hypothesis

Path no. Path

MNI coordinates of centroid (x, y, z)

Source Destination

1 L_MFG ! L_Insula 231.4, 39.1, 28.3 232.9, 20.5, 1.9
2 L_Insula ! L_Amygdala 232.9, 20.5, 1.9 223.1, 22.6, 220.5
3 L_Amyg ! R_Hippocampus 223.1, 22.6, 220.5 19.4, 212.4, 225.5
4 L_MFG ! L_OFC 231.4, 39.1, 28.3 28.1, 40.3, 228.9
5 L_OFC ! L_Insula 28.1, 40.3, 228.9 232.9, 20.5, 1.9
6 L_MFG ! R_Ant_Cingulate 231.4, 39.1, 28.3 10.3, 44.2, 6.5
7 R_Ant_Cingulate ! L_Insula 10.3, 44.2, 6.5 232.9, 20.5, 1.9
8 R_Hippocampus ! L_Insula 19.4, 212.4, 225.5 232.9, 20.5, 1.9
9 R_Hippocampus ! L_Precuneus 19.4, 212.4, 225.5 1.23, 257.1, 44.6
10 R_Hippocampus ! L_Striatum 19.4, 212.4, 225.5 211.3, 12.2, 3.5
11 L_MFG ! R_TPJ 231.4, 39.1, 28.3 46.3, 253.4, 16.9
12 L_MFG ! R_DLPFC 231.4, 39.1, 28.3 47.1, 26.6, 37.1

Table provides the Montreal Neurological Institute (MNI) coordinates for the centroids of the brain regions associated with these
connectivity paths. MFG 5 middle frontal gyrus, OFC 5 orbito-frontal cortex, TPJ 5 temporo-parietal junction, DLPFC 5 dorsolateral
prefrontal cortex.
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ACC) dysregulation of the insula as well as temporo-
parietal junction (TPJ), (ii) insula ! amygdala ! hippo-
campal loop of elevated connectivity which, considering as
a graph of connected nodes, appears to be in a “positive-
feedback” loop representing under-restrained subcortical

overdrive [Cerullo et al., 2012], caused due to frontal disin-
hibition mediated by the insula, and (iii) hippocampal
memory-related network which likely translates and medi-
ates the subcortical overdrive into elevated retrieval of
traumatic memories through overdrive of association areas

Figure 7.

Breakup of the identified disrupted network into three networks

associated with the following three identified foci (in red stars):

(a) left middle frontal gyrus (MFG) focus, showing widespread

dysregulation originating from this region, (b) left anterior insula

focus, which integrates information from prefrontal and hippo-

campal regions, and relays it to the amygdala, and (c) right hip-

pocampal formation focus, which relays subcortical overdrive to

the regions associated with memory processing. Gray lines cor-

respond to those connections with lower SEC (dysregulation);

brown lines correspond to those connections with higher SEC

(overdrive). All paths followed this trend with vDEC:

PCS 1 PTSD< PTSD<Controls. [Color figure can be viewed at

wileyonlinelibrary.com]

Figure 8.

Breakup of the identified network into three networks associ-

ated with generally three different functions: (a) prefrontal top-

down dysregulation network, with disruption originating from

the MFG, causing direct and indirect (via other regions) influ-

ence on the insula and temporo-parietal junction (TPJ), (b)

insula ! amygdala ! hippocampal loop, which is likely a

“positive-feedback” loop representing under-restrained subcorti-

cal overdrive, and (c) hippocampal memory-related network,

which likely mediates and translates the subcortical overdrive

into elevated retrieval of traumatic memories, leading to docu-

mented PTSD symptoms like trauma re-experiencing, hyper-

arousal and flashbacks. Gray lines correspond to connections

with lower SEC (dysregulation) and brown lines correspond to

connections with higher SEC (overdrive). Foci are in red, non-

foci are in blue. [Color figure can be viewed at wileyonlineli-

brary.com]
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involving memory processing/retrieval. This likely leads
to re-experiencing traumatic events, hyperarousal, flash-
backs and other symptoms often observed in PTSD.

