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ABSTRACT
Identification of acoustic scenes often relies on finding the most
informative features that best characterize the physical nature of
sound sources in the scene. In this paper, we propose a framework
that provides a detailed local analysis of spectro-temporal modula-
tions augmented with generative modeling that map both the av-
erage modulation statistics of the scene using Gaussian Mixture
Modeling (GMM) as well temporal trajectories of these modula-
tions using Hidden Markov Modeling (HMM). Our analysis shows
that a hybrid system of these two representations can capture the
non-trivial commonalities within a sound class and differences be-
tween sound classes. The proposed hybrid system outperforms cur-
rent systems in the literature by about 30 % and surpasses the per-
formance of the individual GMM and HMM systems suggesting
that these representations provide complimentary information about
acoustic scenes.

Index Terms— Auditory scenes, Specto-temporal modula-
tions, Temporal trajectories, Gussian Mixture Models, Hidden
Markov Models

1. INTRODUCTION

Our surrounding soundscapes are constantly changing as we go
about our lives; walking from an office to the street to a cafe and
carrying conversations along the way. Humans exhibit a great abil-
ity at navigating these complex acoustic environments, and can ef-
fortlessly parse and identify their acoustic surroundings; in a pro-
cess called auditory scene analysis [1]. This phenomenon describes
complex neural and cognitive processes that underly our ability to
detect, identify and classify sound objects in complex acoustic en-
vironments. Much like one can identify different visual scenes by
the attributes of their constituting objects, a similar process takes
place allowing our brain to distinguish a human voice from a bird
chirp or a car horn [2]. This ability can provide a great degree of ro-
bustness and flexibility to technologies like communication aids for
sensory-impaired, surveillance and security systems, context aware
computing, audio annotation etc.
The ‘identity’ of an acoustic scene is largely determined by the
acoustic characteristics of the sound sources present at the scene.
These sources adapt the spectral profile of the signal to reflect the
shape and structure of the vibrating bodies, along with trajecto-
ries and reflection paths traveled by sounds until they reach the
listener’s ear or recording device. The analysis of these charac-
teristics for purposes of automatic identification or classification of
acoustic scenes has to take into account all the spectral and tem-
poral attributes of the signal. It has to also be sensitive enough
to the natural variability in each class of scenes while discrimina-
tive enough across classes. A number of scene classification stud-

