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Abstract. We present a generative Bayesian framework that automati-
cally extracts the hubs of altered functional connectivity between a neu-
rotypical and a patient group, while simultaneously incorporating an ob-
served clinical severity measure for each patient. The key to our frame-
work is the latent or hidden organization in the brain that we cannot
directly access. Instead, we observe noisy measurements of the latent
structure through functional connectivity data. We derive a variational
EM algorithm to infer both the latent network topology and the un-
known model parameters. We demonstrate the robustness and clinical
relevance of our model on a population study of autism acquired at the
Kennedy Krieger Institute in Baltimore, MD. Our model results impli-
cate a more diverse pattern of functional differences than two baseline
techniques, which do not incorporate patient heterogeneity.

1 Introduction

Functional connectomics explores the intrinsic organization of the brain via the
underlying assumption that two regions, which reliably co-activate are more
likely to participate in the same neural processes than two uncorrelated or anti-
correlated regions [1]. It has become ubiquitous in the study of neurological
disorders, such as schizophrenia and autism. From a practical standpoint, these
functional relationships are typically evaluated in resting-state fMRI (rsfMRI),
which does not require patients to complete challenging experimental paradigms.
Neuroscientifically, group-level changes in the functional architecture of the brain
are treated as biomarkers of a particular neurological condition.

State-of-the-art methods follow a two-step procedure of first fitting a connection-
or graph-based model and then identifying group differences. Unfortunately,
connection-based effects [2] are difficult to interpret and nearly impossible to
verify through direct stimulation. While large-scale graph properties, such as
modularity [3] and small-worldness [4], mitigate these limitations, are markedly
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removed from the original network and rarely illuminate a concrete etiological
mechanism. Additionally, most studies implicitly treat the patient group as ho-
mogeneous, for example, by conducting a statistical evaluation that differentiates
patients from controls. This simplification has likely contributed to the lack of
reproducible rsfMRI findings in the clinical literature [5].

This paper tackles a fundamental yet overlooked question in the study of
functional connectomics: how do we identify the altered functional pathways
given a heterogeneous patient cohort? Going one step beyond conventional graph
analytics, we will characterize the full network topology, i.e., the entire collection
of nodes (brain regions) and edges (functional connections) associated with the
affected subnetwork. Our framework is based on two guiding principles: (1) com-
plex neurological disorders reflect a distributed but interrelated network of func-
tional impairments, (2) the influence of this affected subnetwork is moderated
by the observed clinical severity. Hence, rather than dismissing or regressing out
the clinical scores, these measures will crucially guide our network estimation
procedures. We draw from the Bayesian model of [6]; however, our novel data
likelihood reflects the patient-specific contributions of two functional templates.

We evaluate our model on a population study of Autism Spectrum Disor-
der (ASD). ASD is characterized by impaired social-communicative skill and
awareness across multiple sensory domains, coupled with restricted/repetitive
behaviors. Despite ongoing efforts, the complex and heterogeneous presentation
of ASD has impeded the discovery of robust neuroimaging biomarkers for the dis-
order. Functional connectomics has largely implicated the default mode [7] and
large-scale network measures [2]. However, these approaches blur information
across regions and connections, so it is unclear what neural processes are being
impacted. In contrast, our mathematical framework will automatically infer the
altered functional pathways, as informed by autism severity.

2 Generative Model of Abnormal Communities

We hypothesize that a given neurological disorder reflects coordinated disrup-
tions in the brain. Although we cannot specify a priori where these disruptions
will occur, we assume that the affected regions will communicate differently with
other parts of the brain than if the disorder were not present. In the functional
connectomics realm, our assumption can be modeled by region hubs, which ex-
hibit a large number of altered functional connections, as compared to the neu-
rotypical cohort. Below, we refer to these region hubs as disease foci ; the altered
connectivity pattern is termed the canonical network.