Taken collectively, we identified the MFG to be the
pivotal source of network disruption in soldiers with

PTSD and PTSD with comorbid PCS (Fig. 9), which further
resulted in network disruption across other emotion and
memory related regions, potentially exacerbating symp-
toms. This network provides a mechanistic explanation of
the emotion dysregulation circuitry, which subsequently
results in the reoccurrence of traumatic memories associ-
ated with PTSD.

Behavioral Relevance of Connectivity Values

Connectivity values of three paths (paths 1–3 in Table
III) had significant association with neurocognitive func-
tioning (neurocognitive-composite-index [NCI] and subt-
ests), PTSD symptoms (PCL5-score) and PCS severity
(NSI-score) (see Table IV), thus highlighting their rele-
vance to the underlying neuropathology. The remaining
significant connectivity paths were not strongly associated
with these behaviors, hence did not cross the significance
threshold (p< 10220, Bonferroni’s correction). It was nota-
ble that the associations followed the expected trend:
increase in symptom severity (PCL5, NSI) and decrease in
behavioral performance (NCI) corresponded to higher SEC
in the overdrive paths (L_Insula ! L_Amygdala and
L_Amyg ! R_Hippocampus), lower SEC in dysregulation
paths (L_MFG ! L_Insula), and lower vDEC in all paths.
In other words, worse behaviors corresponded with worse
connectivities as defined by our hypothesis. Demographics
(age, education) did not have any significant association
with any of the results.

Several of the 12 connections exhibited significant asso-
ciations with several of the behaviors (75.5% of the associ-
ations were significant with P< 0.05). This suggests that
the 12 connectivities, taken together, might be more behav-
iorally relevant than the individual connectivities them-
selves. Therefore, we performed partial least squares
regression (PLSR) to evaluate the combined ability of the
12 connections to predict the combined set of 9 behaviors
(PCL5 and NSI scores, NCI and its 6 subtests). We found
that SEC values could explain 47.25% variance in the
behaviors, while vDEC could explain 48.29% variance.

Figure 9.

The disrupted foci and the disrupted connections associated

with the foci as a possible mechanistic model of neural aberra-

tions in PTSD and PCS: The prefrontal regions, with the left

MFG as the driver, are impaired in their ability to regulate the

left insula, which does not inhibit the subcortical regions ade-

quately, resulting in overdrive. This subcortical overdrive would

cause elevated emotion and memory processing, culminating in

overdriven parietal memory-related regions, which would result

in the elevated behavioral manifestations often observed in sol-

diers with PTSD and PCS. Gray lines correspond to connections

with lower SEC (dysregulation); brown lines correspond to con-

nections with higher SEC (overdrive); and all paths exhibited

lower vDEC (lower flexibility) in the clinical groups compared

to controls (with the trend PCS 1 PTSD< PTSD<Controls).

Foci are in red, nonfoci are in blue. This visualization was per-

formed using BrainNet Viewer (Xia et al., 2013). [Color figure

can be viewed at wileyonlinelibrary.com]

TABLE IV. Association of SEC and vDEC values of the three pivotal connectivity paths with the NCI score and

symptom severity in PTSD (PCL5 score) and PCS (NSI score)

Path

Symptom severity score Behavioral measure

PCL5 score (PTSD) NSI score (PCS) Neurocognitive composite index (NCI)

SEC

L_MFG ! L_Insula 20.6852 20.6780 0.6229
L_Insula ! L_Amygdala 0.6650 0.6816 20.5945
L_Amyg ! R_Hippocampus 0.7203 0.7022 20.6642
vDEC

L_MFG ! L_Insula 20.6462 20.6544 0.6507
L_Insula ! L_Amygdala 20.6728 20.6805 0.6462
L_Amyg ! R_Hippocampus 20.6896 20.6981 0.6534

Table presents the correlation values (R-value), which were significant with Bonferroni-corrected P-values smaller than 10220.
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When combined SEC and vDEC values were taken, they
could explain 57.08% variance in the behaviors. A strong
association between connectivities and behaviors (R 5 0.75,
P 5 9.3 3 10233) was found in the latent space (see Fig. 10
for linear fit). The latent space contains categorical varia-
bles that represent all connectivities and behaviors
included in the model in an abstract form, so that their
correlation in the latent space could be considered as the
net association of all the connectivities with all the behav-
iors. Our finding reiterates the fact that the 12 connectivity
paths identified in this work are, taken together, behavior-
ally relevant.

