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Bayesian Community Detection in the Space
of Group-Level Functional Differences

Archana Venkataraman*, Daniel Y.-J. Yang, Kevin A. Pelphrey, and James S. Duncan

Abstract—We propose a unified Bayesian framework to detect
both hyper- and hypo-active communities within whole-brain
fMRI data. Specifically, our model identifies dense subgraphs
that exhibit population-level differences in functional synchrony
between a control and clinical group. We derive a variational
EM algorithm to solve for the latent posterior distributions and
parameter estimates, which subsequently inform us about the
afflicted network topology. We demonstrate that our method
provides valuable insights into the neural mechanisms under-
lying social dysfunction in autism, as verified by the Neurosynth
meta-analytic database. In contrast, both univariate testing and
community detection via recursive edge elimination fail to identify
stable functional communities associated with the disorder.

Index Terms—Bayesian modeling, community detection, func-
tional magnetic resonance imaging, population analysis.

I. INTRODUCTION

NIVARIATE analyses of fMRI activation patterns [1],

[2] have allowed us to localize functional differences in-
duced by neurological disorders, such as autism [3]-[5]. De-
spite the insights gained from univariate methods, there is in-
creasing evidence that complex pathologies reflect distributed
impairments across multiple brain systems [6]-[8]. These find-
ings underscore the importance of network-based approaches
for functional neuroimaging data.

The seminal works of [9]-[11] propose a series of large-scale
network measures, which have precipitated the discovery of
small-world functional architectures in the brain [12]. Disrup-
tions of the small-world organization are believed to play a role
in neurological disorders [13], [14]. However, these aggregate
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properties (e.g., small-worldness, centrality and degree distri-
bution) do not illuminate concrete etiological mechanisms. Re-
cently, more sophisticated models, based on directed Bayesian
networks, have been proposed for fMRI data [15], [16]. Unfor-
tunately, due to the large number of parameters, causal interac-
tions are typically estimated on a restricted set of nodes. More-
over, these methods have difficulty estimating the directionality
of connection information due to noise and subject differences.
In contrast, we present a hierarchical framework that captures
the underlying topology of the altered functional pathways. We
extract both hyper- and hypo-active communities while simul-
taneously accommodating population variability.

Community detection is the process of identifying highly
interconnected subgraphs within a larger network; these nodes
(i.e., community members) share common properties and are
crucial to understanding the organization of complex systems
[17], [18]. Traditional community detection algorithms include
hierarchical cluster analysis [19], which constructs an agglom-
erative dendrogram based on pairwise similarity measures, and
spectral clustering [20], [21], which leverages higher-order
network information in the Laplacian eigenvectors. Despite
their prevalence, both methods fail to detect stable commu-
nities in noisy graphs, or when the clusters are significantly
mixed [17], [22]. Recently, there has been a shift towards
divisive algorithms, which identify and remove inter-cluster
edges. The seminal work of [23] recursively eliminates network
edges based on three centrality measures, and most impor-
tantly, recalculates the edge scores after each iteration. Similar
approaches have been developed using modularity [24]-[26],
clustering coefficient [27], and information compression [28]
as selection criteria. While promising, the above methods are
heuristic and do not assume a principled model of community
structure [18].

Modularity-based approaches have recently been applied to
fMRI data [29]-[31]. Broadly, the works of [29], [30] estimate a
hierarchical community organization independently within each
subject and use a post-hoc cluster matching procedure to per-
form group-level statistical analysis. Unfortunately, the results
depend heavily on preselected thresholds and subroutines (i.e.,
adjacency matrix construction, subgraph alignment). Moreover,
since these approaches do not impose topological constraints on
the group differences, the clinical findings are difficult to inter-
pret. The alternative method reported in [31] identifies statistical
differences in betweenness centrality and average path length,
neither of which informs us about the network structure and or-
ganization. In contrast, our model automatically identifies the
abnormal networks with minimal user input.
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TABLE 1
RANDOM VARIABLES (TOP) AND NON-RANDOM PARAMETERS (BOTTOM) IN OUR GRAPHICAL MODEL SHOWN IN FIG. 1.

R; Multinomial variable that indicates the state (healthy or belonging to community k) for each brain region ¢
F;;  Latent functional connectivity between regions ¢ and j in the neurotypical population

F;;  Latent functional connectivity between regions ¢ and j in the clinical population

Bl Observed fMRI correlation between regions ¢ and j in subject [ of the neurotypical population

Observed fMRI correlation between regions ¢ and j in subject m of the clinical population

Prior for multinomial region indicator R; (K+1 states)

wf Prior for multinomial functional connectivity F;; (3 states)

n Concentration of abnormal edges within the latent communities

€ Probability of deviating from the idealized graph of aberrant functional connectivity
ps  Mean fMRI correlation given that F; = s (s =0,1,2)

oZ  Variance of fMRI correlation given that F;; = s (s =0,1,2)

Our approach goes beyond the prior literature in three
crucial ways. First, we propose a unified generative model
that describes the relationship between population templates
and individual subject observations. Second, we perform
community detection in the space of group-level functional
differences, which allows us to identify both heightened and
reduced synchrony. Finally, our framework can simultaneously
detect multiple abnormal communities of varying type. We
have previously used generative models to infer disease foci
from resting-state fMRI data [32]-[34]. Our current framework
identifies interconnected cliques within task fMRI data (dif-
ferent from an outward spreading model), and it distinguishes
between hyper- and hypo-active subgraphs!. These two prop-
erties describe a fundamentally different network topology,
which has not been captured by prior Bayesian models. While
an early version of this work was presented in conference form
[35], the present effort provides detailed derivations of the
model and estimation procedure, along with more extensive
experimental evaluation of the method.