Following the methodology of [6], we define latent functional connectivity
templates Fij and F̄ij , which capture the neural synchrony between region i and
region j in the neurotypical (i.e., control) and clinical populations, respectively.
Empirically, we find that three states: low (Fij = 0), medium (Fij = 1), and
high (Fij = 2), best capture the dynamic range and variability of our data. The
rsfMRI correlation Blij for control subject l is a noisy observation of the latent

template Fij . However, the rsfMRI correlations {B̄mij } for patient m are drawn
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Fig. 1. Hierarchical network model. Left: Conceputal diagram of behavioral influ-
ence. Red regions correspond to the disease foci, and red edges specify the canonical
functional network. Green edges are normal (i.e., healthy) connections. The canonical
network contribution for each patient m is specified by the clinical severity, βm ∈ [0, 1].
Here, β1 > βM , as indicated by the darker edges. Right: Graphical model represen-
tation. The label Ri indicates whether region i is healthy or abnormal. The neurotyp-
ical template {Fij} provides a baseline functional architecture for the brain, whereas
the clinical template {F̄ij} describes the canonical network organization. The patient
rsfMRI correlations {B̄m

ij } are generated according to the clinical scores {βm}.

from either latent template in proportion to the observed clinical severity βm ∈
[0, 1]. Fig. 1 outlines the full generative process.

Our discrete representation of latent functional connectivity is a notable de-
parture from conventional analysis. Essentially, we assume that the rsfMRI cor-
relations fall into one of three general categories, and that differences in the bin
assignments are the relevant markers of a disorder. The beauty of our frame-
work is that we isolate the disorder-induced effects in the latent structure, while
accommodating noise and subject variability via the data likelihood.

Disease Foci: The binary variable Ri indicates whether region i is healthy
(Ri = 0), or whether it is a disease foci (Ri = 1). We assume an i.i.d. Bernoulli
prior: P (Ri = 1;πr) = πr. The unknown parameter πr is shared across regions.

Latent Network Topology: The latent functional connectivity Fij denotes the
co-activation between regions i and j in the neurotypical template. Once again,
Fij is modeled as a tri-state random variable with an i.i.d. multinomial prior
across all pairwise connections: P (Fij = s;πf ) = πfs , ∀s = 0, 1, 2.

The clinical template F̄ij depends on both the neurotypical template Fij
and the region labels R. We define this variable via three simple rules: (1) a
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connection between two disease foci is abnormal, (2) a connection between two
healthy regions is normal, and (3) a connection between a healthy region and
a disease foci is abnormal with unknown probability η. Ideally, F̄ij = Fij for
healthy connections, and F̄ij 6= Fij for abnormal connections. However, to better
accommodate noise, we allow the clinical template to deviate from these rules
with probability ε. Mathematically, the conditional distribution is given by

P (Fij |Fij , Ri, Rj , η, ε) =
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where ε1 = ηε+ (1−η)(1− ε) reflects the interaction between the edge density η
and the latent noise ε when the region labels differ. For convenience, we have
represented the neurotypical connectivity Fij as a length-three binary indicator
vector [Fij0 Fij1 Fij2]T, and likewise for the clinical template.

Data Likelihood: The rsfMRI correlation Blij for subject l is generated from
a Gaussian distribution, with mean and variance controlled by the neurotypical
functional template Fij , i.e., P (Blij |Fij = s; {µ, σ2}) = N

(
Blij ;µs, σ

2
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)
.

In contrast, the patient likelihood weighs the relative contributions of the clin-
ical and neurotypical templates according to the observed severity score βm ∈
[0, 1]. Effectively, the patient rsfMRI correlation B̄mij is sampled from a condi-
tional Gaussian mixture with a priori probabilities βm and 1− βm.

Using the binary indicator representation for Fij and F̄ij , we have
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Intuitively, patients with larger βm will more closely follow the clinical template
than patients with smaller βm. The patient-specific analysis in Eq. (2) distin-
guishes our model from conventional methods and from the prior work of [6].

