Student develops microfluidics device to help scientists identify early genetic markers of cancer

October 16, 2018
HYPER-melt

O’Keefe’s HYPER-melt device (injected with dye for easier viewing) will help clinicians detect cancer and precancerous materials by separating blood samples into ever smaller portions for easier analysis

As anyone who has played “Where’s Waldo” knows, searching for a single item in a landscape filled with a mélange of characters and objects can be a challenge. Chrissy O’Keefe, a PhD student in the Department of Biomedical Engineering, understands this all too well: She spends her days searching for subtle DNA changes in cancer cells hiding among many healthy cells.

O’Keefe uses a device she and a team developed to analyze blood samples at the molecular level. Her goal? To detect cancer in the very early stages, long before symptoms arise.

Chrissy O'Keefe

Chrissy O’Keefe

“Since blood reaches every tissue in the body, including cancer cells, it picks up pieces of cancer DNA,” she explains. “While molecular analysis has seen great advances, there are still limitations in their ability to detect rare or infrequent gene changes and rare biomarkers.”

In a recent issue of Science Advances, O’Keefe describes the molecular analysis hardware and software techniques her team developed to make finding these DNA changes easy and efficient. Her team includes Jeff Wang, core faculty member of the Institute for NanoBioTechnology and a professor in the Department of Mechanical Engineering, and Tom Pisanic, INBT senior research scientist.

O’Keefe explains that cancer DNA, like the DNA of all organisms, changes in response to its environment, favoring changes that help it survive long-term. These changes, which include mutations, deletions, frameshifts, and methylation, can be large and obvious, but some can be small and almost unnoticeable, she says. Small changes, even a single nucleotide on a single gene, can give cancer DNA an advantage. Therefore, detecting those changes early can inform physicians of potential problems, allowing medical intervention to begin immediately and improving patient survival rates.

Excerpted from The Hub >>

Back to top