We demonstrate our approach on an fMRI study of social per-
ception in autism. Autism Spectrum Disorder (ASD) is charac-
terized by impaired social-emotional reciprocity, communica-
tion deficits, and stereotyped behavior [36]. Furthermore, many
individuals with ASD exhibit enhanced perception of detail,
which is related to a sharper focus of spatial attention, or “tunnel
vision” [37]. Despite ongoing efforts, the etiological complexity
and acute heterogeneity of ASD has greatly limited our un-
derstanding of its pathogenesis. One prevailing theory posits
that ASD alters the developmental trajectory of inter-regional
connections [7], [38], [39]. Accordingly, task fMRI studies re-
veal both hyper- and hypo-connectivity between the prefrontal
cortex, superior temporal sulcus and limbic structures [7], [4].
However, such analyses are restricted to predefined neural sys-
tems and do not reflect whole-brain information. Likewise, net-
work approaches have detected group differences in node-based
measures [40], [41] but have not illuminated a specific neural
pathways for ASD. Our method provides valuable insights into
ASD by extracting stable communities that reflect either height-
ened or reduced brain synchrony. These subnetworks map onto
key functional domains, in which autistic individuals exhibit

ITn this work, the terms “hyper-active” and “hypo-active” refer to networks
of differential functional synchrony, as opposed to the strength of response to
an experimental stimulus. None of the methods presented in this paper rely on
univariate activation strength, as defined via GLM [1].

strengths and vulnerabilities, respectively. We demonstrate ro-
bustness or our results via bootstrapping and meta-analysis.
The remainder of this paper is organized as follows.
We introduce our generative model in Section II and de-
velop the corresponding inference algorithm in Section III.
Section IV presents the methods used to empirically validate
our framework. Sections V and VI report our experimental
results based on synthetic and clinical data, respectively.
Section VII discusses the behavior of our model, its advantages
and drawbacks, and future directions of research. Finally, we
conclude with a summary of contributions in Section VIII.

II. GENERATIVE MODEL OF ABNORMAL COMMUNITIES

Our graph representation assumes that each node is a region
in the brain, and each edge describes the pairwise functional
synchrony between nodes. The brain is partitioned into N re-
gions based on a common atlas, which ensures that the region
boundaries are consistently defined across subjects. Pairwise
observations {i, j) are generated by correlating the fMRI signals
in region i and region j. We assume that group-level functional
differences can be represented by K interconnected subgraphs.
In order to model both enhanced and impaired processes, we
further stipulate that each subgraph reflects either a uniform in-
crease or decrease relative to the neurotypical functional syn-
chrony between regions. For simplicity, we assumes that the K
networks are disjoint; this constraint helps us to infer multiple
network influences.

Fig. 1 outlines our hierarchical Bayesian framework. The
white boxes correspond to latent variables, which specify
a template organization in the brain that we cannot directly
access. Rather, we observe noisy measurements of the hidden
structure via subject-wise fMRI correlations (shaded boxes),
which are generated stochastically from the population-level
latent structure. As seen, the K communities are grouped
into subsets of regions based on the indicator variables {R;}.
Each network is associated with a binary label Y}, that denotes
either a hyper-active (Y, = 1) or a hypo-active (Y3 = 0)
subgraph. In this work Y} is specified a priori by the user for
greater control over the results. This level of input is akin to
setting the number of clusters or dictionary components in an
unsupervised learning scenario, and it enables us to explore the
network evolution in the absence of ground truth. If desired,
it is straightforward to model Y; as an unknown Bernoulli
random variable, as described in the Supplementary Materials.
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Fig. 1. Hierarchical model of community structure for X = 2. The label R; indicates whether region  is healthy (white) or whether it belongs to one of the two
abnormal communities (red). The binary variable Y denotes either a hyper-active (purple) or hypo-active (yellow) subgraph k. The neurotypical template { F;; }
provides a baseline functional architecture for the brain, whereas the clinical template {3, } describes the latent organization of ASD. The green connections
(i, 7) are unchanged from baseline; the purple and yellow lines signify heightened and reduced synchrony, respectively. Each template generates a set of subject

observations { B!} and {B*} for the group.

We use multinomial variables F;; and Fij to denote the la-
tent functional synchrony between regions ¢ and j in the neu-
rotypical and clincal groups, respectively. Empirically, we find
that three states: low (F;; = 0), medium (F;; = 1), and high
(F;; = 2), adequately capture the dynamic range and vari-
ability of our fMRI dataset. The conditional relationships are
defined such that Fj; > F;; within a hyper-active community,
and F;; < F;; within a hypo-active community.

The fMRI metrics Btl-]- for subject ! and BZ’]’-‘ for subject
m are noisy observations of the underlying latent structure.
Table I summarizes the random variables and nonrandom
parameters in our generative model. Although the variable
definitions are similar to [33], our current framework specifies
a multi-cluster community organization. Below we formalize
the mathematical representations.

Node Selection: Let N represent the total number of re-
gions in the brain. The multinomial random variable R; (i =
1,..., N) indicates whether region i is healthy (R; = 0), or
whether it belongs to an abnormal community k (R; = k). We
assume an i.i.d. multinomial prior for R; as follows:
k=0,...,K. (D)
The (K + 1) unknown parameters 7}, specify the a priori prob-
abilities of a node assignment such that ), 7w}, = 1. Our model
assumes that these values are shared by all regions.

Neurotypical Connectivity: The latent functional syn-
chrony F;; denotes the co-activation between regions i and
J in the neurotypical template. As previously described, Fj;
is modeled as a tri-state random variable. For notational con-
venience, we represent F; as a length-three indicator vector,
such that exactly one of its elements [F;;0 Fjj1  Fij2)" is

equal to one. The multinomial prior is i.i.d. across all pairwise
connections, i.e.,

2

P(Fi;nl) = H (Wf)F“S . ()

s=0

Abnormal Network Topology: The clinical variable Fij in
Fig. 1 is also tri-state; its value depends on the control tem-
plate F;; and the abnormal communities defined by the region
labels R and subgraph types Y. To derive the conditional dis-
tribution P(F;|F;;, R,Y), we first define an auxiliary graph
{T;;}, which describes the idealized functional differences be-
tween member nodes of a community. Mathematically, 7}; is a
binary random variable that indicates either a healthy (T;; = 0)
or an abnormal (T;; = 1) edge between nodes i and j:

P(T;; =1|F;;,R;, R;, Y1)

0, Ri#RjOI‘Ri:Rj:O
0, Ri:Rj>0,Yk:1,Fij:2,
= 0, R; :Rj >0,Y, =0, Fij =0, 3)
n, Ri:Rj>0,Yk:1,Fij<2
n, Ri:Rj>0,Yk:0,Fij>0.

Notice that the first case in (3) specifies the community organ-
ization of our abnormal subnetworks. Specifically, if regions
and j are not part of the same subnetwork (i.e., they have dif-
ferent labels or are both normal), then the corresponding func-
tional edge is modeled as healthy (7;; = 0 deterministically).
By extension, the functional edges that differ between groups
must concentrate among member nodes of the same subnet-
work; this defines a community topology.
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TABLE I
CONDITIONAL DISTRIBUTION P(F;;|F;;, R, Y ; 1, €) FOR HYPER-ACTIVE (TOP) AND HYPO-ACTIVE (BOTTOM) COMMUNITIES.

