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From Connectivity Models to Region Labels:
Identifying Foci of a Neurological Disorder

Archana Venkataraman*, Marek Kubicki, and Polina Golland

Abstract—We propose a novel approach to identify the foci of a
neurological disorder based on anatomical and functional connec-
tivity information. Specifically, we formulate a generative model
that characterizes the network of abnormal functional connectivity
emanating from the affected foci. This allows us to aggregate pair-
wise connectivity changes into a region-based representation of the
disease. We employ the variational expectation-maximization al-
gorithm to fit the model and subsequently identify both the af-
flicted regions and the differences in connectivity induced by the
disorder. We demonstrate our method on a population study of
schizophrenia.

Index Terms—Brain connectivity, diffusion weighted imaging
(DWI), functional magnetic resonance imaging (fMRI), popula-
tion analysis.

I. INTRODUCTION

A BERRATIONS in functional connectivity are often
correlated with neuropsychiatric disorders. Functional

connectivity is typically measured via temporal correlations in
resting-state functional magnetic resonance imaging (fMRI)
data [1], [2]. Univariate tests and random effects analysis are
commonly used in population studies of connectivity [3]–[6].
This approach relies on a statistical score, computed indepen-
dently for each functional correlation, to determine connections
that differ between a clinical population and normal controls.
Multi-pattern analysis of functional connectivity has also been
explored for clinical applications [7]–[10]. Although the above
studies identify functional connections influenced by the dis-
ease, connectivity results are difficult to interpret and validate.
Specifically, the bulk of our knowledge about the brain is
organized around regions (i.e., functional localization, tissue
properties, morphometry) and not the connections between
them. Moreover, it is nearly impossible to design noninvasive
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experiments that target a particular connection between two
brain regions. In this paper, we propose and demonstrate an
approach to pinpoint regions, which we call “foci,” whose
connectivity patterns are most disrupted by the disorder. We
identify the disease foci from a set of predefined regions, as
specified by an atlas.
Our method effectively translates differences in connectivity

between a control and a clinical population into estimates of
the regions associated with the disease. Using a probabilistic
setting, we define a latent or hidden graph that characterizes the
network of abnormal functional connectivity emanating from
the affected brain regions. This generates population differences
in the observed fMRI correlations. We employ the variational
expectation-maximization (EM) algorithm to fit themodel to the
observed data. Our algorithm jointly infers the regions affected
by the disease and the induced connectivity differences. To the
best of our knowledge, ours is the first stochastic model to relate
connectivity information to region labels.
We present two versions of the model. The first variant

considers the complete graph of pairwise functional connec-
tions. The second model uses neural anatomy as a substrate
for modeling functional connectivity. In particular, we rely
on diffusion weighted imaging (DWI) tractography to esti-
mate the underlying white matter fibers in the brain. The la-
tent anatomical connectivity inferred from these fibers con-
strains the graph of aberrant functional connections. Previous
work in joint modeling of resting-state fMRI and DWI data
suggests that a direct anatomical connection between two re-
gions predicts a higher functional correlation [9], [11]–[13];
however, many functional effects can be attributed to complex
multi-stage pathways. Since neural communication between
brain regions is constrained by white matter fibers, we hypoth-
esize that the strongest effects of a disorder will occur along
direct anatomical connections. Hence, we model whole-brain
functional connectivity but only use functional abnormalities
between anatomically connected regions to identify the dis-
ease foci. This paper extends our prior work [9] on the joint
estimation of anatomical and functional connectivity; aggre-
gating the latent connectivity information to predict region ef-
fects is the novel contribution presented here. A preliminary
version of this work was presented at the International Confer-
ence on Medical Image Computing and Computer Assisted In-
tervention [14]. In this paper we provide more detailed deriva-
tions of the model and estimation procedure and include more
extensive experimental evaluation of the methods.
We demonstrate that our methods learns a stable set of

afflicted regions in a population study of schizophrenia.
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Schizophrenia is a poorly understood disorder marked by wide-
spread cognitive difficulties affecting intelligence, memory,
and executive attention. These impairments are not localized
to a particular cortical region; rather, they reflect abnormalities
in widely-distributed functional and anatomical networks [15],
[16]. Accordingly, we apply our model to whole-brain connec-
tivity information. Our results identify the posterior cingulate,
the superior temporal gyri and the transverse temporal gyri as
the most affected regions in schizophrenia.
The remainder of this paper is organized as follows.

Section II summarizes prior research on functional connectivity
and multimodal analyses. We also review clinical findings
of schizophrenia. We introduce our generative model in
Section III and develop the corresponding inference algorithm
in Section IV. Section V presents the framework used for the
empirical validation of our approach. Sections VI and VII
report experimental results based on synthetic and clinical
data, respectively. Section VIII discusses the behavior of our
model, its advantages and drawbacks, and future directions of
research. We conclude with a summary of our contributions in
Section IX.

II. PRIOR WORK

A. Functional Connectivity for Clinical Applications

fMRI studies can be divided into two broad categories. Task-
based studies measure the response to a given experimental
paradigm in order to localize brain function [17]. In contrast,
resting-state fMRI captures spontaneous, low-frequency oscil-
lations. Temporal correlations between these signals reflect the
intrinsic functional connectivity between brain regions [1], [2].
Resting-state fMRI is particularly attractive for clinical popu-
lations, since patients are not required to perform challenging
experimental paradigms.
Univariate tests and random effects analysis are, to a great ex-

tent, the standard in population studies of connectivity [3], [4],
[18]. These methods identify significantly different connections
using a statistical score that is computed independently for each
functional correlation. Consequently, the analysis ignores im-
portant networks of connectivity within the brain.
Prior work has also explored multi-pattern analysis for

functional connectivity [7]–[10]. For example, [7], [8] employ
group independent component analysis to represent the fMRI
data as a set of spatially-independent regions with associated
time courses. In [7], group functional connectivity is computed
as the maximum lagged correlation between the estimated time
courses; the two-sample t-test is used to identify significant
population differences. In [8], a neural network is constructed
for patient classification of first-episode schizophrenia. Simi-
larly, the method of [10] uses a metric called Gini Importance
[19] to summarize multivariate patterns of interaction. When
trained on these measures, a classifier for a clinical population
exhibited superior accuracy than when trained on univariate
statistics. Finally, [9] presents a probabilistic framework for
connectivity analysis. Differences between two populations are
explained via changes in the latent anatomical and functional
connectivity graphs.

Despite the progress made to robustly identify functional
connectivity patterns associated with a disease, the results
are difficult to validate and to interpret. For example, due to
variations in preprocessing and region definitions, relatively
few functional connections are consistently reported in clin-
ical studies. Moreover, the relationship between functional
activation and functional connectivity is poorly-understood;
hence, it is challenging to incorporate connectivity results into
the knowledge gained from task-based fMRI studies. Finally,
short of direct stimulation, we do not know how to design in
vivo experiments that target a particular connection between
two brain regions. In contrast to prior work, we propose a
framework that consolidates population changes in functional
connectivity to localize hubs of a disease. The results can be
easily compared and integrated with other sources of informa-
tion about the detected regions.