ies have explored the relevance of low-level features in capturing
scene characteristics. These features include low-level time based
and frequency based descriptors like short-time energy (STE), zero-
crossing rate (ZCR), voicing features like periodicity and pitch in-
formation, linear predictive coding coefficients (LPC), as well as the
energy distribution entropy of discrete Fourier transform compo-
nents [3, 4, 5, 6, 7, 8]. These reports suggest that low-level acoustic
features are powerful in distinguishing simple scenes. In addition,
Mel Frequency Cepstral Coefficients (MFCC) have been a popu-
lar feature of choice in studies of acoustic scene classification as
they are quite powerful in capturing the overall ‘transfer function’
(or spectral shaping function) of each scene, and have indeed led
to a number of successful implementations of event classification
systems [9, 10, 11]. However, in case of complex acoustic scenes,
the intricate details of the spectral profile and temporal dynamics
of sound events in a scene makes applicability of average features
rather limited. Use of global representations of a scene such as
cepstral coefficients are generally not capable of capturing fine and
subtle changes in the spectrum as it evolves over time; especially in
case of dynamic and nonstationary scenes. Instead, it is imperative
to consider signal features that capture the spectral and temporal
modulations (i.e. changes) in the scene over a wide range of reso-
lutions. Gabor features offer such flexibility in time and frequency
by tracking the localized spectral and temporal signal changes over
various scales [12].
Use of representative features is intricately linked with choice of
backend classifiers that are flexible enough to capture variability
across scene classes yet stable enough to work with nuances emerg-
ing from the signal features. Commonly used learning techniques
include K-NN classifiers and Gaussian mixture models (GMM)
which have been used to classify auditory scenes into predefined
semantic categories [5]. Statistical models like support vector ma-
chines (SVM) and Bayesian network (BN) have also been employed
to learn the relationships between audio effects and high-level scene
representations [11, 13]. Additional techniques employ descriptive
statistics of low level acoustic features and quantify their statisti-
cal distributions in terms of mean, variance, skewness and kurtosis
[3, 7, 14]. More recently, researchers have focused on modeling the
mean statistics obtained from spectro-temporal modulation features
via discriminative classifier using multilayer perceptrons and have
shown that these representations greatly outperform low-level fea-
tures like MFCC and its statistics in auditory scene classification
task [15].
That being said, one of the challenges of the scene classification task
is the inherent complexity of describing what a ‘scene’ is and the de-
gree granularity that is defined with a chosen dataset for analysis. In
the commonly used BBC sound effects dataset [16], the sound class
labeled humor is a more generic class that encompasses instances
of individuals cheering or laughing. These two ‘subclasses’ can be
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rather heterogeneous in their signal characteristics making the use
of average feature profiles rather limited. Instead, it appears that
combining a rich representation of spectro-temporal changes in the
signal along with their temporal trajectories could provide added
flexibility to capture the heterogeneity of the audio samples in each
class [17]. In the current work, we explore the use of a hybrid sys-
tems that combines use of spectro- temporal modulation features
along with their temporal dynamics to represent sound classes. We
explore use of temporal trajectories beyond the classical derivative
parameters (∆, ∆∆) by using Hidden Markov Modeling (HMM)
applied to modulation features.
The organization of this paper is as follows: In section 2, a brief
description of the spectro-temporal modulation features used in the
proposed system is provided. Section 3 outlines the classification
system modeling both mean statistics as well as temporal trajecto-
ries of the modulation features. Section 4 describes the experimen-
tal set up and scene classification results; while section 5 provides
conclusions and discussion of the results.

2. MODULATION BASED FEATURES

The analysis of modulation features in the acoustic signal is per-
formed in two stages. First, a time-frequency auditory spectrogram
is extracted based on a model of peripheral processing in the mam-
malian auditory system [18]. This first stage starts with a bank of
128 asymmetric filters equally-spaced on a logarithmic axis over
5.3 octaves spanning the range 180 Hz to 8000 Hz. Next, the signal
undergoes spectral sharpening via first order derivative along the
frequency axis followed by half wave rectification and short term
integration with u(t, τ) = e−t/τu(t) where τ = 2 ms. This fil-
terbank analysis results in a time-frequency auditory spectrogram
represented by y(t, f). The second stage follows to extract mod-
ulation features in the signal. This analysis is performed using
a bank of two-dimensional Gabor Filters (GF). Each Gabor filter
GF (f, t; s, r) is parameterized by its spectral modulation tuning or
scale (s in cycles/octave) and temporal modulation tuning or rate (r
in Hertz). It effectively filters the detailed fluctuations (called mod-
ulations) in the spectral and temporal patterns of the signal. The
analysis yields a four-dimensional tensor R parameterized by time
t, frequency f, scale s and rate r represented as:

R(t, f ; s, r) = |y(t, f)⊗f,t GF (f, t; s, r)| (1)

where ⊗f,t denote convolution in time and frequency. The ten-
sor R is a multi-resolution mapping of the acoustic signal onto
a high-dimensional space [19]. This mapping is akin of the rich
representation of sounds in the central mammalian auditory system
where specro-temporal response fields of cortical neurons [20] can
be mapped onto a space tiled by these Gabor filters.