Ri:Rj:k>0andYk:1

Fy
0 | 2
0 | (—m—o+ne | A-me/D+n(59) | 0—n/2)+n(59)
Fj | 1 €/2 (1—n@A—e)+mn(e/2) | A=n)(e/2)+n(1 —¢)
2 €/2 €/2 1—e¢
Ri=Rj=k>0and Y, =0
B
0 1 2
0 1—c¢€ €/2 €/2
Fig | 1 | 0=n(e/2)+n0—¢) | A=n)1~e) +n(e/2) €/2
2 | QA-—m(e/2+n(Z5S) | A-n)(e/D+n(355) | A -1 —¢) +ne

On the flip side, when both regions are in the same commu-
nity (i.e., R; = R; > 0), then we have two scenarios. First, the
border conditions Y, = 1, Fj; = 2 and Y = 0, F;; = 0 repre-
sent hard constraints based on our variable definitions. Specif-
ically, if F;; = 2, then F'ij cannot assume a higher state, as
indicated by the community type Yy, = 1, and likewise for the
lower bound F;; = 0 and Y, = 0. In these cases, we assume that
the latent functional synchrony is unaltered between the groups
(i.e.,, T;; = 0). Alternatively, if the border conditions do not
apply (last two cases), then T;; is Bernoulli with unknown pa-
rameter 7). Notice that (3) is a special case of the planted £-par-
tition model [18], where 1 controls the density of edges within
the abnormal communities.

Ideally, F,-j = Fj; for healthy edges. However, if T;; = 1,
then F'ij > Fy; for Y, = 1, and F‘ij < Fyj for Yy = 0. How-
ever, to accommodate the complexities of fMRI data, we intro-
duce a second level of noise, in which the scalar parameter ¢
controls the probability of deviating from the above rules. We
marginalize the graph {7};} to better estimate the community
assignments R;. Beginning with the first condition in (3), if re-
gions 4 and j are not in the same community, then T;; = 0 and
we obtain the following baseline distribution:

P(Fy|Fij, {Ri # R;||Ri, Rj = 0};€)

_ 1-FLF;;
(- ()

4

N C))

such that F;7 F;; = 1 if the functional synchrony is the same
between groups, and FgF'ij = 0 otherwise.

The conditional relationships between community members
(i.e., R; = R; > 0) are given in Table II. Due to the distinction
between hyper- and hypo-synchronous connections, the overall
distribution cannot be represented compactly, as in our previous
works [33], [42]. In practice, we expect the latent noise to be

small (¢ < 0.5) and the edge density to be moderate (0.4 < 1
< 0.6). Hence, the largest entries in Table II will involve the
term 1 — €. Notice that this term appears in the upper quad-
rant (i.e., F} ; > F;;) for the hyper-active case and in the lower
quadrant (i.e., F'ij < Fj;) for the hypo-active case. For nota-
tional convenience, we denote entries of Table Il as M) % (17, €),
where F;; = s, F;; = s',and Y}, € {1,0}, for the top and
bottom sub-tables.

Data Likelihood: The fMRI correlation ij between re-
gions ¢ and j in neurotypical subject / is a noisy realization of
the latent functional template ;. We assume a gaussian distri-
bution, with mean and variance controlled by F;;:

1

P(B£j|Fij = s {p,0%}) = H[N(Bz{jmmag)]fijs' (5)
5=0

The likelihood for a clinical patient B}? has the same functional
form as (5) but relies on the clinical template F;;. We compute
BZI» i via pearson correlation coefficients. Our prior work [42] has
demonstrated that Gaussian distributions can adequately cap-
ture the global fMRI statistics, while greatly simplifying the pa-

rameter estimation steps.

III. MODEL INFERENCE

Given the observed fMRI measurements X = {B, B},
we employ a maximum likelihood (ML) framework
to fit our hierarchical Bayesian model to the data. Let
0 = {n", 77, n,¢, u,o*} denote the collection of non-random
model parameters, and let L and M be the number of subjects in
the neurotypical and clinical populations, respectively. For con-
venience, we now switch to a binary vector representation for
the region labels R;. Specifically, R; = [R;o Ri1 ... Rix]T,
such that the state R; = k implies that R, = 1 and the
remaining entries are equal zero.
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Combining the distributions in (1)—(5) with the expressions
in Table II yields the following joint density for the latent and
observed random variables:

N K
log P(R, F, F,X|Y;0) = Y ) Ry log(r})
i=1 k=0

2
+ Z ZFijslog

(i3} s

+ Z (1 - ZRL,CPW)

(i,4)

+ Z (1 - ZleRw>

J>

+ Z Z leR]L Z Z Fijstys Yk 1Ongs (’77 ))

kl(z] s=0s'=0

+ZZRMR_7LZZFHSFUS 1 Yk) longs (777 ))

k= 1(1_7 s=0s'=0

+ Z ZFMS ZlogJ\f

(i,5) =0

+ZZFwstgN i s, 02) ©

y s'=0 m=1

F;ilog(1 —¢))

— FEFy)lo (%))

JHU‘S7 )

We observe that the community structure is specified by the
third and fourth lines of (6), which denote the natural logarithm
of the baseline distribution in (4). Also, while (6) assumes that
the subgraph types {Y}} are given, the contribution of Y} in
lines 5-6 is equivalent to that of a Bernoulli random variable.
Therefore, by adding an i.i.d. Bernoulli prior: log P(Yy; w¥) =
Y log(7¥)+(1-Y%) log(1 —n¥), we can model these values as
unknown. The incremental changes to our model are presented
in the Supplementary Materials.

The community assignments R; induce a complex coupling
across pairwise connections (i, j). Therefore, we adopt a vari-
ational approximation [43] to infer the latent posterior distribu-
tion @(-) and corresponding parameters 6, which minimize the
variational free energy

FE=—Eg[log P(R,F,F,X|Y;0)] — H(Q). (7
Notice that the quantity —F& is a lower bound to the marginal
log-likelihood P(X|Y’; ©) in the original ML framework.

Our approximate posterior assumes the factorized form:

HQT HQ
~TITew ““HHH(““) )

i=1k=0 {i,7)s=0s'=0

Q(R,F,F)

Z_]? z]anj)

As seen, Q7(-) is a multinomial distribution with K + 1 states,
parameterized by @;. Likewise, Qf;(-) is a multinomial distri-
bution with 9 states, parameterized by ¥;;, which account for

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 35, NO. 8, AUGUST 2016

the 9 configurations in Table II. Essentially, ;1. 1S the posterior
probability that R; = k, and Uff is the posterior probability that
Iy = sand F,J = s'. The factorization in (8) preserves the re-
gion-to-connection dependencies and is scalable to accommo-
date a large number of parcels V.