B. Multimodal Analysis of Connectivity

In addition to purely functional analysis, we explore the
relationship between functional connectivity and anatomical
connectivity, as measured by DWI tractography. DWI captures
the anisotropic diffusion of water throughout the brain and is
often used to estimate the underlying white matter bundles via
tractography. Common measures of anatomical connectivity
include the probability of diffusion between two brain regions,
the number of fibers linking two regions, and the mean frac-
tional anisotropy (FA) along the tracts [20].
Early work in multimodal analysis computed statistics of the

fMRI and DWI signals (such as fMRI correlations, fractional
anisotropy values, etc.) and searched for correspondences be-
tween these metrics a posteriori [21], [22], [12]. This method
has yielded important insights into the nature of connectivity in
the brain. For example, it has been shown that while a high de-
gree of anatomical connectivity predicts higher functional cor-
relations, the converse does not always hold [21]. In particular,
strong functional correlations can be found between spatially
distributed locations in the brain, whereas one is more likely to
identify white matter tracts connecting nearby regions. A no-
table exception is the recently demonstrated approach in [23]
where the authors construct cortical connection graphs based
on histological data of the macaw brain and simulate the cor-
responding functional correlations using a dynamical system.
However, this method has not been demonstrated on in vivo
human data.
Recent studies explicitly model the interaction between

resting-state fMRI and DWI data by attempting to predict
functional information based on anatomy [13], [24]. The work
of [24] explores how well the anatomical network structure
explains large-scale properties of functional systems. The
findings are verified using a computational model of the brain.
The method of [13] uses a sparse multivariate autoregressive
model and multivariate linear regression to determine which
anatomical connections contribute to a particular functional
correlation. Our alternative methodology in [9] infers latent
connectivity differences based on the fMRI and DWI values.
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TABLE I
RANDOM VARIABLES (TOP) AND NONRANDOM PARAMETERS (BOTTOM) IN OUR GRAPHICAL MODELS SHOWN IN FIGS. 1 AND 2

Specifically, we use anatomy to inform the functional connec-
tivity graph but do not try to merge the population differences
within the two modalities. In this paper, we carry the analysis
one step further and infer properties of individual brain regions
from connectivity data.

C. Schizophrenia: Findings and Hypotheses

Schizophrenia is a neuropsychiatric disorder characterized by
gross distortions in the perception of reality. Despite generating
considerable interest within the neuroscience community, the
origins and expression of the disease are still poorly understood
[25]. For example, structural findings only weakly and incon-
sistently correlate with the clinical and cognitive symptoms of
schizophrenia [26]. Similarly, functional experiments report
deficits in many cognitive domains, most notably memory and
attention, but do not consistently identify clinical correlates
[27].
At present, the cognitive impairments of schizophrenia are

thought to reflect underlying abnormalities in distributed brain
networks. In particular, schizophrenia may compromise neural
communication between multiple cortical regions [28]. Recent
studies have also focused on the degeneration of anatomical
connectivity [29], motivated in part by post mortem evidence
of myelination anomalies in patients with schizophrenia.
Findings from resting-state fMRI data include reduced con-

nectivity in the brain’s default network [30], [31], dorsolateral
prefrontal cortex [18], and a widespread reduction in connec-
tivity throughout the brain [4]. The superior temporal gyrus has
been implicated using diffusivity measures [32] and volume
changes [26]. Our method bridges the gap between connectivity
differences and region effects in schizophrenia.
To summarize, prior work in connectivity analysis has focused
on properties of connections and provides little information
about regions in the brain. This makes it difficult to interpret
results across different imaging techniques. In the next section,
we present a novel approach that translates differences in
connectivity between a control and a clinical population into
estimates of the regions associated with the disorder.

III. GENERATIVE MODEL

We assume that the disorder is characterized by impairments
in a small subset of brain regions, which we designate as foci.
The impairments affect neural signaling along pathways asso-
ciated with the diseased regions. We use a probabilistic frame-
work to represent the interaction between regions and the effects
of the disease. In particular, latent variables specify a template
organization of the brain, which we cannot directly access. In-
stead, we observe noisy measurements of the hidden structure
via resting-state fMRI correlations and DWI tractography. The
fMRI and DWI signals vary across subjects; we assume they
are generated stochastically from a group-wise latent template
shared by all subjects.
We first develop the model for functional data. This formu-

lation serves as a foundation for incorporating anatomical con-
nectivity, as presented later in the section. Table I summarizes
our notation in this paper.

A. Functional Model

Fig. 1 presents a network diagram of the brain and the corre-
sponding graphical model for the functional connectivity data.
The nodes in Fig. 1(a) denote regions in the brain, and the edges
correspond to pairwise functional connections between them.
The green nodes/edges are healthy and the red nodes/edges are
diseased.
Based on the region assignments, we define a binary graph

of aberrant functional connectivity using a simple set of rules: 1)
a connection between two diseased regions is always abnormal
[ , solid red lines in Fig. 1(a)], 2) a connection between
two healthy regions is always healthy ( , solid green
lines), and 3) a connection between a healthy and a diseased re-
gion is abnormal with probability (dashed lines). We use the
latent functional connectivity variables and to model the
neural synchrony between two regions in the control and clin-
ical populations, respectively. Ideally, for abnormal
connections and for healthy connections. However,
due to noise and intersubject variability, we assume that the la-
tent templates can deviate from the above rules with (small but
unknown) probability .
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Fig. 1. (a) Network model of connectivity for the functional data. The nodes correspond to regions in the brain, and the lines denote pairwise functional connections
between them. Only a subset of edges is shown; the model is defined on the full graph of pairwise connections. The green nodes and edges correspond to the normal
regions and connections, respectively. The red nodes are foci of the disease, and the red edges specify pathways of abnormal functional connectivity. The solid
lines are deterministic given the region labels; the dashed lines are probabilistic. (b) The corresponding graphical model. Vector specifies diseased regions.

denotes the latent functional connectivity between regions and . is the observed fMRI measurements in the th subject. Variables associated with the
diseased population are identified by an overbar. Boxes denote nonrandom parameters; circles indicate random variables; shaded variables are observed.