Machine Learning Classification Results

In simple terms, statistical significance implies that the
difference in population mean values of the metric (e.g., con-
nectivity) is large in relative comparison to the population
standard deviations. It implies that it is safe to infer, with
certain confidence, that a difference of significance is exhib-
ited by the two populations. However, success in such

hypothesis testing is neither necessary nor sufficient to
assure that the diagnostic membership of a novel subject
based on a novel measurement can be predicted by the mea-
sure. A mechanism for quantifying the predictive ability of
the features is not provided by hypothesis testing, under-
scoring the importance of acknowledging what a technique
like hypothesis testing could do, and could not do.

Statistically significant neural signatures need not neces-
sarily possess generalizability or predictive ability, implying
that connectivities that are statistically significant, conform-
ing to our hypothesis and at the same time are also top pre-
dictors of the diagnostic label assume higher importance.
Top predictors are those connectivities that, among all con-
nectivities, possess the highest ability in predicting the diag-
nostic membership of a novel subject. We thus employed
recursive cluster elimination based support vector machine
(RCE-SVM) classifier [Deshpande et al., 2010a,b] to identify
the top predictors. As elucidated earlier, it eliminates low-
performing connectivity features recursively, finally identi-
fying those features that contribute towards obtaining high-
est classification accuracy. Machine learning classification
techniques such as RCE-SVM learn the underlying patterns
in the training data set, and apply the learned pattern on an
untouched testing data set, finally classifying the “test” par-
ticipants into one of the groups. The classification accuracy
measures how good the classification was performed using
the features we provided to the classifier.

Classification was performed for two different para-
digms: (i) classification using 32 nonimaging measures
(NIMs), and (ii) classification using connectivities from the
entire brain (complete data, nothing left behind). We
found that classification using connectivities provided sig-
nificantly higher accuracy (about 8% more, P< 0.05 Bon-
ferroni-corrected) than classification using NIMs (see Fig.
11). This finding indicates that SEC and vDEC have better
predictive ability in identifying subjects with PTSD and
PCS compared to NIMs.

Table V summarizes worst-case classification accuracies
along with top-predictive features (see Fig. 12 for average
accuracy). Along with classification accuracies, the top-
predictors that resulted in the highest classification accuracy
are also of considerable interest. For classification using con-
nectivities, SEC and vDEC values of four connectivity paths
were the top-predictive features (L_MFG!L_Insula,
L_Insula!L_Amygdala, L_Amygdala!R_Hippocampus
and R_Ant_Cingulate!R_Inferior_Frontal). The first three
connectivity paths were among the twelve paths to have
emerged significant in this study (paths 1–3 in Table III),
which also had significant associations with symptom sever-
ity and neurocognitive functioning. Prior to these findings,
these connectivity paths were attributed only with statistical
significance between groups and behavioral relevance. Sta-
tistical significance does not necessarily guarantee predic-
tive ability of connectivity features [Pereira et al., 2009].
These results show that, in addition to statistical separation
and behavioral relevance, these connectivity paths also

Figure 10.

Partial least squares regression maps the independent (all signifi-

cant connectivity combined) and dependent (all behaviors com-

bined) variables into a latent space and finds an aggregate

relationship between them through it. The latent space, in which

the regression presented in the figure is performed, contains

categorical variables which holds an aggregate of all significant

connectivities (which fit our hypothesis) and all behaviors, so

that their correlation in the latent space could be considered as

the net association of all the connectivities with all the behav-

iors. Figure shows the linear fit between significant SEC as well

as vDEC connectivity values (the 12 paths presented in Table III)

with behaviors (PCL5, NSI, NCI and subtests) in the latent space

(R 5 0.75, P 5 9.3 3 10233). [Color figure can be viewed at

wileyonlinelibrary.com]
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possess the highest predictive ability, all obtained in a data-
driven way from whole-brain connectivity data. Figure 5
summarizes the processing pipeline of our entire work,
along with the corresponding results.