3. CLASSIFICATION OF MODULATION FEATURES

We use the modulation features denoted by R to build statistical
models for the scene classification task. Our analysis contrasts two
types of models, as described next:

3.1. Modeling mean statistics of Spectro-Temporal Representa-
tion

The first approach builds a generative model of the data in each class
based on average statistics of the scenes. Average statistics are ob-
tained from the 4D modulation tensors R by first integrating the

features over the duration of audio segment. For all analyses pre-
sented here, we segment recordings of all sound classes over non-
overlapping 1s windows. For each segment, we get a mean repre-
sentation along frequency, rate and scale axes denoted by R̄(f, s, r)
which can be expressed as:

R̄(f, s, r) = E[R(t, f ; s, r)] (2)

The tensor R̄ is further projected onto a lower dimensional space
using Tensor Singular Value Decomposition (TSVD) [21]. We keep
420 dimensions that maintain 99 % variance in the data; resulting in
a lower-dimensional modulation tensor R̄. Given the use of mod-
ulation features over time and frequency, this lower dimensional
R̄(f, s, r) captures average changes in the audio segment and is
used as feature vector to build Gaussian Mixture Models (GMM)
[22] of each sound class to learn its inherent statistical characteris-
tics.

3.2. Modeling the temporal trajectories of Spectro-Temporal
Representation

Alternatively, we consider a second model that exploits the tempo-
ral trajectories of the modulation tensor R. In this case, instead of
integrating R over the audio segment, the temporal trajectories of
R across multiple time frames over the duration of the audio seg-
ment are modeled. Here, we contrast two approaches to modeling
these temporal dynamics. First, we explore the commonly-used
derivative features that concatenate the base features with their
respective first (∆) and second derivative (∆∆) components [23].
In this case, the mean, ∆ and ∆∆ features are computed from each
audio segment R and concatenated to generate 1260 dimensional
feature vector for building GMM models. The statistical models
based on this feature representation exploit some degree of infor-
mation contained in the temporal dynamics of modulation features.

Alternatively, we explicitly model the temporal trajectories of
R using a Hidden Markov Model (HMM) framework [4, 24]. Each
audio segment of duration 1 second is divided into fixed number of
frames of duration tδ (tδ= 16 ms) to obtain a time series. Then,
HMM models parameterized by πs, P (st+1|st) and P (yt|st) are
built where st denotes hidden states and yt denotes the actual obser-
vation emitted by hidden state at time instant t. πs denotes the prior
distribution of states, P (st|st−1) denotes the transition probability
matrix and P (yt|st) is the distribution of observations emitted by
hidden states mainly modeled as a Gaussian. The hidden states used
in our HMM set up represent which of the frequency channels are
active at a particular time instant and the transition of one state to
another state corresponds to how the activity of one frequency chan-
nel changes with respect to other channels over time. The param-
eters πs, P (st|st−1) and P (yt|st) of the HMM are learned using
the Baum-Welch (BW) algorithm as described in [25].

3.3. Fusion of GMM-HMM models

We also investigate a hybrid model that combines both mean mod-
ulation statistics obtained from the GMM model with the tempo-
ral trajectories tracked by the HMM model. Here, the underlying
assumption is that both models provide complimentary informa-
tion that gives an even better representation of intricate changes
and dynamics in a sound class, that each model by itself would
fail to capture. The proposed hybrid GMM-HMM system operates
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by combining the GMM and HMM models for each sound class
c1, c2, . . . , ck using a logistic regression [26]:

C = argmax
c1,c2,...,ck

wGMMLGMM + wHMMLHMM (3)

where C is the class to which the test sample gets assigned, LHMM

and LGMM are the respective normalized likelihood scores ob-
tained using HMM and GMM models against a test sample. The
logistic weights are trained using a subset development set from the
database.

4. EXPERIMENTAL SETUP AND RESULTS

4.1. Data

The scene recognition experiments are performed on entire dataset
from the BBC Sound Effects Library [16]. The database has total of
2400 recordings, amounting to 68 hours of data. The recordings are
organized into 17 classes, for example Ambience, Animals, Trans-
portation and Musical etc. We resample each of the recordings in
the database to 16 KHz and preprocess them through a pre-emphasis
filter with coefficients [1 − 0.97] in order to boost high frequen-
cies. 80 % of recordings are randomly selected from the database
and used as training set. The remaining 20 % are divided into test
and development sets. This latter set is used to train the logistic
regression model for the hybrid system. We run a 7-fold cross vali-
dation on the entire dataset and report mean accuracy and standard
deviation across runs.