The observed fMRI correlations provide noisy informa-
tion about the latent network structure. Below, we formalize our
generative model.

a) Disease Foci: Let be the total number of regions in
the brain. The random variable is a binary
vector that indicates the state, healthy or diseased

, for each brain region . We assume an
i.i.d. Bernoulli prior for the elements of :

(1)

where the scalar parameter specifies the a priori probability
that a region is diseased. The prior is shared by all nodes in the
network.

b) Graph of Abnormal Connectivity: The binary graph
represents the abnormal functional connectivity emanating from
the disease foci. Each edge is generated independently given
the labels of regions and

(2)

where is an indicator function that equals to one if and
only if its argument is zero, and is the scalar parameter that
represents the probability of a connection between a healthy and
a diseased region being altered.

c) Latent Functional Connectivity: We model the latent
functional connectivity of the control population as a tri-state
random variable drawn from amultinomial distribution with pa-
rameter . These states represent little or no functional co-acti-
vation , positive functional synchrony , and

negative functional synchrony . For notational con-
venience,we represent as a length-three indicator vectorwith
exactly one of its elements equal to one,
i.e.,

(3)

The latent functional connectivity of the clinical popula-
tion is also tri-state and is based on and the graph . If
the edge is healthy , the functional connectivity
of the clinical population is equal to that of the control popu-
lation with probability , and it differs with probability .
Conversely, if the edge is diseased , then the
functional connectivity of the clinical population differs from
the control population with probability , and it is equal
with probability . Formally,

(4)

d) fMRI Likelihood: Let be the number of subjects in
the control population and be the number of subjects in the
clinical population. The BOLD fMRI correlation between
regions and in the th subject of the control population is a
noisy observation of the functional connectivity indicator .
In particular, is a Gaussian random variable whose mean
and variance depend on the value of

(5)



2082 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 11, NOVEMBER 2013

Fig. 2. (a) Network model of connectivity. The nodes correspond to regions in the brain, and the lines denote anatomical connections between them.
The green nodes and edges correspond to the normal regions and connections, respectively. The red nodes are foci of the disease, and the red edges
specify pathways of abnormal functional connectivity. The solid lines are deterministic given the region labels; the dashed lines are probabilistic. (b)
Corresponding graphical model. Vector specifies diseased regions. represents the latent anatomical connectivity between regions and . denotes
the corresponding latent functional connectivity. and are the observed DWI and fMRI measurements, respectively, in the th subject. Variables
associated with the diseased population are identified by an overbar. Boxes denote nonrandom parameters; circles indicate random variables; shaded variables
are observed. (a) Network model of brain connectivity. (b) Graphical model.

where denotes a Gaussian distribution with mean
and variance . We fix to center the parameter es-

timates. The likelihood for the clinical population has the
same functional form and parameter values as (5) but uses the
clinical template instead of the control template . In this
work, we compute using Pearson correlation coefficients.
Our empirical analysis in [9] suggests that the Gaussian likeli-
hood in (5) reasonably approximates the data distribution. We
describe these experiments in detail in Section III-B.

B. Multimodal Analysis

Since functional communication in the brain is constrained
by neural axons, our second model assumes that the salient
effects of a disorder occur along anatomical pathways. This
extension is illustrated in Fig. 2. The edges in Fig. 2(a) cor-
respond to neural connections, which are captured by latent
anatomical connectivity . Specifically, the presence or ab-
sence of an edge in the network is governed by the bi-
nary value of . The anatomical network structure is shared
between the control and clinical populations. The regions in
this work correspond to (large) Brodmann areas. Prior re-
sults in the field suggest that the anatomical differences be-
tween schizophrenia patients and normal controls are very
small in this case [9]. Once again, the observed DWI mea-
surements and fMRI correlations provide noisy infor-
mation about the latent network structure.

a) Latent Anatomical Connectivity: The latent anatomical
connectivity variable indicates the presence or absence of
a direct anatomical pathway between regions and . It does
not quantify the number or trajectory of the underlying neural

fibers. We model as a binary random variable with a priori
probability that a connection is present

(6)

b) Graph of Abnormal Connectivity: The binary graph
of aberrant functional connectivity is now defined along la-

tent anatomical pathways. Therefore, we modify the rules from
Section III-A and generate the edge between regions and
as follows:

(7)

In particular, we assume that when the corresponding
anatomical connection is absent.

c) Functional Connectivity of the Clinical Population: We
adapt the distribution for the latent functional connectivity
in (4) to reflect the anatomical constraint

(8)

If there is a latent anatomical connection between regions and
, then is generated according to (4). If there is

no anatomical connection , then the final term in (8)
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implies that is drawn from the prior , irrespective of
and .

d) DWI Likelihood: The DWI measurement for the
th subject in the control population is a noisy observation of
the anatomical connectivity

(9)

where for
. The data of the clinical population follows the

same likelihood. The parameter represents the probability of
failing to find a tract between two regions, which corresponds
to . Ideally, and , i.e., a white matter tract
should be found if and only if there is an underlying anatomical
connection. However, detection via tractography is imperfect.
Consequently, our observation model explicitly accounts for
missing tracts between anatomically connected regions and spu-
rious tracts between isolated ones by allowing .
If we identify one or more white matter fibers between regions
and , the value of is modeled as a Gaussian random
variable whose mean and variance depend on anatomical
connectivity . In this work we use the average FA along
white matter as our DWI measure. As demonstrated in [9], the
Gaussian distributions in (5) and (9) adequately capture the em-
pirical data distributions. To generate these results, we first ap-
proximate the discrete latent connectivity templates and
from the data. For anatomical connectivity, we threshold the
proportion of subjects that exhibit white matter tracts between
region and region to obtain individual values . For func-
tional connectivity, we compute the average fMRI correlation
across subjects for each pair of regions. We cluster these values
across connections to obtain the labels . Once we have the la-
tent assignments, we fit a Gaussian distribution to the observed
fMRI and DWI data under each configuration of latent anatom-
ical and functional connectivity. Qualitatively, we observe that
variabilities in the data across connections and subjects are rea-
sonably approximated via Gaussian distributions.
We emphasize that our model can be readily extended to ac-

commodate other measures of connectivity by redefining the
data likelihood term.

IV. INFERENCE

Since we are primarily interested in the region labels , we
opt to marginalize out the graph structure . This simplifies the
relationship between and the observed data.
The only term which is affected by the marginalization is the

conditional distribution of the clinical template , which now
depends on and . Specifically, we have

(10)

for the functional model and

(11)

for the joint model, where . It is easy to
see that reflects the coupling between the graph prior and
latent noise variable when the region labels differ.
We employ a maximum likelihood (ML) framework to fit the

model to the data. The region variable induces a complex cou-
pling between pairwise connections forcing us to adopt a varia-
tional approximation [33] for the posterior probability distribu-
tion when deriving the EM algorithm for nonrandom parameter
estimation.

A. Functional Model

Let and denote the fMRI
observations and the set of model parameters, respectively. Our
variational posterior assumes the following form:

(12)

where is a distribution over the length- binary vector
and is a nine-state multinomial distribution corre-

sponding to all configurations of latent functional connectivity.
This factorization yields a tractable inference algorithm while
preserving the dependency between , and given the re-
gion indicator vector .
We use a variational EM formulation [34] to obtain the poste-

rior distribution and model parameters which minimize
the variational free energy

(13)

where the joint log-likelihood of all hidden and observed vari-
ables is obtained by combining the prior and likelihood distri-
butions from Section III-A with (10)
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(14)

E-Step: For a fixed setting of model parameters , the free en-
ergy in (13) can be expanded as follows:

(15)

We can define the (normalized) probability distribution
as

(16)

By substituting (16) into (15), it is trivial to show that

(17)

where is the Kullback–Leibler (KL) divergence
from the distribution to the distribution , and the
additional constants do not depend on .
Using a similar expansion, we can also show that

(18)

where and the
additional constants do not depend on .
Since the KL divergence is nonnegative, (17) and (18) give us

the following fixed-point equations for the variational posterior
:

(19)

(20)