Variational Inference: We introduce a set of auxiliary random variables {Zmij },
which indicate whether the corresponding rsfMRI measure B̄mij is drawn from
the clinical (Zmij = 1) or neurotypical (Zmij = 0) Gaussian mixture. This strategy
allows us to eliminate the sum in Eq. (2) by replacing the conditional density
of B̄mij with the following joint distribution over Zmij and B̄mij :

P (Zmij , B̄
m
ij |Fij , F̄ij ;βm, {µ, σ2}) = P (Zmij ;βm)P (B̄mij |Fij , F̄ij , Zmij ; {µ, σ2})

=

[
βm

2∏
s=0

N
(
B̄mij ;µs, σ

2
s

)F̄ijs

]Zm
ij
[

(1− βm)

2∏
s=0

N
(
B̄mij ;µs, σ

2
s

)Fijs

]1−Zm
ij

(3)



Extracting Network Differences in fMRI 5

We combine the above terms to obtain the joint density of latent and ob-
served random variables. Let Θ = {πr, πf , η, ε, µ, σ2} denote the collection of
unknown but non-random parameters, and recall that the clinical scores βm are
given. The region labels {Ri} induce a complex dependency across pairwise con-
nections 〈i, j〉. Therefore, we leverage a Variational EM framework to derive the
Maximum Likelihood (ML) solution to our model [8].

Our approximate posterior distribution assumes the following factorized form:

Q(R,F, F̄ , Z) =

N∏
i=1

qri (Ri; α̃i)
∏
〈i,j,〉

qcij(Fij , F̄ij ; ν̃ij)

M∏
m=1

∏
〈i,j,〉

qzij(Z
m
ij ; γ̃mij ), (4)

where qri (·) and qzij(·) are Bernoulli distributions parameterized by α̃i and γ̃mij ,
respectively. Conversely, qcij(·) is a multinomial distribution with 9 states pa-

rameterized by ν̃ij ; these states account for the 9 configurations of Fij and F̄ij .
Eq. (4) preserves the connection-wise dependencies and is tractable for large N .

We employ a coordinate descent algorithm to jointly optimize all unknown
quantities. During the E-step, we fix Θ and iteratively update the elements of
Q(·) to minimize the variational free energy. The updates for ν̃ij and γ̃mij can be
expressed in closed form given the other variational parameters. However, the
updates for {α̃i} are coupled. Therefore, we perform an inner fixed-point iter-
ation until the region posterior converges. In the M-step, we fix Q(R,F, F̄ , Z)
and optimize the model parameters Θ. The prior and likelihood updates for
{πr, πf , µ, σ2} parallel those of a Gaussian mixture model. We then jointly op-
timize the edge density η and the latent noise ε via Newton’s method.

Model Evaluation: The marginal posterior qri (Ri; α̃i) informs us about the
disease foci. We evaluate the robustness of these region assignments via boot-
strapping. Specifically, we fit the model to random subsets of the data while pre-
serving the ratio of patients to neurotypical controls. We run two experiments,
corresponding to subsets with 90% and 50% of the overall cohort, respectively.
Our results are averaged across 100 data re-samplings.

Our canonical network corresponds to the idealized graph of functional differ-
ences: Fij 6= F̄ij . Despite the confounding latent noise, governed by the parame-
ter ε, we can approximate the canonical network based on the max a posteriori
(MAP) solution for {R,F, F̄} and the parameter estimates Θ̂.

Finally, we perform a qualitative comparison of our proposed model with the
Bayesian formulation in [6], which assume a homogeneous patient group, and
with univariate t-tests on the pairwise rsfMRI correlation coefficients.

Synthetic Experiments: We have run simulations on synthetic data sampled
from our model to demonstrate that our variational algorithm can recover the
ground truth region labels. Fig. 2 illustrates the error in region assignments with
respect to two quantities: the latent noise ε and the Gaussian separation ∆µ/σ
between adjacent connectivity states assuming equal variances.

