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ABSTRACT

Pitch correction is the process of adjusting the original pitch of a
recording or live performance in order to fit it to specific key or
match a target profile. Pitch correction systems typical consist of
several stages: original pitch estimation, pitch curve modification,
and resynthesis of the audio with the target pitch curve. Unfor-
tunately, the process of resynthesis often leads to significant arti-
facts that degrade the overall quality of the modified audio, render-
ing it unnatural and unpleasant. In this work, we introduce Diff-
Pitcher1, a pitch control model that leverages diffusion modeling
and source-filter mechanisms to generate high-quality and natural-
sounding voice signal matched to a target pitch while ensuring con-
tent and timbre consistency. To demonstrate the effectiveness of
the proposed method, we evaluate Diff-Pitcher by both subjective
and objective experiments in scenarios of pitch shifting and auto-
matic pitch correction. Our results show that Diff-Pitcher outper-
forms previous pitch control methods in sound-quality and natural-
ness with great pitch controllability. Furthermore, we apply Diff-
Pitcher in template-based and score-based automatic pitch correc-
tion systems and explore their application potentials. Meanwhile,
for score-based automatic pitch correction, we improve the pitch
predictor proposed in KaraTuner to handle variable-length inputs.

Index Terms— Pitch correction, singing voice synthesis, dif-
fusion probabilistic model

1. INTRODUCTION

Pitch correction is an important process of sonic refinement that is
integral to the music industry. It involves the delicate adjustment
of musical notes to harmonize singing intonation, transforming off-
key performances into melodious output that resonates with listen-
ers. This critical system involves several stages, starting with the
initial pitch estimation, followed by a detailed pitch curve modifi-
cation, and culminating in the final resynthesis of the audio using
the calibrated target pitch curve.

During the first two stages, there are two primary pitch cor-
rection tasks: manual pitch editing and automatic pitch correc-
tion (APC). Manual pitch editing, typically performed by a music
producer or recording engineer, requires domain expertise and in-
volves the editing of the pitch curve to the desired score. This pro-
cess, while effective and accurate, is time-consuming and requires
professional training. On the other hand, APC can automatically
generate the target in-tune pitch curve, making it a more fast and
user-friendly option for average users. APC employs three strate-
gies: scale-based, template-based, and score-based. Scale-based
approaches, such as those used in Antares Auto-Tune, shift each

∗Authors supported by ONR N00014-23-1-2050
1Code and audio samples: https://jhu-lcap.github.io/Diff-Pitcher/

vocal note to the nearest one in a chosen scale. Deep Autotuner [1],
a data-driven model, predicts pitch shifts based on the accompani-
ment. Template-based methods, like [2], transfer the pitch curve
from a professional recording to user’s singing, creating natural vo-
cals but requiring temporal alignment. Score-based methods, like
[3] and KaraTuner [4], use MIDI sequences to generate target pitch
curves. The former employs a rule-based algorithm while the latter
uses a vocal-adaptable pitch predictor. Score-based APC creates a
balance between scale-based and template-based methods.

The process of resynthesizing the audio signal with the target
pitch contour is also a critical component in a pitch correction sys-
tem. Methods based on phase vocoder and source filter vocoders are
widely used in commercial pitch correction software. TD-PSOLA
[5] is a phase vocoder which extracts pitch periods from a mono-
phonic voice and shifts copies of the pitch period to change the
fundamental frequency. Source filter-based methods such as Lin-
ear Predictive Coding (LPC) [6] and WORLD [7] vocoder repre-
sent speech or singing signal as a combination of a sound source
excitation and an acoustic filter, which can be considered as vocal
cord and vocal tract, and control pitch by changing the fundamen-
tal frequency of the sound excitation impulse. In recent years, neu-
ral network-based pitch controllable vocoders have become increas-
ingly popular to obtain better sound quality and naturalness. LPC-
Net [8] incorporates LPC in the neural network to synthesize natural
speech signals and is capable of pitch-shifting. CLPCNet [9] further
improves the capability of pitch-shifting of LPCNet. KaraTuner [4]
proposes a pitch-controlled vocoder that replaces the spectrogram
input in the Fre-GAN vocoder with the spectral envelope and pitch
contour. Source-Filter HiFi-GAN (SiFi-GAN) [10] proposes a hi-
erarchical fusion framework which has a source excitation network
and a acoustic filter network based on the HiFi-GAN architecture.