We alternate between updating and updating ,
according to the above expressions, until convergence. Specifi-
cally, we employ Gibbs sampling to obtain samples
from . Based on the joint log-likelihood in (14), the right-
hand side of (19) can be expressed in terms of the first- and
second-order statistics of

(21)

(22)

(23)

We approximate these quantities using averages of and
over the elements of .
To update , we evaluate the right-hand side of (19) for

each configuration and
normalize over all nine combinations of to obtain a valid
probability distribution.
According to the joint log-likelihood in (14), the right-hand

side of (20) is given in terms of . Since and
are indicator variables, this quantity can be evaluated as

(24)

The model parameter estimates in the following section
rely on marginal probabilities of . We compute these
quantities after convergence of the variational posterior distri-
bution

(25)

(26)

M-Step:We fix the posterior probability estimates
and update the model parameter estimates by differentiating
(13) with respect to each element of and setting the gradient
equal to zero.
The update for involves averaging the proportion of dis-

eased regions across Gibbs samples

(27)

The multinomial prior reduces to an average over the mar-
ginal posterior distribution

(28)

where is the total number of pairwise connections.
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The fMRI likelihood parameter estimates are computed as
weighted statistics of the data

(29)

(30)

where we have fixed for the component that represents
zero functional synchrony to center the parameter estimates and
regularize the model.
We useNewton’smethod to jointly update and . The details

of this step are provided in the appendix.

B. Joint Model

The variational EM algorithm can be easily extended to
incorporate anatomical connectivity. Below, we let

denote the observed fMRI and DWI measure-
ments, respectively, and we let be
the set of model parameters. Since is binary and and

are tri-state, the variational posterior is

(31)

where is a distribution over the length- binary vector
and is an 18-state multinomial distribution corre-

sponding to all configurations of latent anatomical and func-
tional connectivity.

E-Step: For a fixed setting of model parameters , we alternate
updates for and according to the following
expressions:

(32)

(33)

Once again, we use Gibbs sampling to obtain samples
from (32) and then evaluate using averages

of and over the elements of . We update by
evaluating the right-hand side of (33) for all 18 configurations
of and normalizing. is given in terms of

and , which are evalu-
ated similar to (24).

M-Step: Similar to the construction for the functional variables,
we define the marginal posterior probability for latent anatom-
ical connectivity

Additionally, we let be the number of control subjects for
whom and be the number of schizophrenia pa-
tients for whom .
The updates for and the fMRI likelihood parameters re-

main unchanged. The prior estimate for is an intuitive av-
erage of marginal probabilities

(34)

where is the total number of pairwise connections.
The prior interacts with and due to (3) and (8).

Minimizing the free energy with respect to results in the
following update equation:

(35)

The probability is the empirical likelihood of not finding
a white matter tract between two regions given an underlying
anatomical connection

(36)

The Gaussian likelihood parameters for the DWI measure-
ments are given by the weighted empirical mean and empirical
variance over all nonzero values

(37)

(38)

where and denote the subset of control subjects and
patients, respectively, that exhibit white matter tracts between
regions and . The parameter updates for are
trivially obtained from these expressions by replacing with

.
Similar to the previous algorithm, we update and using a

Newton’s method iteration. We omit the expressions for the first
and second derivatives, as they do not provide additional insight
into the algorithm.

C. Implementation Details

In this section we describe the optimization choices in our
implementation of the variational EM algorithm.
1) Initialization: Like many hill-climbing methods, the

quality of our results depends on proper initialization. For
the variational algorithm, it suffices to initialize the model
parameters and the marginal pos-
terior statistics for and . The algorithm

proceeds by computing the joint posterior distribution in
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the E-step and updating and until convergence.
We then estimate the model parameters (M-step) and iterate.
We initialize the prior parameters , the probability of

not detecting white matter fibers , and the Gaussian variances
using statistics of the data. We also set the initial value

of the noise parameter , which encourages consistency
between the region labels and the observed connectivity data.
Perturbations in these values do not seem to impact our final
solution. We sample the initial values for the Bernoulli region
prior and for the graph parameter from a uniform distri-
bution over the interval [0.2, 0.5]. Larger values of and
encourage the algorithm to select more regions as foci during
the first iteration.
The initial values of the Gaussian means largely de-

termine the initial latent connectivity assignments, and hence,
have the biggest influence on the final solution. Empirically, our
model finds sparse solutions for the region label vector . This
means that if the initial connectivity data is too similar between
the populations, then the algorithm will converge to a subop-
timal solution (with respect to the free energy) in which none of
the regions are diseased. Therefore, we initialize to ex-
aggerate the relevant functional connectivity differences. In par-
ticular, we sample each of these values from a uniform distribu-
tion over specific interval such that: 1) the initial distribution of
latent functional connectivity is roughly uniform, and 2) the ini-
tial graph of latent anatomical connectivity is fairly dense. These
choices improve our chances of finding the global optimum.We
emphasize that our initialization is still fairly naïve and that we
do not place strong a priori assumptions on the model. Rather,
our initialization provides enough flexibility for the algorithm
to efficiently traverse the parameter space.
Finally, we initialize the posterior statistics by computing

the mean fMRI correlation across subjects and clustering
these values for each connection. We select regions with the
highest number of connections with different cluster assign-
ments between the two populations as the set of disease foci.
We sample from a uniform distribution over the
interval [0.8, 1] for each selected focus region and sample

for nonfoci. The pairwise statistics are
computed as .
Empirically, we find that the final region posterior distribution

is fairly stable within the above parameter ranges. We run the
algorithm five times for the functional model and ten times for
the joint model to sample the solution space; we then select the
solution with the lowest free energy.
2) Gibbs Sampling: In the E-step, we sample the region in-

dicator vector from the posterior distribution . Specif-
ically, for each region , we sample the value while
fixing the other region assignments. The regions are updated in
random order. To speed up computation, we run Gibbs sam-
pling simultaneously on four processors and combine the re-
sulting samples. In each case, the first 500 iterations are used for
burn-in; we collect 50 samples spaced 100 iterations apart. Here,
one iteration refers to updating all elements of the vector .
3) Convergence and Runtime: Convergence of our algo-

rithms was based on a relative change in free energy of less
than between consecutive iterations. On average, both
algorithms converge in less than 10 iterations (E-step/M-step

updates). All simulations were performed using MATLAB on
a modern quad processor workstation.
The runtime of each variational EM iteration depends lin-

early on the number of subjects. As shown in Section IV, the
nonrandom parameter updates are based on simple statistics of
the data, summed across subjects. Similarly, the updates for the
latent posterior distributions in (19) and (20) rely on the data
log-likelihood, once again summed across subjects. Fortunately,
these operations are inexpensive to compute, even for large pop-
ulations.
The complexity of our algorithm is sensitive to the number

of regions. First, the number of connections scales quadrati-
cally with the number of regions, thus increasing the number
of terms in the variational posterior distribution.
Second, the runtime of each Gibbs sampling iteration increases
linearly with the number of regions. Given that we require sev-
eral thousand iterations to robustly estimate the region poste-
rior , increasing the number of regions with slow down
the algorithm substantially. For reference, our current imple-
mentation requires 30 min for the functional model and 15 min
for the joint model. Although the runtime can be improved by
using more parallel computation, additional approximations are
needed for more than 100–200 regions.