DISCUSSION

In the current study, we sought to identify the foci of
network disruption from effective connectivity networks in

soldiers with PTSD and PCS. We hypothesized that these
disorders are associated with compromised foci, which are
in turn associated with compromised connections that
have altered SEC and lower vDEC in the clinical groups.
We found evidence in favor of our hypothesis. Our find-
ings revealed three compromised foci (L_MFG, L_Insula
and R_Hippocampus) which were significantly different
between all three groups in accordance with our hypothe-
sis. Our results also revealed a network of affected connec-
tions in accordance with our hypothesis (Fig. 9). The
results showed widespread dysregulation originating from
the MFG. We found that the prefrontal regions, steered by
the MFG, exhibited reduced influence on the insula in the
clinical groups, which was mediated by the OFC and
ACC. This resulted in insular disinhibition of the amyg-
dala and hippocampus, which might contribute to an over-
drive of these sub-cortical regions. This overdrive
subsequently manifested through disinhibited parietal
(TPJ, precuneus) and other subcortical regions (striatum),
which would ultimately result in elevated behaviors often
observed in these disorders. The network was obtained
from resting-state data, hence represents the differences in
baseline state between the groups. Based on prior knowl-
edge underpinning the neural mechanisms of cognitive
emotion regulation [Gross, 2014], we propose that this net-
work (Fig. 9) represents prefrontal dysregulation of emo-
tion, leading to inadequate control over highly arousing
traumatic memories, which gives rise to trauma re-
experiencing, hyperarousal, flashbacks and other symp-
toms commonly observed in soldiers with PTSD and
comorbid PCS 1 PTSD. This is the first fMRI study to have
investigated effective connectivity in either PTSD or mTBI
or the comorbid condition.

The MFG is known to play a key role in cognitive con-
trol [Emmert et al., 2016], which includes top-down regu-
lation of emotions. Although the amygdala is key to
emotion generation, and medial prefrontal regions primar-
ily mediate subconscious emotion regulation such as fear
conditioning [Gross, 2014], lateral prefrontal regions (e.g.,
MFG) are responsible for the initiation of voluntary cogni-
tive regulation of emotion [Gross, 2014]. Several studies
have speculated that the MFG could be the likely source
of network disruption in PTSD [Kennis et al., 2015; White

Figure 11.

Machine learning classification was performed using recursive

cluster elimination based support vector machine (RCE-SVM)

classifier, to classify between PTSD, PCS 1 PTSD and control

groups. Figure shows worst-case classification accuracies

obtained using recursively reducing number of discriminative fea-

tures (poorer features are successively eliminated). Classification

was performed independently with both whole-brain effective

connectivity values and nonimaging measures (NIMs). We

observed that connectivities consistently outperformed NIMs,

with 8% better performance in the final RCE step using top-

predictive connectivity features. [Color figure can be viewed at

wileyonlinelibrary.com]

TABLE V. Machine learning classification was performed using recursive cluster elimination based support vector

machine (RCE-SVM), to classify between PTSD, PCS 1 PTSD and control groups

Worst-case accuracy Top-predictive features

Nonimaging measures 70.79% Epworth sleepiness scale and
Zung depression scale

Connectivity values 78.98% SEC and vDEC of paths 1–3 (see Table III)
and R_Ant_Cingulate -> R_Inf_Frontal

P-value for row-wise comparison 4.48 3 10224

Table presents the obtained worst-case classification accuracies along with the top-predictive features responsible for resulting in this
accuracy.
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et al., 2014], including a recent meta-analysis [Simmons
and Matthews, 2012]; although direct evidence for this
hypothesis had not emerged so far. We provide evidence,
what we believe to be the first of such evidence for their
hypotheses. In support of this interpretation of our find-
ings, a recent meta-analysis discussing evidences from sev-
eral papers concluded that repetitive transcranial magnetic
stimulation (rTMS) applied to the MFG could be used as a
treatment for PTSD [Berlim and Van Den Eynde, 2014].
While that paper does not posit the underlying mecha-
nism, we provide evidence for the network of disturbance
resulting from MFG dysfunction, with MFG as the source
of the network disruption. As such, MFG’s role is the initi-
ation of cognitive control, including emotion regulation,
whose disruption could thus lead to a chain reaction of
impaired cognitive control or emotion dysregulation.