In recent, Diffusion Probabilistic Models (DPMs) [11] have
become increasingly prevalent in the field of generation tasks due
to their remarkable performance and stable training characteristics,
particularly when compared to Generative Adversarial Networks.
The fruitful research conducted at the intersection of DPMs and au-
dio signal generation and synthesis tasks has led to significant ad-
vances and has demonstrated superior capabilities. Various applica-
tions of DPMs have emerged, including neural vocoder [12], voice
conversion [13], singing voice synthesis [14], and text-to-audio gen-
eration [15].

In this study, we present Diff-Pitcher, a diffusion-based pitch
control model designed for pitch correction systems. Our work
makes the following contributions: (1) We propose the first
diffusion-based pitch control model Diff-Pitcher to the best of our
knowledge. The proposed method achieves excellent pitch control-
lability and can generate natural and pleasant voices. (2) We im-
prove the vocal-adaptable pitch predictor proposed in KaraTuner
for score-based APC, enabling it to handle variable-length inputs.
(3) We apply Diff-Pitcher in templated-based and score-based APC
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Figure 1: The inference framework of the pitch correction system utilizing Diff-Pitcher. The source filter vocoder is either WORLD or LPC
vocoder. The denoising solver is the Stochastic Differential Equation or the Ordinary Differential Equation solver used for diffusion sampling.

and explore their advantages, limitations, and practical applications.

2. METHODOLOGY

As shown in Figure 1, there are three modules in a automatic pitch
correction system: a diffusion-based pitch controller for generating
spectrograms with target pitch contours; a neural vocoder for wave-
form reconstruction; and a vocal-adaptive pitch predictor for pre-
dicting the desired pitch contour based on out-of-tune vocals and
target notes. The pitch controller and vocoder together constitute a
pitch-controllable vocoder. The pitch predictor is used in the score-
based APC system. Each module is independently trained, and they
are combined during the inference process.

2.1. Diffusion-based Pitch Controller

We adapt the diffusion model from DDPMs [11]. The diffusion
model models the conditional distribution pθ(y0|x) where y0 is the
target spectrogram and x contains the conditioning information in-
cluding target pitch and vocal spectrum.

The forward process is a Markov chain with fixed parameters,
and it convert y0 into the latent yT in T steps:

q(y1:T |y0) :=
T∏

t=1

q(yt|yt−1) (1)

A Gaussian noise is added to yt−1 at each diffusion step t:

q(yt|yt−1) := N (yt;
√

1− βtyt−1, βtI) (2)

under a variance schedule β = β1, ..., βT . The diffusion process
can be calculated in a closed form for any step t:

yt =
√
αty0 +

√
(1− αt)ϵ (3)

where ϵ ∼ N (0, I), αt := 1− βt and αt :=
t∏

s=1

αs.

The reverse process is also a Markov chain, and the reverse
transition distribution can be approximated by a diffusion decoder
with parameters θ. To learn the parameters θ, we optimize:

Et,ϵ[Ct||ϵθ(
√
αty0 +

√
1− αtϵ, x, t)− ϵ||22] (4)

where Ct is a constant related to βt. In practice, the Ct term is
dropped.

During the sampling process, a Gaussian noise yT is first sam-
pled, and then the final y0 is generated by iteratively sampling yt−1

for t = T, T − 1, ..., 1 along the reverse process:

yt−1 =
1√
αt

(yt −
1− αt√
1− αt

ϵθ(yt, x, t)) + σtz (5)