V. MODEL EVALUATION

A. Identifying Disease Foci

The marginal posterior distribution informs us
about the disease foci. Let denote the marginal probability
that region is diseased. We estimate this quantity by averaging
across Gibbs samples

(39)

The joint distributions in our method are non-Gaussian due
to multiplicative interactions between latent variables and the
effects of unknown nonrandom parameters. Therefore, we eval-
uate the significance of the resulting estimates through nonpara-
metric permutation tests. To construct the null distribution for
, we randomly permute the subject diagnoses (NC versus SZ)

1000 times. For each permutation, we fit the model and compute
the statistic in (39). The significance of each region is equal to
the proportion of permutations that yield a larger value of than
is obtained under the true labeling.

B. Graph of Abnormal Connectivity

The graph of connectivity differences in Section III pro-
vides insight into the behavior of individual connections. Al-
though we marginalize this random variable prior to inference,
we can approximate based on the max a posteriori (MAP)
estimate of each and the parameter estimates .
Given , our models decouple by pairwise connection, so

we can assign each independently. Recall that indi-
cates a healthy edge and denotes a diseased connection.
Based on our construction in Section III, many of the values
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TABLE II
LIKELIHOOD PARAMETERIZATIONS USED TO GENERATE SYNTHETIC DATA

TABLE III
PARAMETERS OF THE FUNCTIONAL MODEL IN FIG. 1(B) AND THE JOINT MODEL IN FIG. 2(B) ESTIMATED FROM THE CLINICAL DATA

are deterministic. For example, (2) of the functional model im-
plies that if and if .
For connections such that , we select the value

that satisfies

Equation (2) further specifies that if the region labels differ,
the prior on is a Bernoulli distribution with parameter . Ad-
ditionally, if (the edge is healthy), then the func-
tional connectivity is the same in both populations with proba-
bility , and it differs with probability . Likewise, if ,
then the functional connectivity differs between the populations
with probability and is the same with probability . After
some algebraic manipulations we arrive at the decision rule for
the functional model

(40)

where is defined in (24) and the parameters are estimated
via the fixed-point algorithm in the Appendix.
The joint decision rule is similarly derived by incorporating

the anatomical constraints in (7) and (8).

C. Varying the Region Prior

Although our framework enables us to estimate all unknown
parameters, we further explore the solution space by specifying
the expected number of diseased regions via the prior . In
particular, the evolution of disease foci across a range of prior
(in this work ) illustrates the stability of our

model in explaining the data. Moreover, tuning is an intuitive
way to inject clinical knowledge into our framework and may
be useful in certain applications. Fixing does not affect the
update equations in Section IV.

D. Model Robustness

We evaluate the robustness of our approach by fitting the
models to random subsets of the data. Specifically, we with-
hold subjects from each population. The value of is varied

from . This corresponds to leaving out between
5%–52% of the subjects. We resample the data 20 times for
each value of and consider the region posterior statistic ,
as given in (39), averaged across all runs.

VI. EXPERIMENTAL RESULTS—SYNTHETIC DATA

We first evaluate the robustness and sensitivity of our algo-
rithms using synthetic data. Our primary focus is on the effect of
the parameters and on identifying the disease focus. We ex-
pect the performance to improve with increasing and worsen
with increasing . This is because higher values of raise the
number of functional connectivity differences associated with
each disease foci. Consequently, the algorithms can better detect
these regions. In contrast, larger values of increase the number
of functional differences involving healthy regions, which neg-
atively impacts the final quality of estimation.
We sweep the parameter values across the ranges

and : for each pair, we
generate the latent connectivity templates and observed data
according to the generative models in Fig. 1(b) and Fig. 2(b).
We fit the data using the algorithms presented in Section IV and
compute the false-negative (Type I) and false-positive (Type II)
errors based on theMAPestimates for each region .
We mimic the organization of our clinical dataset by speci-

fying a template with 78 regions (39 per hemisphere) and with
two disease foci in each hemisphere. Throughout this section,
we fix the functional prior to the value inferred from the
clinical experiments. We also sample the latent anatomical con-
nectivity such that the intra- and inter-hemisphere statistics
match those of our clinical data.
We consider two likelihood parameterizations for

, as shown in Table II. The Good Data
parameterization assumes a clear separation between the
data distributions for different latent connectivity values. In
this case, we can accurately infer the connectivity templates

, which are then used for region assignments . The
Noisy Data parameterization uses the ML parameter esti-
mates from the clinical experiments to generate the observed
synthetic measurements. As reported in Table III, there is a
significant overlap in the ML data distributions. Hence, we
observe the effects of noise on the estimated latent connectivity
and region assignments.
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Fig. 3. Average number of mislabeled region assignments when sampling from the functional model. The solid lines correspond to fitting the functional model,
and the dashed lines represent the joint model results. The error bars denote one standard deviation. Type I error corresponds to the number of disease foci that
were missed by our algorithm. Similarly, Type II error denotes the number of healthy regions that were incorrectly identified as diseased. (a) Good Data, Missed
disease foci. (b) Good Data, False positive region assignments. (c) Noisy Data, Missed disease foci. (d) Noisy Data, False positive region assignments.

A. Sampling From the Functional Model

Given the region labels , we sample the graph structure ,
the latent functional templates and the observed fMRI cor-
relations according to (2)–(5). In order to fit the joint
model, we independently generate the latent anatomical con-
nectivity and the observed DWI measures via (6) and
(9), respectively. We resample the latent connectivity templates
and observed data 10 times to collect error statistics.
Fig. 3 reports the errors in determining the region labels

across 10 samples of the latent connectivity templates and
corresponding observed data. Unsurprisingly, the functional
model achieves uniformly lower Type I and Type II errors. This
is because the functional model exploits all pairwise connec-
tivity information when determining the region labels, whereas
the joint model must rely on a random subset of connections,
specified by . Nonetheless, the detection accuracy of the
joint model improves significantly for larger values of . The
parameter controls the density of nonzero edges in the graph
. Hence, as increases, we are more likely to observe func-
tional connectivity differences along the randomly generated
anatomical template .