Using (8), we can expand the entropy term H{Q) in (7) as

shown below:
6fjsl log (ijf') .

)
The expectation with respect to Q(-) of the complete log-like-
lihood shares the same form as (6), but with the following sub-
stitutions:

R, —tig
— 7
FijsFijer —Wfq's

FFy; —>Zv £ pee

lJ

In the next section, we describe a coordinate descent algo-
rithm to estimate both the parameters {;, O } of the varia-
tional posterior and the nonrandom model parameters ©.

A. Variational EM Algorithm

1) E-Step: For afixed setting of model parameters O, we iter-
atively update the elements of Q" (-} and Q°(+) to minimize the
variational free energy. The iterations for #;; can be expressed

in closed form given {1 }:
K
o5’ R log{(l—¢€), s=4¢
U5 X exp ( [1 — Zuikujk] { e ,
> log(5), %5

+log(nf) + Z @ik Ve - log My, (1, €)

k=1

K
+ > (1 — Vi) - log MY (n, €)

k=1
L M
+ Zlog.’\/ (B + Z logN'(B',-’;?;uS/,af,)>,
=1 m=1
(10)

where the proportionality constant is computed such that
Y os Do 13%51 = 1. The first three lines in (10) leverage the
prior and latent functional interactions, whereas the last line
incorporates the data likelihood for both populations.

In contrast, differentiating F& with respect to @y, results in
coupled update expressions

x

L.
ijiHs: T

g X exp (Z ik (ﬁff log(1—€)+ (1 - )log(2)>

J#i
2 2
+ log(n},) + Z Ujr, Z Z 5fjglyk -log My (n, €)

Héz
+ZMZZ~SS (1-Y},) - log Mgsl(n,e))(ll)
FE) s=05'=0
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Since (11) depends on the other region posterior estimates 4y,
we perform an inner fixed-point iteration until convergence of
the distribution Q" (R).

The estimates for © in the following section rely on mar-
ginal probabilities of Qf; (5, F;;). We compute these quanti-
ties after convergence of the full variational posterior:

2 7
fije =QFy = s|X,Y;0) = Y o (12)
s'=0
2
gijs’ :Q(Ft = sl‘Xayy;G)) = /E'iSjS/'
s=0

(13)

2) M-Step: We update the model parameters 6 by fixing the
posterior distribution Q (R, F, F') and setting the gradient of (7)
with respect to 6 equal to zero. The expressions for the multi-
nomial prior parameters {77, 7/} reduce to averages over the
marginal posterior distributions:

(14
iis (15)

where C' = N(N —1)/2 is the total number of unique pairwise
connections between N regions.

The fMRI likelihood parameters are estimated as weighted
statistics of the data. The updates parallel those of a standard
Gaussian mixture model:

X [fijs Y1 Bl + Gijs Xom Bf’]‘}
Hs = - ’
Yo [L “fizs + M- !7ijs]
T [ S B 15 B — ]
52 = - .(17)
i) [L igs + M - !ii.js}

(16)

We jointly update the edge concentration 7 and latent noise
e via Newton's method. Details of this step are presented in the
Supplementary Materials. We emphasize that given the com-
munity types Y, both the posterior distribution and the model
parameters are estimated directly from the observed data. We
do not tune any auxiliary parameters or thresholds.

B. Initialization

Like many gradient-based methods, the final solution to our
model will depend on proper initialization. At a minimum, the
variational EM algorithm in Section III-A requires us to ini-
tialize the non-random model parameters © and the region pos-
terior variables {; }. The algorithm proceeds by updating the
connectivity posteriors {ﬁfjl} in the E-step and iterating be-
tween the distributions until convergence. We then estimate the
parameters & in the M-step and repeat the outer loop.

We initialize the functional prior 77 and the Gaussian
means g and variances o2 based on statistics of the data.
For regularization, we opt to center the correlation distribu-
tions of each subject and fix 3 = 0 in subsequent analysis.
This procedure effectively models the relative deviations
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from the baseline functional synchrony for each subject. We
set the initial latent noise parameter to ¢ = 0.01, which
encourages consistency between the region labels and the
observed fMRI data, and we uniformly sample the edge con-
centration 7 from the interval [0.2,0.5]. Larger values of 7
encourage more abnormal functional edges between commu-
nity members. Likewise, we randomly initialize the region
prioras 7" = [(1 —a) (a/K) (a/K)]", such that o
€ [0.2,0.5]. As « increases, the algorithm is biased towards
larger communities during the first iteration.

Finally, we initialize the region posterior parameters i, via
a two step procedure. First, we average the fMRI correlations
across subjects and cluster these values to approximate the dis-
crete latent functional connectivity. Second, we separate the
hyper- and hypo-synchronous connections and apply a clique
detection algorithm to each grouping. The initial communities
are based on the regions associated with largest interconnected
cliques. In practice, the initial communities consist of 4—6 re-
gions, which is significantly less than in the final solution.

We mitigate the influence of local minima by randomly ini-
tializing the variational EM algorithm 10 times and select the
optimal F€ solution. This procedure is applied to both synthetic
and real-world experiments.

IV. MODEL EVALUATION

A. Estimating the Abnormal Network Topology

The idealized graph of functional differences {7, } provides
valuable insights into the topological properties of each ab-
normal community by removing the effects of the latent noise e.
T;; also describes the subset of community edges that strongly
differ between the control and clinical populations.

We can retrospectively approximate these variables based on
the maximum a posteriori (MAP) solution for R and the param-
eter estimates ©. Specifically, given R and Y, our model decou-
ples by pairwise connection, so we can assign each T;; indepen-
dently. Furthermore, (3) implies that 73; = 0 for R; # R; and
I, = R; = 0 (i.e., when the nodes belong to different com-
munities and when they are healthy, respectively). For the re-
maining case (R; = R; > 0), we select the value T;; € {0,1}
according to the following optimization:

T,;j = argmj@xEQ [logP(TlFij,F’ij,RMAP,Y;@)] . (18)

The right-hand side of (18) can be computed by multiplying
the natural logarithm of entries in Table II with the corre-
sponding variational posterior parameter 7;; and summing
across all nine configurations of { F};, F;;}. This computation
weighs the influence of the edge density #, which controls the
proportion of abnormal connections, against the latent noise ¢,
which encourages the functional templates to deviate from the
rules outlined in (3).

B. Robustness of the ldentified Communities

The marginal posterior statistics @;; inform us whether region
1 is healthy or if it belongs to one of the K abnormal communi-
ties. We evaluate the robustness of these region assignments via
bootstrapping. In particular, we fit the model to random subsets
of the data, such that the ratio of neurotypical controls to ASD
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patients is preserved. Each subset contains only 80% of the total
number subjects. We re-sample the data subsets 50 times and
average the estimated posterior #%;; across runs to quantify the
influence of region .