where σ2
t =

1−αt−1

1−αt
βt, z ∼ N (0, I) for t > 1 and z = 0 for

t = 1.
The diffusion decoder is trained to predict the noise ϵ added in

the forward diffusion process given the noisy mel spectrogram yt,
the diffusion step t, the pitch f0, and the mel spectrum sp. The
diffusion step t is specified by adding the sinusoidal position em-
bedding [16] into each block of the decoder. The continuous pitch
curve f0 is converted into the log scale, quantized into pitch bins,
and encoded with the sinusoidal position encoding. This approach
allows the pitch controller to utilize its generative capacity to adap-
tively adjust the pitch to better match the vocal spectrum, enhancing
naturalness.Assuming that the impulse source is independent of the
vocal tract, we apply a source-filter algorithm - either WORLD or
LPC vocoder - to extract the vocal spectrum. Vocal spectrum retains
content and timbre information while disentangling the pitch infor-
mation. Following [17], we convert the vocal spectrum into the log-
mel spectrum sp to match the shape of the generation target of the
diffusion model. As a result, the diffusion decoder can be trained in
a self-supervised fashion, taking the original pitch curve and vocal
spectrum as conditioning variables. During the inference stage, we
can manipulate the vocal pitch by using a customized pitch curve
as input. The architecture of the diffusion decoder is based on U-
Net. Following [13], we employ linear attention layers within each
downsample and upsample block, enabling the model to effectively
capture temporal-frequency dependencies.
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2.2. Neural Vocoder

Different from KaraTuner and SiFi-GAN, our pitch controller does
not directly synthesize waveform signals. Instead, it first produces
a mel-spectrogram and subsequently utilizes a neural vocoder to re-
construct the waveform. With this strategy, we significantly reduce
the training cost of the pitch controller. For high-fidelity waveform
reconstruction, we employ BigVGAN [18], a GAN-based large-
scale pre-trained neural vocoder. BigVGAN integrates a periodic
activation function and an anti-aliasing representation in its GAN
generator, which significantly improve audio quality and robust-
ness to unseen voice. Experimental results in [18] demonstrate that
BigVGAN can reconstruct high-quality singing voice.

2.3. Vocal-Adaptable Pitch Predictor

The voice-adaptive predictor, first presented in Karatuner [4], lever-
ages the target musical notes sequence and the out-of-tune vocal
spectrum to generate a custom, in-tune pitch contour for score-
based APC. The musical score forms the pitch curve’s backbone,
with the vocal spectrum providing fine-grained details such as
voiceless and voiced states, gliding, and vibrato. The original pitch
predictor from KaraTuner, based on a Transformer encoder with the
absolute position encoding, struggles with input sequences exceed-
ing its training data length. We fix this issue by using the Position
Encoding Generator (PEG) [19]. The PEG, a zero-padding convo-
lution layer, extends the Transformer’s ability to handle variable-
length sequences without performance sacrifices. Since the vocal
spectrum may contain pitch information, we introduce a random
pitch shift to musical notes and target pitch during training. This
forces the model to rely on target notes to predict the shifted pitch
curve, and thus generates a scaled pitch contour. The pitch predic-
tor is then trained using L1 loss optimization between the predicted
and shifted pitch curves.

3. EXPERIMENTS

3.1. Dataset

To ensure our pitch controller is capable of handling various voices,
we utilize several speech and singing datasets for training. These
include the VCTK multi-speaker English speech dataset [20], the
OpenSinger multi-singer Chinese singing dataset [21], and the Pop-
BuTFy multi-singer English singing dataset [22]. The PopBuTFy
dataset is particularly interesting as it includes pairs of amateur and
professional recordings of the same song, with some amateur ver-
sions being off-key by several semitones. This makes the dataset
valuable for evaluating the performance of the pitch controller in
template-based APC. For validation and evaluation experiments, we
randomly select 8 singers from the PopBuTFy dataset.

We employ two singing datasets with paired recordings and
MIDI annotations to train our voice-adaptive pitch predictor. These
are the CSD dataset [23], comprising 50 Korean and 50 English
songs performed by a single professional singer, and the Opencpop
dataset [24], consisting of 100 Chinese songs sung by a professional
singer. Five songs from the Opencpop dataset are used for valida-
tion, while testing is performed on five different songs from the
PopCS dataset [14], sung by an unseen artist.

For the assessment of our system’s effectiveness in severe out-
of-tune situations, we collect a small dataset featuring paired out-of-
tune and in-tune vocals from 5 singers across 5 Chinese pop songs.
In most instances, the out-of-tune notes deviate randomly by more

than 3 semitones. Each in-tune vocal has its own manually anno-
tated MIDI sequence, using the standard music sheet format. In
this case, the audio and music notes are not perfectly time-aligned,
better reflecting real-world score-based APC scenes.