The parameter influences the rate of false-positive assign-
ments, particularly for the joint model. Intuitively, higher values
of produce a greater number of (spurious) functional connec-
tivity differences involving healthy regions. Therefore, the al-
gorithm is more likely to incorrectly label one of these regions
as diseased.
Despite the large variability in Type II error in

Fig. 3(b) and (d), on average fewer than two (of 74) healthy
regions are labeled as disease foci. This behavior suggests
an implicit regularization in our framework. Specifically,
labeling a region as diseased permits the associated functional
connections to differ between groups, which can lower
the free energy. However, connections to all other foci are
automatically diseased, which may come with a cost. Our
algorithm balances these competing influences by identifying a
sparse set of disease foci.
Finally, we observe that the error rates are similar for both

the Good Data and the Noisy Data likelihood parameteri-
zations. This indicates that errors in region assignments are pri-
marily due to functional differences that are inconsistentwith the
underlying disease foci rather than to noisy data observations.
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B. Sampling From the Joint Model

We now evaluate the model in a situation when the functional
effects of a disease are restricted to direct anatomical pathways.
Given the region labels , we generate the control template ,
the latent anatomical connectivity and the graph structure
according to the model in Fig. 2(b). However, we modify

the construction of the clinical template . Since the joint
model does not impose any relationship between the values

and in the absence of an anatomical connection, the
latent functional templates differ dramatically when .
The functional model assumes all connections are equally
important. Consequently, it cannot detect the true disease foci
amid the overwhelming number of unrelated connectivity
differences. For this reason, we sample using (4), repeated
below for convenience

Since if , we omit the multinomial prior
when there is no underlying anatomical connection. Instead,
we encourage the latent functional connectivity templates to
be the same in the control and clinical populations. Although
not fully consistent with the joint model, the above equation
enables us to fit the functional model with some degree of
accuracy. The observed data is generated ac-
cording to (5) and (9). We repeat the experiment 10 times to
collect error statistics.
Fig. 4 illustrates the error in region assignments across 10

instantiations of the latent connectivity templates and observed
data measures. Despite modifying the sampling procedure to
accommodate the functional model, it exhibits significantly
worse detection accuracy than the joint model for nearly all

values. The performance reduction can be attributed to
the anatomical constraint, which reduces the effective number
of connections, and subsequently the number functional dif-
ferences, associated with each region by 40%–60%. Since the
functional model treats all connections equally, the reduced
number of functional differences is insufficient to pinpoint the
disease foci. In contrast, the joint model adjusts the number
of connectivity differences associated with a given region by
the number of anatomical connections. Hence, the algorithm
can isolate the diseased regions based on fewer differences.
Despite the poor detection performance, the functional model
demonstrates lower Type II error. This suggests that it produces
sparser estimates of the disease foci than the joint model.
We also observe similarities between our synthetic results in

Figs. 3 and 4. As expected, the detection accuracy improves
with increasing , as it results in a greater number of functional
differences associated with each diseased region. In addition,
the Type II error variance is high, but on average, relatively
few healthy regions are mislabeled. Finally, the error rates are
similar for both likelihood parameterizations. Once again, this
suggests that noise in the latent structure has a greater impact
than the observation noise.
In summary, each model can robustly identify diseased re-

gions if the data is sampled accordingly. In Fig. 3, the joint

model exhibits slightly worse detection accuracy than the func-
tional model; however, Fig. 4 reports a considerable drop in per-
formance of the functional model when applied to the joint data.
Both models exhibit an intrinsic regularization and infer sparse
sets of foci with few false positive assignments.

VII. EXPERIMENTAL RESULTS—CLINICAL DATA

A. Image Acquisition and Preprocessing

We demonstrate ourmodel on a study of 19male patients with
chronic schizophrenia and 19 healthymale controls. The control
participants were group matched to the patients on age, hand-
edness, parental socioeconomic status, and an estimated pre-
morbid IQ. For each subject, an anatomical scan (SPGR,

s, ms, cm mm ), a diffu-
sion-weighted scan (EPI, s, ms,
cm, mm, 51 gradient directions with

s/mm , eight baseline scans with s/mm ), and a
resting-state functional scan (EPI-BOLD, s,
ms, cm, mm) were acquired
using a 3T GE Echospeed system.
We segmented the structural images into 77 anatomical re-

gions with Freesurfer [35]. The DWI data was corrected for
eddy-current distortions using the FSL FLIRT algorithm [36]. A
two-tensor tractography was used to estimate the white matter
fibers [37]. We computed the DWI observation in subject
by averaging FA along all fibers that connect regions and . If
no tracts were found, was set to zero.
We discarded the first five fMRI time points and performed

motion correction by rigid body alignment and slice timing cor-
rection using FSL [36]. The data was spatially smoothed using a
Gaussian filter, temporally low-pass filtered with 0.08 Hz cutoff,
and motion corrected via linear regression. Finally, we removed
global contributions to the time courses from the white matter,
ventricles and the whole brain. We computed the fMRI mea-
surement as the Pearson correlation coefficient between the
mean time courses of regions and in subject .

B. Significant Regions

Fig. 5 illustrates the detected disease foci for
the functional and joint models, respectively. We color each re-
gion according to – such that red corresponds to
low significance and yellow indicates high significance. Each
method identified three disease foci, all of which are signif-
icant. The functional model implicated the left posterior cin-
gulate , the right posterior cingulate

and the left transverse temporal gyrus
(Heschl’s gyrus) . The joint mode im-
plicates a different subset of regions, namely, the right poste-
rior cingulate , the right superior temporal
gyrus , and the left superior temporal gyrus

.
Both models identify significant foci in the default network

and in the temporal lobes of the brain. Interestingly, we observe
symmetry in region assignments across the hemispheres, as evi-
dent for the posterior cingulate (PCC) and the superior temporal
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Fig. 4. Average number of mislabeled region assignments when sampling from the joint model. The solid lines are obtained when fitting the functional model,
and the dashed lines correspond to the joint model results. The error bars denote one standard deviation. Type I error corresponds to the number of disease foci that
were missed by our algorithm. Similarly, Type II error denotes the number of healthy regions that were incorrectly identified as diseased. (a) Good Data, Missed
disease foci. (b) Good Data, False positive region assignments. (c) Noisy Data, Missed disease foci. (d) Noisy Data, False positive region assignments.

gyri (STG). This phenomenon may arise from the well-docu-
mented symmetry found in resting-state fMRI correlations [38].
We discuss the differences between the functional and joint re-
sults in Section VIII.
Table III reports the parameters inferred by our algorithms.

We observe that the fMRI likelihood parameters are almost
identical for both algorithms. This suggests that the difference
between the two results in Fig. 5 is driven by the hierarchical
structure from connections to region assignments rather than
by the inference of latent functional connectivity from the data.
Additionally, we observe consistency in parameter estimates
across random subject relabelings in the permutation procedure
(not shown). This implies that the main effects of permuting the
subject diagnoses are reflected in the latent assignments rather
than in the data likelihood.

C. Differences in Functional Connectivity

Fig. 6 displays the estimated graph of anomalous functional
connectivity for each model. The functional model identifies
abnormal connections distributed throughout the brain. For the
joint model, abnormalities originating in the posterior cingulate

project to the midbrain and frontal lobe, whereas abnormalities
stemming from the right and left superior temporal gyri tend to
span their respective hemispheres. This difference in organiza-
tion is explained by the constraint in Fig. 2(a) that functional
anomalies should occur along anatomical pathways.
Both models detect an overall reduction in functional con-

nectivity for schizophrenia patients. Of notable exception are
connections to the frontal lobe. This phenomenon has been re-
ported in prior studies of schizophrenia [15] and is believed to
interfere with perception by misdirecting attentional resources.