In addition to the aforementioned, we observed prefron-
tal, top-down dysregulation of the insula by the MFG (both
direct and indirect via OFC and ACC). The OFC is consid-
ered important for social emotional processing as well as
emotion regulation execution [Gross, 2014]. The ACC plays
the key role of executive functioning in cognitive control

[Gross, 2014]. Together, the OFC and ACC appear to repre-
sent an executive arm of cognitive control, which when
insufficiently driven by MFG, could directly contribute to
the dysregulation other regions such as insula.

The anterior insula is largely involved in mediating
between the prefrontal cortex and subcortical regions, and
is found to be implicated in emotion dysregulation [Gross,
2014; Thayer and Lane, 2000]. It is substantially connected
to the amygdala through white-matter tracts [Oishi et al.,
2015], and plays a vital role in subjective emotional experi-
ence (feelings) [Rolls et al., 2008]. It is implicated in the
integration of emotionally relevant information from mul-
tiple sources in the brain, representing them as of one of
the several complex emotions [Alba-Ferrara et al., 2011]. In
our findings, prefrontal dysregulation of the insula likely
leads to its elevated engagement with (or the overdrive of)
the amygdala, which in effect causes overdrive of the hip-
pocampus. Specifically, connections from the prefrontal
cortex to the insula exhibited reduced connectivity. Based
on prior knowledge on the relationship between the pre-
frontal cortex, insula and subcortex [Gross, 2014], reduced
connectivity from the prefrontal cortex to the insula corre-
sponds to lower prefrontal top-down modulation, and ele-
vated connectivity among the insula, amygdala and
hippocampus corresponds to pathologically enhanced
engagement or an “overdrive.”

Overdrive of hippocampus, a key region involved in
declarative memories [Squire and Wixted, 2011], could
indicate elevated retrieval of explicit traumatic memories.
The critical role of amygdala and hippocampus in PTSD
and PCS have been well documented [Costanzo et al.,
2014; Simmons and Matthews, 2012]. Traumatic memories
are associated with intense negative emotions; hence, emo-
tion and memory are deeply interconnected in PTSD.

The striatum’s role in generating a habit-like response to
traumatic memories in PTSD has been well-documented
[Cisler et al., 2014]. Increased, but less variable drive from
the hippocampus to the striatum may underlie such a
habit-like response. The precuneus is involved in generat-
ing the experience of visual memories, whereas the TPJ is
involved in higher-level audio-visual information process-
ing and verbalization [Gross, 2014]. Thus, the hippocampal
memory-related network involving precuneus, TPJ and
striatum likely translates the subcortical overdrive into ele-
vated retrieval of traumatic memories, leading to trauma
re-experiencing, hyperarousal, flashbacks and other such
symptoms observed in soldiers with PTSD and PCS.

Taken collectively, we identified the MFG to be the piv-
otal source of network disruption in soldiers with PTSD
and PCS (as all the connections could be traced back to
this source), which further disinhibited emotion and mem-
ory processes, potentially exacerbating symptoms. The
other two identified foci, insula and hippocampus, also
play a critical role in mediating disruption, with the insula
involved in subjective cognitive-emotional processing, and
hippocampus involved in declarative memories. In

Figure 12.

Machine learning classification was performed using recursive

cluster elimination based support vector machine (RCE-SVM)

classifier, to classify between PTSD, PCS 1 PTSD and control

groups. Figure shows average classification accuracies obtained

using recursively reducing number of discriminative features

(poorer features are successively eliminated). Classification was

performed independently with both whole-brain effective con-

nectivity values and nonimaging measures (NIMs). We observed

that connectivities consistently outperformed NIMs, with 9%

better performance in the final RCE step using top-predictive

connectivity features. The trend is highly similar to what was

observed with worst-case accuracies. [Color figure can be

viewed at wileyonlinelibrary.com]
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concert, this network provides a mechanistic explanation
of impaired cognitive control with emotion dysregulation
and subsequent lack of control over traumatic memories,
contributing to several symptoms observed in soldiers
with PTSD and PCS. Figure 13 summarizes the findings
with a flowchart.