3.2. Implementation Details

In our experiments, we resample all audio samples to a frequency
of 24 kHz. We convert the waveform into mel-spectrograms using
the frame size of 1024, the hop size of 256, and 100 mel bins. The
same frame size and hop size are used for source-filter algorithms to
extract the vocal spectrum. The order of LPC in the LPC Vocoder
is set as 16. We employ DIO [25] algorithm to estimate f0 during
training and inference.

The U-Net architecture of the diffusion-based pitch controller
comprises 3 downsampling and 3 upsampling blocks. To improve
computational efficiency during the training process, we limit the
input to 128 frames, corresponding to a 1.36-second audio clip. We
set T to 1000 and the β value to constants increasing linearly from
β0 = 0.0001 to βT = 0.02. The pitch controller is trained with the
AdamW optimizer, using a constant learning rate of 5× 10−5. The
voice-adaptive pitch predictor’s transformer encoder consists of two
self-attention blocks. We train the pitch predictor using the AdamW
optimizer with a constant learning rate of 1× 10−4. Both the pitch
controller and the pitch predictor are trained on a single NVIDIA
RTX 3090 GPU.

3.3. Experiment1: Pitch Controller Performance

We use two established pitch-controllable vocoders as baselines,
the algorithm-based WORLD Vocoder and the latest neural net-
work SiFi-GAN. We propose two pitch control models, each com-
posed of a diffusion-based pitch controller and a BigVAN vocoder.
Diff-Pitcher-LPC uses the vocal spectrum extracted from the LPC
vocoder, while Diff-Pitcher-WORLD uses the vocal spectrum ex-
tracted via the cheaptrick algorithm in the WORLD vocoder.

We evaluate these models via objective and subjective tests. In
the objective experiment, we use 200 clips from the PopBuTFy test
set for pitch shifting and reconstruction, assessing pitch controlla-
bility with the Root Mean Square Error of log f0 (RMSE) between
the pitch curve of the synthesized audio and the target pitch curve,
and content consistency with the Word Error Rate (WER) of lyrics
transcribed from original and synthesized audio. For automatic
lyric transcription, we employ Whisper [26], a versatile multilin-
gual automatic speech recognition model which shows promising
accuracy in lyrics transcription. In the subjective experiment, we
apply four models in the template-based APC task. This task offers
more variable and challenging target pitch curves than pitch shift-
ing, and it eliminates any unnaturalness in the pitch curve caused
by the pitch predictor in score-based APC. Though the in-tune and
de-tune recordings are rhythmically aligned, we further align the
pitch contour of the reference audio with the target audio using a
dynamic time warping algorithm based on mel-cepstral coefficients.
Sound quality (noisy vs. clean) and naturalness (robotic voice vs.
close to human voice) are estimated with five scaled Mean Opinion
Scores (MOS) tests on 15 audio clips, 6 from the PopBuTFy test
set and 9 from our custom dataset, with feedback collected from 12
subjects experienced in studio recording or music production, each
randomly evaluating 8 clips per method.

The objective experiment results shown Table 1 can be sum-
maried as follows: (1) Diff-Pitcher-WORLD is comparable to SiFi-
GAN in terms of RMSE, but slightly inferior to the algorithm-based
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Table 1: Objective evaluations results of pitch controllers.

Model −6 Semitones −3 Semitones Reconstruction +3 Semitones +6 Semitones
RMSE ↓ WER ↓ RMSE ↓ WER ↓ RMSE ↓ WER ↓ RMSE ↓ WER ↓ RMSE ↓ WER ↓

WORLD 0.03 2.00% 0.03 2.68% 0.03 3.23% 0.03 3.04% 0.03 2.17%
SiFi-GAN 0.05 2.98% 0.04 2.85% 0.04 3.35% 0.05 2.98% 0.04 3.61%

Diff-Pitcher-LPC 0.05 4.12% 0.04 4.33% 0.04 4.64% 0.07 5.21% 0.16 6.51%
Diff-Pitcher-WOLRD 0.04 2.57% 0.03 2.41% 0.04 2.88% 0.04 2.64% 0.06 2.23%

Table 2: Mean Opinion Score evaluation results with their 95% con-
fidence intervals of pitch controllers. MOS-Q measures sound qual-
ity and MOS-N measures naturalness.