We focus on region stability for three reasons. First, due to
the community organization built into our model, abnormal
edges are constrained to lie between member nodes of the same
subnetwork. Moreover, the sign of each edge (i.e., hyper- vs.
hypo-synchronous) is given by the binary vector Y. Therefore,
the topology of the group-level functional differences is largely
specified by just the region assignments and community types.
Second, the bulk of our knowledge about the brain is organized
around regions (i.e., functional localization, tissue properties,
morphometry) and not the connections between them. From
a clinical perspective, we can use the region assignments to
perform follow-up analyses (see Neurosynth below); but the
connectivity pattern is much harder to interpret. Finally, our
previous work [33], [44] suggests that connection-wise differ-
ences may not be as robust as region measures.

C. Baseline Methods

We compare our generative model with two alternative tech-
niques: statistical testing and a well-known community detec-
tion procedure, which prunes edges from the original network.
These comparisons evaluate the benefits of (1) an imposed com-
munity organization, and (2) explicitly differentiating between
hyper- and hypo-active communities.

Univariate testing is one of the standard approaches used in
population studies of functional connectivity. Specifically, the
two sample t-test confirms or rejects the null hypothesis that the
group means of a given fMRI correlation are equal. Here, we
vary the significance threshold in order to determine whether
univariate functional differences naturally exhibit an underlying
community structure.

Our second comparison implements the seminal method of
[23], which iteratively removes edges from the network in order
to discover community structure. The edges are selected ac-
cording to a current-flow betweenness measure, which favors
connections that lie between communities rather than ones that
span a single community. This procedure requires a sparse bi-
nary input graph A that describes the group-wise functional

differences. Rather than averaging and thresholding the fMRI
correlation values, we construct A via the Bayesian connec-
tion model described in [42]. Specifically, A;; = 1 if the pos-
terior probability that the latent functional connectivity tem-
plates differ exceeds 0.5. We take this approach because data
thresholding introduces nonlinear dependencies into the anal-
ysis, which are known to bias network results [45]. Moreover,
since the fMRI likelihood in [42] is the same as (5), we can di-
rectly evaluate the gain from our community priors.

D. Meta-Analysis via Neurosynth

The Neurosynth database (www.neurosynth.org) provides
an unbiased and comprehensive evaluation of the function-
ality supported by each hyper- and hypo-active community.
Specifically, the database aggregates both the MNI activation
coordinates reported in prior fMRI studies along with a set of
descriptive words and phrases pulled from the abstracts. The
meta-analytic framework leverages the power of large datasets
to calculate the posterior probability P(Feature|Coordinate)
for an individual psychological feature (i.e., word or phrase)
at a given spatial location [46]. Essentially, this reverse infer-
ence procedure identifies psychological constructs that have
consistently been associated with a particular activation co-
ordinate across a range of fMRI studies (varying paradigms,
demographics and clinical statuses). Neurosynth has precom-
puted and stored 3,099 brain maps based on this posterior
information; each map is associated with a given feature term.
Additionally, the website creators have used Latent Dirichlet
Allocation (LDA) [47] to identify a set of high-level topics
from the original 3,099 words and phrases.

In this work, we correlate the spatial regions defined by each
hyper- and hypo-active community with the statistical maps
stored in the Neurosynth database; terms with a correlation
above the default threshold (r > 0.001) were retained. We
then apply the methods of [46], [48] to perform a whole-brain
reverse inference for each LDA topic and rank them according
to their association with each abnormal community.

V. RESULTS ON SYNTHETIC DATA

In this section, we use simulated experiments to demonstrate
that our variational EM algorithm recovers the ground truth re-
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Fig. 3. Probability of missed detection (Type I error) for the Good Data parameterization across 50 random samplings of the observed data. Thick lines correspond
to the interquartile interval, and the whiskers extend to the 10-90% range. (a) Latent noise ¢ = 0.01 (b) Latent noise ¢ = 0.04 (c) Latent noise ¢ = 0.07 (d)

Latent noise € = 0.10.

gion labels. We assume group differences can be explained by
one hyper-active and one hypo-active community (K = 2).
Subject correlations are generated according to Fig. 1 for dif-
ferent noise statistics and community organizations.

A. Experiment I: Preliminary Evaluation

As abaseline, we first generate subject observations using the
same signal-to-noise ratio and community properties estimated
by the maximum likelihood solution of our clinical dataset. In
particular, we set (g1 — o) = 0.13, (o —p1) = 0.2, 02 = 0.07
and 0 = o5 = 0.06 for the data likelihood. Notice that there is
significant overlap in the correlation distributions for the three
latent connectivity states, i.e, the standard deviation of each
Gaussian is 2-3 times greater than the separation between the
means. We mimic the organization of our clinical dataset by
specifying an underlying network with 150 regions and sam-
pling 50 subjects in each population. The latent concentration
and noise parameters are fixed at 7 = 0.5 and € = 0.03.

During each trial, we uniformly sample the region prior 7"
such that 11-16% of regions belong to each abnormal cluster.
We generate the latent variables in the following order R — F'
— F — B — B, and we use the variational EM algorithm to
infer the region posterior statistics ;. Fig. 2 (left) illustrates

the average errors across 50 random trials. As seen, the proba-
bility of a false alarm or wrong assignment is negligible. While
the probability of a missed detection is slightly higher, the me-
dian error is only 7%, and the 75%" percentile error is under 9%.
Fig. 2 (right) suggests an inverse relationship between the detec-
tion error and the minimum community size. Intuitively, larger
communities have more abnormal edges and are easier to iden-
tify, whereas smaller communities are more likely to be over-
whelmed by noise.

B. Experiment II: Effect of Community Organization

Next, we evaluate the sensitivity and robustness of our al-
gorithm with respect to the edge concentration 7 and the la-
tent noise €. We expect the region assignment errors to be pos-
itively correlated with € and negatively correlated with 7. This
is because higher values of 7 increase the density of abnormal
connections within each community, thus making them more
distinctive. Conversely, larger € results in more functional con-
nections deviating from the ideal community organization (i.e.,
T;;). Here, we present only the probability of a missed detection.