D. Effect of Region Prior

Fig. 7 illustrates the results of varying the prior of the
region indicator vector for the functional and joint models,
respectively. We color each of the selected regions according to
the smallest value of such that the marginal posterior of the
region being a focus is greater than 0.2 (i.e., ). The
yellow regions are always identified as foci, whereas the orange
and red regions are only selected for larger prior values.
We observe that the functional model identifies a stable set of

disease foci with an additional region for large values of . In
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Fig. 5. Significant regions based on permutation tests ( , uncorrected ) identified by the functional model (top) and the jointmodel (bottom). The
colorbar corresponds to the negative log p-value.Wepresent the lateral andmedial viewpoints for each hemisphere. The highlighted regions are the posterior cingulate
(L PCC&RPCC), the transverse temporal gyrus (L TTG), and the superior temporal gyrus (L STG&RSTG).

contrast, the sets of affected regions in the joint model form a
nested substructure as increases. It suggests an initial set of
disease foci, identical to the significant regions in Fig. 5. For in-
creasing , the algorithmprogressively includes regions that ex-
hibit some functional abnormalities but are not as strongly im-
plicated by the data. This extended set of regions is a superset of
those identified by the functionalmodel.We elaborate on the dif-
ferencesbetweenthetworesults inFig.7 in thefollowingsection.

E. Model Robustness

Figs. 8 and 9 depict the average posterior probability of each
region being a focus, for the functional model and the joint

model, respectively. We report only the regions for which the
average probability is greater than 0.1; this allows us to focus
on the most prominent patterns. The colorbar indicates the av-
erage posterior probability, such that yellow corresponds to the
strongest disease foci and red denotes the weakest regions.
We observe that the regions with the highest posterior proba-

bilities correspond to the significant disease foci in Fig. 5. Fur-
thermore, these regions are consistently identified by ourmodels
when omitting subjects from each population.
This is true for both the functional and the joint models. Intu-
itively, as we withhold more subjects (top row to bottom row in
Figs. 8 and 9), the algorithm is less consistent across random re-
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Fig. 6. Estimated graph of functional connectivity differences. The red nodes indicate the disease foci. Blue lines indicate reduced functional connectivity and
yellow lines indicate increased functional connectivity in the schizophrenia population. (a) Functional model. (b) Joint model.

samplings of the data. Specifically, the average posterior proba-
bilities of the significant foci decrease as increases, i.e., these
regions are less frequently selected by the algorithm. Although
the model pinpoints additional regions that are not among the
significant foci in Fig. 5, the average posterior probabilities of
these new regions are low and nearly all of them are discovered
when sweeping the region prior in Fig. 7.
Finally, our holdout experiments for (not

shown) are increasingly initialization-driven. Specifically, the
algorithm rarely adds or removes regions from the initial set of
disease foci. Consequently, as increases, the solutions are
less consistent across initializations. Such behavior may indi-
cate that the training sets are insufficient to robustly estimate the
region labels; hence, our variational algorithm is more likely to
get caught in local minima.
To summarize, our results are consistent across reasonable

perturbations in the dataset. This gives us confidence that the
corresponding regions are relevant to schizophrenia and merit
further exploration (e.g., follow-up anatomical or task fMRI
studies). Clearly, our algorithm requires an adequate number of
subjects to robustly estimate the population differences. Empiri-
cally, we find that the results are stable given 15 subjects in each
group. Nonetheless, population size is an important considera-
tion in future applications of this model.

VIII. DISCUSSION

We present a unified approach to infer regions associated with
a disorder based on population differences in connectivity. Our
first model operates on the complete graph of pairwise func-
tional connections. Our second model incorporates anatomical
constraints into this basic framework. We formulate a varia-
tional EM algorithm for maximum likelihood estimation of the
model parameters. The algorithm simultaneously infers the pos-
terior distribution over the region labels and the graph of ab-
normal functional connectivity.

Fig. 5 depicts the diseased regions implicated by each model.
The main difference between the two results is that the func-
tional model labels the transverse temporal gyrus as a disease
focus, whereas the joint model pinpoints the superior temporal
gyrus as relevant for schizophrenia. This discrepancy is par-
tially explained by the size difference between these regions.
As seen in Fig. 10, we identify significantly more neural connec-
tions involving the (large) STG than for the TTG. Hence, we are
more likely to detect functional abnormalities associated with
the STG that occur along direct anatomical pathways. This is re-
flected in Fig. 6(a). Themajority of abnormal functional connec-
tions emanating from the TTG are inter-hemispheric, and hence,
do not coincide with latent anatomical connections. Fig. 10 sug-
gests that the quality of the joint model is largely dependent
on the detection power of tractography. This underscores the
need for advanced tractography algorithms that reliably iden-
tify long-range connections.
The TTG, or Heschl Gyrus, plays crucial role in auditory per-

ception and language processing. Reduction in TTG volume,
especially in the left hemisphere, has been associated with hall-
mark schizophrenia symptoms, such as auditory hallucinations,
delusions and thought disorder [26]. Heschl’s gyrus has also
been linked to disease progression [39], suggesting its crucial
role in schizophrenia pathophysiology.
The STG connects with heteromodal neocortical regions

and temporolimbic areas. Electrophysiology and PET/fMRI
studies in humans highlight the STG’s role in the interpretation,
production and self-monitoring of language. There is also
evidence for structural and functional abnormalities of the STG
in schizophrenia, which may be associated with formal thought
disorder and auditory hallucinations [32], [40].
The PCC is one of the key structures in the default mode

network. Recent functional schizophrenia studies [41] reported
altered temporal frequency and spatial location of the default
mode network. This suggests that the default network may be
under- or overmodulated by key regions, including the anterior
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Fig. 7. Evolution of the disease foci when varying the region prior for the functional model (top) and the joint model (bottom). The colorbar corresponds to
the smallest value of such that . The highlighted regions correspond to the posterior cingulate (L PCC & R PCC), the transverse temporal gyrus (L
TTG & R TTG), the superior temporal gyrus (L STG & R STG), the postcentral gyrus (R pC), the frontal pole (L FP), the caudal middle frontal gyrus (R CMF),
the transverse temporal gyrus (L TTG), the pars orbitalis (L pOrb), the entorhinal cortex (R Ent), and the lateral occipital cortex (R LOcc).

and the posterior cingulate cortex. Our results confirm this
hypothesis, further illustrating how such modulation can affect
functional connectivity, leading to decreased connectivity
between PCC and posterior parietal and temporal regions and
increased connectivity between PCC and occipital and frontal
lobes reported in Fig. 6. Reduced connectivity in the posterior

cingulate has been shown to correlate with both positive and
negative symptoms of schizophrenia [30].
The role of anatomy is also evident in the graphs of aberrant

functional connectivity depicted in Fig. 6. The functional results
are distributed across the brain with little high-level organiza-
tion. In contrast, the connections identified by the joint model
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Fig. 8. Average marginal posterior probability across 20 resamplings of the data based on the functional model. The results are displayed for subjects
omitted from each population (top row) to omitted subjects (bottom row). The colorbar indicates the average posterior probability. The regions correspond
to the posterior cingulate (L PCC & R PCC), the transverse temporal gyrus (L TTG & R TTG), the precentral gyrus (L pC), and the caudal middle frontal gyrus
(R CMF).