Method MOS-Q ↑ MOS-N ↑

WORLD 2.97± 0.18 3.10± 0.19
SiFi-GAN 3.51± 0.20 3.33± 0.20

Diff-Pitcher-LPC 3.43± 0.17 3.35± 0.17
Diff-Pitcher-WOLRD 3.59 ± 0.18 3.65 ± 0.17

Table 3: Pitch prediction RMSE of pitch predictors.

Method 256 frames (1x) 512 frames (2x)

Baseline (KaraTuner) 0.09 Unsupported
Improved Pitch Predictor 0.08 0.09

WORLD Vocoder. However, this RMSE is at a low level, proving
its ability to control pitch effectively. (2) Diff-Pitcher-LPC performs
well in downshifting and reconstruction, but struggles with upshift-
ing, particularly for high-pitched female voices. (3) All three meth-
ods except Diff-Pitcher-LPC show low WERs, indicating promising
content consistency. Diff-Pitcher-LPC, however, occasionally mis-
pronounces similar consonants.

The subjective experiment results presented in Table 2 indi-
cate that Diff-Pitcher-WORLD achieves the highest MOS-Q and
MOS-N scores, showing its superior performance on audio qual-
ity and naturalness as the pitch controller. Specifically, we find that
the WORLD Vocoder usually generates noticeable and undesirable
artifacts. SiFi-GAN, while exhibiting good sound quality, some-
times produces robotic voices. While Diff-Pitcher-LPC can gen-
erate natural-sounding voices, the audio it generates lacks clarity,
leading to a decrease in sound quality.

3.4. Experiment2: Pitch Predictor Performance

We compare our enhanced pitch predictor with the one from
KaraTuner, both trained on 256-frame (2.72s) audio clips. As
shown in Table 3, they perform comparably when tested on data
with the same length as the training data. The baseline model cannot
handle longer segments limited by the absolute position encoding.
In contrast, the performance of the improved model remains stable,
demonstrating its capacity of handling variable-length inputs.

3.5. Experiment3: Template-based APC and Score-based APC

To explore the advantages, limitations, and practical application po-
tentials of template-based and score-based APC systems utilizing

Figure 2: Preference between score-based and template-based au-
tomatic pitch correction.

Diff-Pitcher, we conduct a subjective A/B test comparing pitch ac-
curacy, naturalness, and overall quality of these two methods. We
select 12 audio pairs for this experiment. The same subjects from
Experiment1 evaluate all audio pairs. The Diff-Pitcher-WORLD is
employed to synthesize vocal with the target pitch curve.

The experimental results, depicted in Figure 2, highlight that:
(1) Both methods can produce in-tune vocals. (2) Template-based
APC system usually yields more natural sounds than score-based
APC, but in most cases the gap between them is not significant.
(3) Despite the score-based method sometimes offering less natural
sounds, the overall listening experiences of two methods are closed
in most scenarios. Specifically, we notice that the lack of natural-
ness in score-based APC is primarily due to the challenges in rep-
resenting glides and vibratos with discrete musical notes, and the
pitch predictor’s inability to predict them from the formant spectro-
gram when they are absent in out-of-tune vocals. However, as Diff-
Pitcher employs pitch quantization and is able to adaptively adjust
fine-grained pitches, the overly smooth pitch curves occasionally
predicted by the pitch predictor do not result in distinctly robotic
sounds. In summary, with Diff-Pitcher, score-based APC remains a
viable choice when pitch templates are unavailable or when there is
a desire to preserve the original singing techniques of the voice.

4. CONCLUSION

This paper presents a novel pitch correction solution that employs
a diffusion-based pitch control model Diff-Pitcher. Given Diff-
Pitcher’s excellent ability in controlling pitch and generating high-
quality and natural singing voices, it can be applied to various pitch
correction scenarios, such as pitch correction plugins in DAWs and
Auto-Tune modules in Karaoke Apps. In future work, we plan to
further enhance the naturalness of the score-based APC and opti-
mize the diffusion model’s sampling process for faster inference.
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