We sweep the parameters of interest across the range n €
[0.1,1] and € € [0.01,0.1] in increments of 0.1 and 0.01, re-
spectively. For each (), €) pair, we generate the latent variables
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Fig.5. Snapshot of the visual stimuli. The protocol alternates between coherent
biological motion (left) and scrambled animations (right).

and observed data as described in Section V-A. Once again, the
region prior 7" is sampled such that 11-16% of region belong to
each community. We consider two likelihood parameterizations
{u,%}. The Good Data parameterization clearly separates the
data distributions for each latent functional state. Specifically,
we set (pt1 — po) = (p2 — py) = 0.35 and 02 = 0.05 for
s = 0,1, 2. This configuration allows us to accurately infer the
latent templates {F, F'}, which are then used to delineate ab-
normal communities. The Noisy Data parameterization uses
the same likelihoods as Section V-A.

Figs. 3 and 4 report the proportion of missed commu-
nity nodes (Type I error) across 50 synthetic trials for the

Good Data and Noisy Data parameterizations, respectively.
These results highlight three particularly striking trends. First,
the performance of our model and algorithm worsens with in-
creasing €. Intuitively, € controls the proportion of both missing
and spurious connections within the multi-class community
organization, which hinders our ability to identify the abnormal
subnetworks. Second, in accordance with our initial hypothesis,
there is an inverse relationship between the concentration 7
and the Type I error, with an inflection point at 7 = 0.5. The
parameter 77 controls the percentage of nonzero edges between
community members and is closely linked to the probability
pin from the planted £-partition model [49]. Hence, our model
can only extract dense subgraphs. Finally, we observe that the
error rates are similar for both likelihood parameterizations.
This suggests that errors in community detection are primarily
due to inconsistent functional differences rather than to noisy
data observations.

VI. SOCIAL PERCEPTION IN AUTISM

A. Biopoint Dataset and FMRI Preprocessing

We demonstrate our methods on a clinical study of 72 ASD
children and 43 age-matched (p > 0.124) and IQ-matched (p >
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community: Y; = 0.

0.122) neurotypical controls. For each subject, a T1-weighted
scan (MPRAGE, TR = 1900 ms, TE = 2.96 ms, flip angle
9°, res = 1 mm?®) and a task fMRI scan (BOLD, TR
= 2000 ms, TE = 25 ms, flip angle = 60°, res = 3.44 X
3.44 x 4 mm, 164 volumes) were acquired on a Siemens MAG-
NETOM Trio TIM 3T scanner.

The experimental paradigm features coherent and scrambled
point-light animations created from motion capture data. The
coherent biological motion depicts an adult male actor per-
forming movements relevant to early childhood experiences
[50]. The scrambled animations combine the trajectories of 16

randomly selected points from the coherent displays. Snapshots
of these stimuli are illustrated in Fig. 5. Six biological motion
clips and six scrambled motion clips were presented in an
alternating-block design (24s per block).

We segment the anatomical images into 150 cortical and sub-
cortical regions based on the Destrieux atlas in Freesurfer [51].
The fMRI data was preprocessed using FSL [52]. The pipeline
was developed at Yale and consists of: 1) motion correction
using MCFLIRT, 2) interleaved slice timing correction, 3) BET
brain extraction, 4) spatial smoothing with FWHM 5mm, and
5) high-pass temporal filtering. The functional and anatomical
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Fig. 7. Abnormal communities inferred by our Bayesian model for K = 2 (top) and K = 3 (bottom). Left: Region membership in each community. Red nodes
indicate the hyper-active community, whereas blue areas delineate the hypo-active cluster. Right: Estimated network of abnormal functional synchrony. Each node
corresponds to one of the predefined regions, and each edge represents an abnormal functional connection between two community members. Blue lines signify
reduced functional synchrony in ASD across the paradigm; magenta lines denote increased functional synchrony in ASD. (a) One hyper- and one hypo-active
community: ¥; = 1 and Y2 = O (b) One hyper-active and two hypo-active communities: ¥; = land Y, = Y5 = 0

data were registered to the MNI152 standard brain. The fMRI
measure B! ; is computed as the Pearson correlation coefficient
between the mean time courses of regions ¢ and j. As previously
stated, we center the correlation distribution of each subject and
fix the likelihood mean y; during the model estimation proce-
dure.

B. Abnormal Communities

We vary the number and type of communities Y}, to explore
the evolution of abnormal subnetworks. Recall that these sub-
graphs reflect atypical functional synchrony across the entire
stimulus paradigm. Figs. 6 and 7 illustrates the community-
based differences inferred by our model for K =1 and K > 1,
respectively. Table III reports the corresponding ML parameter
values estimated by the variational EM algorithm.

Encouragingly, we observe a steady progression with the
number of communities K in Figs. 6 and 7. In particular, as
K increases, our model augments the previous community
organization with an additional subnetwork of the required

type. Similarly, the functional prior 7/ and data likelihood
parameters {u, 0%} in Table III are identical between model
realizations. Differences in community organization seem to
be captured by the region prior 7", the edge concentration 7,
and the noise level e. This behavior indicates stability of the
inferred latent functional templates, which are subsequently
used to identify the abnormal communities. Further, these
nested solutions provide empirical evidence for the validity of
our model and inference algorithm.

Clinically, the hyper-active communities are depicted in red/
pink and concentrate in the left superior temporal sulcus (STS),
the visual cortex, and the somatosesory cortex. Conversely, the
blue regions indicate hypo-activity. As seen, they localize to the
bilateral ventral prefrontal cortex (VPFC), insula, and posterior
cingulate. The hypo-active networks also includes subcortical
activations in the caudate and amgydala, which are not shown
on the cortical surface plots. The corresponding network dia-
grams [53] reveal increased synchrony between temporal and
occipital nodes (magenta lines), along with reduced synchrony
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Fig. 9. Average marginal posterior probability 4; for each of the K’ = 3 communities across 50 random samplings of the fMRI data. Each sample includes 80%
of the subjects, such that the ratio of ASD patients to neurotypical controls is preserved. The colorbar denotes the average posterior probability ;s for each region
1 and community k. The clusters are aligned to the final solution in Fig. 7 to maintain correspondence of Y.

between the frontal and parietal nodes (blue lines). These re-
sults support a view of impaired social communication in ASD.
Consistent with neurocognitive findings, Figs. 6 and 7 suggest
hyper-connectivity, and perhaps hyper-functionality, in a visual
perception network. Hypo-active circuits include two networks
that are well known for their role in social cognition and the
high-level interpretation of social stimuli [6], [7], [4].

C. Model Robustness

Figs. 8 and 9 report the average posterior probability Q7 (-)
of each region across 50 resamplings of the data for K = 2 and
3. We display only the regions for which u;, > 0.3, thereby
emphasizing the most prominent patterns.