are largely separated by hemisphere and seem consistent with
estimated white matter tracts. Despite their differences, both
models detect a similar global pattern, which may reveal under-
lying neurological changes induced by schizophrenia. Specifi-
cally, we observe increased functional connectivity to the frontal
lobe and reduced functional connectivity between the parietal/
posterior cingulate region and the temporal lobe in the clinical
population.
Increased connectivity between the default network and

the medial frontal lobe, both at rest and during task, has been
reported in schizophrenia [15], [42]. It is believed to interfere
with perception of the external world by misdirecting atten-
tional resources. Interestingly, decreased connectivity within

the default network has been described as well [18], [30].
The latter study reported decreased functional connectivity
between the posterior cingulate gyrus and the hippocampus,
which is consistent with our findings. The relationship between
disruptions in functional connectivity and the integrity of the
fornix has also been suggested. Along with prior findings, our
results suggest an inverse relationship between connectivity
in the temporal and frontal parts of the default network. Such
“anticorrelations” have been previously described between the
default and task-related networks. Two connections along white
matter tracts in Fig. 6(b) have been implicated in schizophrenia
[43]: the connection between the left and the right STG,
provided by corpus callosum, and the connection between
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Fig. 9. Average marginal posterior probability across 20 resamplings of the data based on the joint model. The results are displayed for subjects omitted
from each population (top row) to omitted subjects (bottom row). The colorbar indicates the average posterior probability. The regions denote the superior
temporal gyrus (L STG & R STG), the posterior cingulate (R PCC), and the frontal pole (L FP).

posterior and anterior CG, provided by cingulum bundle. These
two white matter tracts suggest a direct, causal relationship
between anatomical and functional connectivity disruptions in
schizophrenia.
Tuning the region prior parameter enables us to explore

the solution space. Once again, we observe differences between
the two models. In particular, the functional results are consis-
tent across a large range of prior values. In contrast, the joint
model localizes nested subsets of disease foci as increases.
This suggests that the anatomical constraint increases the sen-
sitivity of the joint model. Specifically, the effective number
of connections to each region is reduced to the number of di-
rect anatomical pathways. Hence, the joint model selects dis-
eased regions based on fewer functional connectivity differ-

ences. Since many regions are weakly implicated by the data
(i.e., associated with merely a few abnormal connections), bi-
asing the algorithm through the region prior causes them to
be selected as foci.
The question remains: whichmodel shouldwe use? Presently,

there is no standard technique to integrate anatomical and func-
tional connectivity in order to pinpoint region impairments.
Therefore, we argue that this is largely a philosophical issue
based on a set of assumptions one makes about the brain. This
work presents two different viewpoints. Clearly, if we assume
that impairments of a neurological disorder affect functional
synchrony between any two brain regions equally, then Fig. 3
suggests that we should fit the functional model. Similarly,
if we assume that the most salient effects of a disorder occur



2096 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 32, NO. 11, NOVEMBER 2013

Fig. 10. Estimated neural pathways to the superior temporal gyri and the transverse temporal gyri. (a) Superior Temporal Gyri. (b) Transverse Temporal Gyri.

along direct anatomical connections, then Fig. 4 encourages us
to choose the joint model. If we are unsure, then our synthetic
results suggest that, on average, we are better off using the joint
model. This is because the joint model achieves higher detec-
tion accuracy on data sampled from the functional model than
vice versa. In the absence of latent anatomical connectivity,
the joint model compares aggregate statistics of the templates
and . Therefore, data sampled according to the functional

model in Fig. 1(b) is fairly consistent with the assumptions
of the joint model. In contrast, the functional model cannot
be fitted accurately to data sampled from the joint model in
Fig. 2(b). A future extension of this work may consider all
two-stage anatomical pathways as being relevant for disease
localization. This can be achieved by incorporating the pairwise
terms into the distribution for the functional template
of the clinical population in (8).
Encouragingly, both models in our current formulation lo-

calize similar disease foci. In fact, the joint model recovers both
posterior cingulate regions aswell as the left transverse temporal
gyruswhenwe vary the region prior parameter . The increased
sensitivity of the joint model may prove beneficial, as it identi-
fies a larger set of candidate regions (bottom image in Fig. 7). The
effects of a complex disorder like schizophrenia are often subtle.
Hence, the functional model, which only identifies the strongest
functionaldifferences,maynotfindall relevantdiseasefoci.
The results may be influenced by our selection of regions.

If the regions are too small, the variability in DWI tractog-
raphy across subjects makes it difficult to infer the template
anatomical connectivity and group-level parameters [24]. How-
ever, larger regions smooth out important functional connec-
tivity information. In this work, we rely on Brodmann regions
identified by Freesurfer [35]. Brodmann areas provide anatom-
ically meaningful correspondences across subjects that roughly
correspond to functional divisions within the brain. Moreover,

these regions are large enough to ensure stable tractography re-
sults. We emphasize that our framework applies readily to any
set of ROIs that are defined consistently across subjects.
Finally, our model is designed to capture population differ-

ences to better understand the connectivity patterns induced by
a disorder. The insights gained from our framework can subse-
quently be integrated with other types of data in order to build
a comprehensive picture of a given neurological condition. Fur-
thermore, once we learn the model parameters, we can compute
the likelihood of a new subject belonging to each group. This
score can later be correlated with behavioral and cognitive mea-
sures for patient-specific analyses.
We recognize the limitations of our generative models,

especially those related to simplicity. For example, our joint
model considers only direct anatomical connections and places
a binary constraint on the graph of functional aberrations;
our functional model ignores all anatomical information. Fur-
thermore, we model latent connectivity via discrete random
variables, which may marginalize subtle variations between
groups. Finally, we assume a single set of disease foci that
share mutually abnormal connectivity. In reality, neurological
disorders can arise from several impairments in the brain, and
the relationship between these diseased regions is unknown.
One can even imagine a collection of independent disease
clusters that do not interact directly.
These choices are deliberate on our part. Despite advance-

ments in the field, the effects of schizophrenia on brain con-
nectivity are neither well understood nor well characterized. In
this work we formulate a simple relationship between region
assignments and latent connectivity. Furthermore, given the po-
tentially large amounts of inter-subject variability and external
noise, we intentionally reduce the number of model parameters
to avoid over-fitting. These limitations provide ample opportu-
nities for future exploration.
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IX. CONCLUSION

We propose a novel probabilistic framework that integrates
population differences in connectivity to isolate foci of a neuro-
logical disorder. We present two variations of the model. The
first considers functional connectivity only, as inferred from
resting-state fMRI data. The second uses anatomical connec-
tivity information from DWI tractography to constrain the func-
tional effects.We demonstrate that ourmethod identifies a stable
set of schizophrenia hubs in the default network and in the tem-
poral area of the brain. Prior clinical studies have linked these
regions to the effects of schizophrenia. We uncover additional
regions by adjusting the prior on the number of disease foci.
These results establish the promise of our approach for aggre-
gating connectivity information to isolate region effects.

APPENDIX

This appendix derives the Newton’s method update for
based on the functional model. The parameters are tied
through (4); the only term of the free energy objective that de-
pends on either parameter is

(41)

where we have substituted the definitions from (21)–(24) into
the expression. The joint update for uses the following fixed
point iteration:

where the first and second derivatives of (41) with respect to
are given by
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