Colloidal Quantum Dots for Short-Wave Infrared Photon Sensing
Presenter:
Renita Mwangachuchu
Interested in Renewable Energy
Associate’s in Engineering from Howard Community College
What are Colloidal Quantum Dot Particles?

Emerging Technology

Nano sized semiconductor particles

Solution-processed

Quantum and electrical properties size-tunable
Why Infrared?

Silicon: 400-1100nm

Gallium Arsenide: 800-2000nm

Solution-Processed Colloidal Quantum Dots
More Details on Colloidal Quantum Dots
Goals

To synthesize 1 eV nanoparticles

- Peak at 1240nm
- Peak to Valley Ratio at least 2.0
Methods

Results
Results

- 1288 nm CQDs with peak to valley ratio of 1.5
- 964 nm CQDs with peak to valley ratio of 3.36
Results

1128 nm CQDs with peak to valley ratio of 2.07
Photodetectors and Optoelectronics

Plasmonics
Silica-Gold Core-Shell Nanoparticles

![Diagram of Silica-Gold Core-Shell Nanoparticles]

- **SiO$_2$ Core** (Diameter 60 nm)
- **Gold Shell** (Thickness 20 nm)
- **SiO$_2$ Core** (Diameter 60 nm)
- **Gold Shell** (Thickness 5 nm)

Extinction (Arb. Units)

Wavelength (nm)

- 20 nm
- 10 nm
- 7 nm
- 5 nm

![Graph of Extinction vs. Wavelength]
Discussion

Photodetectors can be used in:

- Imaging devices such as MRI scanners, X-rays, satellite imaging equipment
- Energy harvesting devices such as solar cells and solar panels
- Other electronic devices that make use of photodetectors such as fibre-optic cables, spectrophotometers,
Thank You!
Acknowledgements

Dr. Susanna Thon
Yan Cheng
Botong Qui
Ebuka Arinze
Yida, Gary, Garett

This work has been supported by NSF grant number EEC-1460674
References

http://lup.lub.lu.se/luur/download?func=downloadFile&recordOId=2862856&fileOId=2862857

http://www.ele.uri.edu/Courses/ele432/spring08/photo_detectors.pdf

https://en.wikipedia.org/wiki/Quantum_dot_solar_cell#Quantum_dots

https://en.wikipedia.org/wiki/Sun