Favorably, our bootstrapping analysis in Fig. 8 consis-
tently recovers both the red hyper-active and blue hypo-active
communities in Fig. 7(a). Additionally, subgraph 2 in Fig. 8 un-
covers medial activations in the right hemisphere that are

not present in the full solution. This behavior suggests that
while some regions are weakly implicated by the data, they
are not included in the full variational EM solution. Despite
the inconsistency, reproducibility across 80% subsets has not
been demonstrated in prior fMRI studies of ASD. Instead, prior
works employ leave-one-out techniques, which artificially
impose a stronger bias between samples.

The K = 3 model in Fig. 9 is able to recover the hyper-ac-
tive community (Subgraph 1) with the same frequency as in
Fig. 8. However, the reproducibility of the two hypo-active net-
works is much lower. Empirically, we observe that the nodes are
shuffled between communities during the bootstrapping exper-
iment, which reduces the overall consistency between trials. At
the same time, highly-implicated regions, such as the posterior
cingulate and insula, manage to survive our selection criterion.
We note that the weakened robustness for K > 2 provides an
important direction for future refinements to our model and in-
ference algorithm.
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Fig. 10. Population differences in functional connectivity when varying the significance threshold. Blue lines denote a lower average correlation across ASD
patient than for neurotypical controls. Magenta lines signify the opposite relationship.
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Fig. 11. Community detection based on current-flow betweenness. Left to right depicts the original network of pairwise functional differences (294 edges) and
the iterative removal of 80, 160 and 240 edges. Blue and magenta lines correspond to reduced and increased functional synchrony in ASD, respectively.

D. Baseline Comparison

Figs. 10 and 11 illustrate the connectivity differences based
on the two sample t-tests and the current-flow betweenness algo-
rithm, respectively. For ease of visualization, we have colored
each pairwise connection such that blue corresponds to reduced
synchrony in ASD, and magenta denotes increased synchrony
in ASD. However, we do not differentiate between heightened
and reduced connections when applying the baseline methods.
Hence, these results underscore the importance of our multi-
cluster region labels and the community types Y.

In Fig. 10 we threshold the (uncorrected) p-value to enforce
different levels of statistical significance. As an aside, none of
the connections survive a false discovery rate (FDR) correction
for multiple comparisons, which suggests that the univariate
functional differences are relatively weak in our dataset. Sim-
ilar to Fig. 7, we observe interconnected magenta lines in STS
region and a high concentration of blue lines in the default mode
and precentral cortices for p < 0.01. There is also a second ma-
genta cluster in the left frontal regions. Reducing the threshold
to p < 0.005 prunes some of the connections; however, the
frontal areas no longer exhibit a clique-like organization. Fi-
nally, the result for p < 0.001 contains isolated groups of ver-
tices rather than a unified network.

The community detection procedure was applied to an orig-
inal network of 294 edges, which corresponds to connection-

wise latent functional differences, as computed via [42]. We no-
tice that the initial graph is a superset of the connections identi-
fied by our model in Figs. 6 and 7. However, pruning the edges
according to the current-flow betweenness measure does not
reveal interconnected communities. For example, despite re-
moving 80% of the edges in the rightmost figure, the overall
number of nodes is fairly similar to the original network. Conse-
quently, we cannot identify a natural stopping point for the algo-
rithm. The observed behavior suggests that pairwise between-
ness measures are insufficient to distinguish the core subnet-
works associated with ASD.

E. Neurosynth Results

The polar plots in Fig. 12 illustrates the top nine meta-analytic
constructs implied by the regions in each community, as inferred
by our generative model. Recall that these topics reflect unbi-
ased, aggregate findings across the fMRI literature. The func-
tional dimensions in Fig. 12 expose a clear functional distinction
between the two community types. Specifically, the hyper-ac-
tive network maps onto visual perception and pattern recogni-
tion domains for both X' = 2 and K = 3. Correspondingly, in-
dividuals with ASD tend to outperform their neurotypical peers
in such tasks [54]. In contrast, the hypo-active networks impli-
cate areas of clear deficit in ASD, such as emotion regulation
and social communication, perception and reward. There is also
considerable overlap in the functionality of the blue and green
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Fig. 12. Correlation values of the top 9 features for each network based on
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nitive functions derived from meta-analytic decoding. Red corresponds to the
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networks in Fig. 12(b), likely driven by community member-
ship of the bilateral STS, vPFC and insulae. At a high level, our
Neurosynth results support the hypothesis that ASD children are
more stimulated by the point-light animations but are failing to
grasp the social context. This conclusion fits nicely both with be-
havioral observations when administering the fMRI paradigm,
and with a prevailing theory that ASD includes areas of cogni-
tive strengths amidst the social deficits [37], [55], [56].

VII. DISCUSSION

Community detection procedures enable us to identify im-
portant subcomponents of a complex network. As such, we
have presented a unified Bayesian framework that models both
hyper- and hypo-active communities based on group-level func-
tional differences. We formulate a variational EM algorithm for
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maximum likelihood estimation of the model parameters. The
algorithm simultaneously infers the region labels and the graph
of abnormal functional synchrony. Effectively, our approach
highlights the core deficits of a given neurological disorder,
and it facilitates a biological interpretation of the pathological
brain circuitry.

We validate the model on synthetic data, and we apply it to
a task fMRI study of social perception in ASD. Unlike conven-
tional fMRI analysis, which identifies separate activation pat-
terns for each category of stimuli, we compute subject-level cor-
relations across the entire paradigm. We have previously mined
this dataset for differences between ASD patients and neurotyp-
ical controls as a functional of stimulus condition [3]. There-
fore, in this work, we are interested in functional subnetworks
across both social (coherent motion) and nonsocial (scrambled)
processing. We emphasize that our Bayesian framework can
just as easily be applied to individual stimulus blocks within a
block-design fMRI paradigm.

Figs. 6 and 7 depict the altered subnetworks associated with
ASD when varying the number and type of communities. We
observe a desirable nesting property, in which the inferred
topologies for larger K are supersets of the solutions for
smaller K values. At the same time, the latent functional prior
and the likelihood parameters remain unchanged in Table III.
These results suggest an evolution of hyper- and hypo-active
subnetworks, such that additional clusters explain progressively
weaker phenomena. Conversely, while the baseline methods
detect altered functional edges in the vicinity of our model
result, both p-value thresholds and iterative edge removal fail
to identify core interconnected communities. Moreover, the
distributed pattern in Figs. 10 and 11 are difficult to inter-
pret post hoc, since our knowledge of the brain is organized
around region properties (e.g., functional localization, tissue
composition, cortical thickness) and not the potentially indirect
connections between them. Our method overcomes such limita-
tions by explicitly modeling the information flow from regions
to connections. The resulting communities have a straight-
forward interpretation and can be used to design follow-up
experiments for ASD.