Although progress in PTSD research seems to have
arrived at some consensus on the pivotal role of MFG, our
understanding of the relationship between PTSD and PCS is
incomplete. Strong and reliable biomarkers that distinguish
between the two disorders have yet to be developed [Sim-
mons and Matthews, 2012]. However, we do know that
mTBI appears to increase symptom severity in PTSD cases
[Rangaprakash et al., 2017a,b,c; Vasterling et al., 2009]. In
this study, we provide a mechanistic basis for behavioral
observations, and explain network disturbances that
describe and distinguish PTSD from comorbid PCS 1 PTSD.

Earlier studies have repeatedly identified these and other
regions to be involved in both PTSD and PCS [Eierud et al.,
2014; Hayes et al., 2012; Simmons and Matthews, 2012]. Yet,
a precise understanding of the sources of network disrup-
tion, their subsequent causal relationships, and the underly-
ing network structure has not emerged from them.
Employing a novel framework involving foci identification
and static/dynamic EC networks, we identified the regional
foci associated with the disorders and elucidated their
causal relationships. Our characterization fits well with
behavioral manifestations of PTSD and PCS 1 PTSD, thus
illustrating the utility and fidelity of our approach.

Additionally, connectivities of three of the paths exhibited
significant associations with symptom severity and

neurocognitive performance (MFG!insula, insula-
amygdala, amygdala!hippocampus), thus highlighting the
clinical relevance of these connectivity paths. The ensemble
of connectivities could also explain about 57% variance in
the ensemble of behaviors in the PLS regression model.

Our analysis framework to identify these disrupted foci
and associated connections was based on statistical signifi-
cance. Statistical significance, however, does not necessarily
assure predictive ability of the identified connectivities
[Pereira et al., 2009], because of which supervised machine
learning classification was employed to classify between the
three groups. Literature on machine learning applied to the
classification of either PTSD or mTBI is highly limited (for
notable recent works, see [Liu et al., 2015; Vergara et al.,
2017]). In addition, there have been no studies that have
employed machine learning to classify comorbid PTSD and
mTBI. As one of our notable contributions, we performed
machine learning classification, to find that the accuracies
obtained using connectivity features were significantly
higher (�8% more) than nonimaging measures.
Interestingly, we found that SEC and vDEC of these three
paths (MFG!insula, insula!amygdala, amygda-
la!hippocampus), along with one other path not part of the
network, resulted in the highest classification accuracy. In
addition to being found statistically significant in accor-
dance with our hypothesis, SEC and vDEC of these three
paths were also identified as the top predictive features of
diagnostic ability, over and above being behaviorally rele-
vant through associations with symptom and neurocogni-
tive scores. All these attributes were determined through a
data-driven approach from whole-brain connectivity data,
without the imposition of any priors or biases. With statisti-
cal significance, behavioral relevance and high predictive
ability, these three connectivity paths could potentially be
high-quality markers of neural and behavioral characteris-
tics of PTSD and PCS. Importantly, these paths have poten-
tial as imaging biomarkers for these combat-related
disorders, since they satisfy three of the four conditions
described by Woo et al. [2015] necessary to be a good bio-
marker (diagnosticity, interpretability and deployability).
Concerning the fourth condition (generalizability), based on
suggestions in Woo et al., we issue an open call for research-
ers for sharing similar data for continued application of the
classifier.

It is notable that ours is the first study to investigate
either effective connectivity or dynamic connectivity in
either PTSD or mTBI or the comorbid condition, and one
among handful of studies to have utilized machine learn-
ing in either of these disorders. One of the novel contribu-
tions of this work lies in the use of dynamic connectivity
as a marker or variability of connectivity, with lower vari-
ance of DEC in the clinical groups being the characteristic
of all the connectivity paths identified in the network. In
addition, given that our findings were obtained through
an overlap/intersection of results for the PTSD and the
PCS 1 PTSD groups, the observations and conclusions are

Figure 13.

