Skip to main content

A snapshot in time: Study captures fleeting genetic mutations that can alter disease risk

June 28, 2019
Double helix

Image: Getty Images

Using a series of genetic snapshots, a team of scientists from Johns Hopkins University and the University of Chicago captured evidence of a so-called “butterfly effect”—a term popularized in film and literature as the ability for even a small action in the past to have major, sometimes life-changing effects in the future—in heart muscle cell development. They say this new view into the sequence of gene expression activity may lead to a better understanding of disease risk.

The study, published June today in Science, identifies hundreds of DNA regions that are associated with differences in gene expression between individuals.

“The human genome has been studied extensively, but how each person’s cells use the genome is complex, dynamic, and not as well understood. In this study we looked for cases where genetic differences between people change during cell development,” says Alexis Battle, an associate professor in the Department of Biomedical Engineering at Johns Hopkins University and one of the paper’s senior authors.

Previous studies have identified thousands of regions of DNA that can affect gene expression—called expression quantitative trait locus, or eQTL—but they’ve relied on data collected at a single point in time, says Battle. Many of these differences in gene expression can occur at different stages of development or vary depending on environment, leading researchers to potentially miss important disease associations that can’t be studied in fully-developed tissue.

Read the full article on The Hub >>

Back to top