Our approach reveals two pathways of reduced functional
synchrony. Automatic decoding of these circuits by the Neu-
rosynth meta-analytic framework in Fig. 12 implicates high-
level topics linked to social and emotional processing. Key el-
ements of the hypo-active communities include the ventral pre-
frontal cortex (VPFC), the insula and the posterior cingulate.
The prefrontal cortex plays a vital role in executive functions,
such as working memory, social development and language pro-
cessing. Intuitively, this area reflects many of the core deficits of
ASD and has been implicated in prior studies [39], [57]-[59]. It
has also been hypothesized that genes associated with ASD in-
fluence the deep layer projection neurons in the prefrontal cortex
during development [60]. Exploring the relationship between
our hypo-active communities and the underlying genetic fac-
tors of ASD remains an important direction for future work. The
insula is linked to emotional processing and empathy. It also
acts as a hub, which mediates interactions between large-scale
cognitive systems [61]. Aberrant striatal connectivity in ASD
has been reported in both task and resting-state fMRI studies
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Fig. 13. Abnormal subnetworks inferred by our Bayesian model for K = 2 (top) and KX = 3 (bottom) when estimating the community types Y3 . Left: Region
membership in each community. Red nodes indicate the hyper-active community, whereas blue areas delineate the hypo-active cluster. Right: Estimated network of
abnormal functional synchrony. Blue lines signify reduced functional synchrony in ASD across the paradigm; magenta lines denote increased functional synchrony

in ASD. (a) Model solution for K’ = 2 (b) Model solution for X = 3.

[62]-[64]. Finally, the posterior cingulate is a key element of
the default mode network. Individuals with ASD exhibit re-
duced long-range connectivity with the both posterior cingu-
late and limbic structures [7], [65], [4], which has been linked
to higher-order integration processes, such as social, emotional
and communication functions [5], [66].

Concurrent with the reduced clusters, out model identifies a
hyper-active community for which the pairwise functional syn-
chrony is greater in ASD patients, relative to neurotypical con-
trols. Most studies and theories of ASD have focused on reduc-
tions in functional synchrony; our results are generally consis-
tent with these prior findings and demonstrate system-specific
(not globally) reduced coherence in circuits known to contribute
to emotion regulation and social cognition/perception. How-
ever, interestingly, the pathways that exhibit over-connectivity
in ASD involve reading the printed word, object recognition,
visual memory, and visual processing. Strikingly, these are the
very areas of functioning that, on average, are preserved or are
even relative strengths of individuals with ASD [37], [54]-[56].

The main presentation of our Bayesian framework requires
the user to specify the number and types of the abnormal com-
munities via the binary vector Y = [V} Yx]T. For com-
parison, we implement the variational EM extension in the Sup-
plementary Materials to infer the variables Y}, given just the
total number of clusters K. Fig. 13 illustrates the model results
when extracting KX = 2 and K = 3 subgraphs. Encourag-
ingly, the communities for K' = 2 clusters are nearly identical
to Fig. 7(a), and likewise for the K = 3 hyper-active network.
The hypo-active clusters for K = 3 jointly contain similar re-
gions when fixing and estimating Y7, but the assignments be-
tween the two communities vary slightly. While the above re-
sults are promising, empirically, the reproducibility across boot-
strapped samples is lower when estimating Y. Moreover, the
algorithm occasionally returns degenerate solutions with one or
more empty clusters. This behavior is highly dependent on ini-
tialization, particularly for K = 3. Unfortunately, we were un-
able to design an initialization scheme that completely avoids
degenerate solutions without making strong a priori assump-
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tions about the network organization. The robustness issues can
be partially attributed to inter-subject variability and possibly
weak differentiation between communities of the same type.
Therefore, we recommend that the user start by fixing Y, which
allows for greater control over the results.

We acknowledge that setting the community types a priori
may be difficult in certain applications, and that this require-
ment is a potential drawback of our method. However, ASD
is clinically described both in terms of deficits, which usually
map onto hypo-activation and hyper-connectivity [5], [6], and in
terms of isolated cognitive improvements, which often relate to
hyper-activation and hyper-connectivity [54], [55]. This binary
categorization of ASD fits nicely into our Bayesian framework.
Moreover, we can formulate an initial guess for the number of
hyper- and hypo-active communities based on existing theories
of ASD. We also observe that many clustering techniques use
model selection procedures, such as the Bayesian Information
Criterion (BIC), to determine the appropriate number of clus-
ters K. If desired, BIC and similar metrics can also be applied
to our method to select the optimal Y.

Anatomical connectivity based on Diffusion Weighted
Imaging (DWI) provides complimentary information about
pairwise region interactions. Our prior work [32], [33] de-
scribes a straightforward approach to incorporating anatomical
data into the Bayesian model. In the future, we might constrain
the abnormal functional edges between community members
according to the underlying white matter connections. This
extension would focus the results on salient pathways that are
consistent with the structural organization of the brain.

Finally, we recognize many areas of improvement for our
model, particularly due to its simplicity. For example, we as-
sume disjoint hyper- and hypo-active communities, which do
not capture overlapping processes. In the case of ASD, the so-
cial and language circuitry in the brain contain many of the
same regions. Future refinements to the model may draw on
the matrix factorization and dictionary learning literatures. An-
other area of exploration is to leverage prior clinical knowledge.
Such methods would enable us to identify more focused net-
works that pertain to a specific cognitive process. Nonetheless,
the current modeling choices are deliberate on our part. Specifi-
cally, despite advancements in the field, the effects of ASD and
of other cognitive disorders remain largely unknown. Therefore,
we have formulated simplistic relationships between the region
labels and latent functional synchrony templates. We also re-
duce the number of nonrandom parameters to avoid overfitting
the data.

VIII. CONCLUSION

We have demonstrated that a unified Bayesian framework
for abnormal community detection supports a binary view of
ASD. Specifically, we observe hyper-synchrony between key
visual processing areas of the brain, which corresponds to a rel-
ative strength (visual perception) in autistic individuals. Con-
currently, we detect hypo-synchrony within social information
processing and social motivation networks; this finding relates
to the hallmark socioemotional impairments of ASD [6]. Un-
like prior methods, we explicitly model differences in the global
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functional organization of the brain, from latent region proper-
ties to the observed fMRI measures. We use bootstrapping to
verify the robustness of our region assignments. Subsequent de-
coding via the Neurosynth meta-analytic database confirms the
clinical validity of our results within the fMRI literature.
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