Flowchart illustrating the aberrant effective connectivity network

and the disrupted foci identified in this work. Paths with thin

gray lines correspond to lower strength of connectivity (SEC)

and lower variation in connectivity (vDEC) in the clinical groups

compared to healthy controls, indicative of a breakdown in top-

down modulation. Paths with thick brown lines correspond to

higher SEC and lower vDEC, indicative of overdrive in subcorti-

cal limbic and parietal memory-related regions. Foci are in red,

nonfoci are in blue. [Color figure can be viewed at wileyonlineli-

brary.com]
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equally relevant to the study of PTSD alone. We posit that
the novel framework used in this work is applicable to the
study of any psychiatric illness or cognitive domain. We
urge researchers to take advantage of this approach in
identifying sources of disruption/alteration in various
psychiatric illnesses and cognitive domains.

Finally, we present a number of caveats and limitations
of this work, which demand careful interpretation of our
findings, simultaneously suggesting directions for future
studies: (1) The participants who sustained the added bur-
den of PCS along with PTSD were found to have higher
symptom severity than participants with PTSD alone,
along with more extreme SEC and vDEC values. Though
the literature on imaging studies of both PTSD and PCS
are limited, we speculate that: (i) the added burden of a
prior mTBI aggravates PTSD-related brain aberrations
which were likely already prevalent before developing
PCS in these participants, or, (ii) participants who sus-
tained an mTBI and subsequently or concomitantly were
exposed to a traumatic experience would end up with alle-
viated functional neural aberrations which correspond to
elevated symptom severity, compared to participants who
were exposed to psychological trauma alone. Future exper-
imental designs could aim toward untangling the underly-
ing cause-effect relationships in comorbid PTSD and PCS,
in an effort to confirm either of the two scenarios. (2) Our
study included military participants with combat expo-
sure, which is a valuable contribution, given that it pro-
vides a more representative control group. A recent study
found resting-state fMRI connectivity differences between
healthy civilian and combat controls [Kennis et al., 2015],
“potentially due to military training, deployment, and/or
trauma exposure.” Therefore, further work could verify
whether our results are equally applicable to noncombat-
related (or civilian) PCS and PTSD. (3) We did not collect
specific details about frequency and temporal information
of the mTBIs sustained during the specified period and
lifetime. Hence, from the findings we can only infer that
there are functional differences in soldiers being treated
for postconcussive symptoms from one or more mTBI(s)
compared to those with only PTSD and healthy controls.
(4) One limitation is the reported differences in prescrip-
tion medication between the groups, with the co-morbid
group having the highest percentage of medicated partici-
pants. Due to the variety of medications being used by our
subjects, and the range of associated pharmacodynamic
and pharmacokinetic responses, it is not feasible to control
for medication effects. Future studies should focus on
medication-na€ıve participants to get a better understand-
ing of the impact of PTSD and mTBI. (5) While performing
RCE-SVM classification, we split our entire dataset into
testing/validation (20%) and training (80%) datasets, giv-
ing us about seventeen participants (20% of 87) in the test-
ing set; which is a comparatively small number for an
fMRI connectivity study. (6) We studied only male veter-
ans; hence, our findings cannot be generalized to female

soldiers. (7) To make clinical use of the diagnostic utility
of the connectivities in the future, the findings need to be
replicated on a sample of much larger size, which is more
representative of the target population in terms of gender,
ethnicity, etc. (8) The data was acquired from the partici-
pants only on one instance. Longitudinal studies could
develop hypotheses on the alterations of the connectivity
network over the advancement, recovery and rehabilita-
tion phases of the clinical groups. This would also be an
appropriate test for validating the three pivotal connectiv-
ity paths (L_MFG ! L_Insula, L_Insula ! L_Amygdala,
L_Amyg ! R_Hippocampus) as candidate imaging bio-
markers for PTSD and PCS 1 PTSD.
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