In the first experiment (left), we sample disease foci based on the region
prior πr estimated from our autism dataset (see Table 1) and sweep both noise
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Fig. 2. Probability of error in the inferred region labels, as averaged across 50 gen-
erations of synthetic data. The red X and red line correspond to the noise regime
estimated from our real-world dataset. Left: Disease foci were sampled according to
πr in Table 1. Right: Uniformly distributed changes in latent functional connectivity.
Gray interval corresponds to the upper and lower standard deviation.

quantities. In the second experiment (right), we assume that the latent functional
differences are uniformly distributed across the brain (i.e., πr = 0) and compute
the false positive assignments of regions as disease foci. Here, we have fixed the
Gaussian separation according to our rsfMRI dataset and focus on the latent
noise ε. The number of regions, cohort sizes and edge density η are fixed according
to the values from our autism dataset. As seen, our algorithm performance is
near-perfect for small values of ε and larger Gaussian separations. Encouragingly,
the region assignment error is small in the noise regime of our real-world dataset,
as marked with a red X (left) and a red line (right) in Fig. 2.

3 Population Study of Autism

We demonstrate our method on a cohort of 66 children with high-functioning
ASD and 66 neurotypical controls, who were matched on the basis of age, gen-
der and IQ. RsfMRI scans were acquired on a Phillips 3T Achieva scanner us-
ing a single-shot, partially parallel gradient-recalled EPI sequence (TR/TE =
2500/30 ms, flip angle = 70◦, res = 3.05×3.15×3mm, 128 or 156 time samples).
Children were instructed to relax and focus on a cross-hair while remaining still.

RsfMRI preprocessing includes slice time correction, rigid body realignment,
and normalization to the EPI version of the MNI template using SPM [9]. The
time series were temporally detrended, and we use CompCorr to estimate and
remove spatially coherent noise from the white matter and ventricles, along
with linearly detrended versions of the six rigid body realignment parameters
and their first derivatives [10]. The cleaned data was spatially smoothed (6mm
FWHM Gaussian kernel), temporally filtered using a 0.01 − 0.1 Hz pass band,
and spike-corrected via tools from the AFNI package [11].

We define 116 cortical, subcortical and cerebellar regions based on the Auto-
matic Anatomical Labeling (AAL) atlas [12]. The rsfMRI measure Blij is com-
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Fig. 3. Results of our heterogeneous patient model. Left: Disease foci projected onto
the inflated cortical surface. Right: Canonical network of abnormal functional connec-
tivity. Yellow nodes correspond to the disease foci. Blue lines signify reduced functional
connectivity in ASD; magenta lines denote increased functional connectivity in ASD.

puted as the Pearson correlation coefficient between the mean time courses of
regions i and j. We focus on deviations from baseline by centering the correla-
tion histogram for each subject and fixing µ1 = 0. Our severity measures βm
correspond to the Autism Diagnostic Observation Schedule (ADOS) total raw
score, normalized by the maximum possible test score.

Canonical Network Results: Fig. 3 illustrates the canonical network inferred
by our model. The yellow nodes correspond to the disease foci, and we display
connections that are consistently implicated across bootstrapping trials. Ma-
genta and blue lines denote increased and reduced latent connectivity in ASD,
relative to the neurotypical population. As seen, we identify four disease foci: the
right precentral gyrus (R.PreCG), the right posterior cingulate gyrus (R.PCG),
the right angular gyrus (R.ANG) and vermis 8 of the cerebellum (Verm8).

Our results are closely aligned with growing evidence, which suggests that
brain abnormalities associated with ASD occur at the level of interconnected sys-
tems/modules [13, 14]. RsfMRI studies in neurotypical subjects have identified
several intrinsically connected modules related to visual, motor, auditory, behav-
ioral control, and interoceptive processes [15]. The nodes in Fig. 3 belong to two
of these modules: the right precentral gyrus (R.PreCG) and the cerebellar vermis
(Verm8) represent critical foci of the sensorimotor network that is specialized
in the production of action, while the right posterior cingulate gyrus (R.PCG)

Table 1. Estimated model parameters for the proposed patient-specific model (top)
and the homogeneous model of [6] (bottom).

