Gilding technique inspired by ancient Egyptians may spark better fuel cells for tomorrow’s electric cars

December 20, 2017
Chao Wang and Lei Wang

Chao Wang (right) inspects a glass vial containing cobalt cores, each coated with a thin layer of platinum. At left is postdoctoral fellow Lei Wang. (Image: Will Kirk / Homewood Photography)

To make modern-day fuel cells less expensive and more powerful, a team led by Johns Hopkins chemical engineers has drawn inspiration from the ancient Egyptian tradition of gilding.

Egyptian artists at the time of King Tutankhamun often covered cheaper metals (copper, for instance) with a thin layer of a gleaming precious metal such as gold to create extravagant masks and jewelry. In a modern-day twist, the Johns Hopkins-led researchers have applied a tiny coating of costly platinum just one nanometer thick—100,000 times thinner than a human hair—to a core of much cheaper cobalt. This microscopic marriage could become a crucial catalyst in new fuel cells that generate electric current to power cars and other machines.

The new fuel cell design would save money because it would require far less platinum, a very rare and expensive metal that is commonly used as a catalyst in present-day fuel-cell electric cars. The researchers, who published their work earlier this year in Nano Letters, say that by making electric cars more affordable, this innovation could curb the emission of carbon dioxide and other pollutants from gasoline- or diesel-powered vehicles.

“This technique could accelerate our launch out of the fossil fuel era,” said Chao Wang, a Johns Hopkins assistant professor in the Department of Chemical and Biomolecular Engineering and senior author of the study. “It will not only reduce the cost of fuel cells. It will also improve the energy efficiency and power performance of clean electric vehicles powered by hydrogen.”

Excerpted from The Hub. Read more about Chao Wang’s research in the Winter 2018 issue of JHU Engineering magazine.

Back to top