πr πf
0 πf

1 πf
2

η ε µ0 µ1 µ2 σ2
0 σ2

1 σ2
2

Prop. 0.035 0.28 0.49 0.22 0.16 0.11 -0.18 0.00 0.23 0.037 0.031 0.030
Homogen. 0.0087 0.29 0.48 0.22 0.16 0.052 -0.18 0.00 0.22 0.037 0.032 0.031
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Fig. 4. Average marginal posterior probability qri (·) for each community across 100
random samplings of the rsfMRI dataset. Top row includes 90% of the subjects in each
subset, and the bottom row includes 50%. Reproducibility of cerebellar regions are
listed underneath. The colorbar denotes the average posterior probability q̄ri .

and the right angular gyrus (R.ANG) are both key nodes of the default mode
network (DMN), which is more engaged during self-referential processing and
social cognition [16]. Extant ASD research has largely focused on understanding
social-communicative deficits in ASD and the potential involvement of the DMN.
However, an emerging consensus suggests that movement abnormalities are also
specific for ASD [17] and potentially rooted in the intrinsic functional organiza-
tion of the brain [18]. For example, action execution, imitation, and emulation
can be linked to shared functional dynamics between the sensorimotor and DMN
systems [19]. As such, communication disruptions between these systems may
negatively impact the development of internal action models, which are crucial
to both sensorimotor and social skill development in children with ASD [20].
Considered together, our findings support the theory that motor behavior and
self-referential processing deficits experienced by individuals with ASD can be
jointly attributed to faulty connections within the brain.

Fig 4 reports the average posterior probability q̄ri (·) of each region across
100 bootstrapped trials. We display only the regions for which q̄ri > 0.3 to em-
phasize the most prominent patterns. As seen, our model consistently recovers
the canonical network foci in Fig 3 when trained on 90% of the data. Remark-
ably, we are still able to detect the original network foci using half the dataset,
which further validates the reproducibility of our Bayesian model. Finally, our
bootstrapping experiments also implicate cerebellar regions adjacent to Vermis
8, which ties into broader theories of altered cerebellar functioning in ASD [21].

Fig. 5 compares our canonical network (left) with the model of [6] (mid-
dle), which assumes a homogeneous patient group, and with standard univariate
tests (right). Notice that while the estimated model parameters in Table 1 are
nearly identical, the proposed and homogeneous Bayesian models implicate dif-
ferent functional networks. Specifically, the homogeneous model identifies a sin-
gle disease foci (R.ANG). However, incorporating the severity scores βm seems
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Proposed Method Homogeneous Connection T-Test

Fig. 5. Qualitative comparison of our proposed model of patient heterogeneity (left),
the original Bayesian model described in [6] (middle), and the top connections (p <
0.001 uncorrected) via two-sample t-tests on the pairwise correlation values (right).

to provide an additional level of flexibility, which allows us to find robust ef-
fects in other brain regions. The connections implicated by two-sample t-tests
form a markedly different pattern than the network model results; they tend to
concentrate in the frontal cortex and anterior cingulate gyrus. This observation
suggests that our disease foci provide a unique perspective of the data.

4 Conclusion

We have introduced a novel probabilistic framework that identifies group differ-
ences in functional connectivity while accommodating a heterogeneous clinical
presentation. Specifically, we assume a latent graph organization that captures
population-level effects. The influence of this latent structure on the data is
moderated by the observed clinical severity scores for each patient. Synthetic
experiments confirm that our variational algorithm can accurately infer ground-
truth region labels under noise levels commiserate to real-world data. We further
evaluate our model on a population study of high-functioning ASD. Our results
implicated a distributed network of abnormal connectivity that concentrates in
the precentral gyrus, posterior cingulate, angular gyrus and cerebellar vermis.
We use bootstrapping to verify the robustness of our region assignments, and we
demonstrate that our model identifies a richer set of functional differences than
two baseline approaches, which do not account for patient heterogeneity.
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