4.2. Baseline Setup

The proposed system is contrasted against a baseline setup using
MFCC features along with their derivative ∆ and ∆∆ components.
Such setup is close to that used in [5]. We compute 13 MFCC fea-
tures for every frame size of 25 ms with 10 ms overlap. The average
statistics, first and second order delta components of MFCC features
are computed across these time frames over a duration of 1 second
and concatenated to form a 39 dimensional vector. These vectors
are then used to build GMM models for each sound class.

4.3. Results and Analysis

Table 1 summarizes the scene classification accuracy using our pro-
posed hybrid system as well as other setups. The results com-
pare the modulation features against the standard MFCC features
along with their derivatives (∆, ∆∆). The performance of indi-
vidual GMM and HMM classifiers using modulation features and
their delta components are also reported to assess their respective
accuracy values.

A number of interesting observations are worth noting. Firstly,
the modulation-based features provide a clear advantage over
MFCC features in capturing scene characteristics; even with use
of derivative components. Secondly, the use of derivative compo-
nents with modulation features further improve the accuracy of clas-
sification suggesting that temporal dynamics captured in the rate
modulation analysis do not sufficiently represent broader temporal
changes in the signal that can be better modeled using derivative
cues. Thirdly, the HMM system is slightly worse than the GMM
system with the derivative features indicating that the mean statis-
tics captured by the modulation features and their dynamics are
likely capturing key aspects of each scene that are not well mod-
eled by the HMM system. Consequently, the hybrid system does

Features Classification
Accuracy (%)

GMM based MFCC + ∆ + ∆∆ 49.8 ± 9.5
GMM based

modulation features 64.6 ± 5.8

GMM based
modulation features + ∆ + ∆∆

66.8 ± 5.1

HMM based
modulation features 65.3 ± 6.4

GMM-HMM based
modulation features 76.57 ± 4.3

GMM-HMM based
modulation features + ∆ + ∆∆

79.1 ± 4.1

Table 1: Results obtained using different features and modeling ap-
proaches on Scene Classification Task. ± indicates the standard
deviation across folds.
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Figure 1: Classification accuracy of various classifiers in terms of
d’. Sound classes used in the classification task : 1. Ambience 2.
Animals 3. Emergency 4. Fire 5. Foley 6. Household 7. Humans 8.
Impacts 9. Industry and Machines 10. Musical 11. Science Fiction
12. Sports 13. Technology 14. Transportation 15. Warfare 16.
Water 17. Weather

provide noticeable improvement further corroborating the observa-
tion that representing the average distribution of the features with
sufficient statistics complements the temporal trajectories in best
modeling heterogeneity in sound classes in the BBC dataset.

In order to gain a greater insight into the contribution of each of
the GMM and HMM models, we examine the performance of these
classifiers for each class of scenes using a detection measure of d’
[27]. d’ is a very popular measure of sensitivity in signal detec-
tion theory (SDT) mainly measured in terms of Hit rate (H) cor-
responding to number of times the model correctly classifies the
test signal and False Alarm rate (FA) equal to number of times the
model assigns the test signal to wrong class. d’ is calculated as :
d′ = z(FA) − z(H), where z(FA) and z(H) indicate z scores of
false alarm and hit rate respectively. Higher value of d’ for a class
indicates that the model has a high probability of correctly clas-
sifying the test signal, hence a model’s classification performance
can be well represented in terms of its d’ value. Figure 1 shows
the d’ values broken down by class. It is worth noting that most
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Figure 2: Probability transition matrix (P (st|st−1)) for class (a)
Musical and (b) Water

scenes do exhibit an improved accuracy using the hybrid HMM-
GMM system. However, such improvement is not noted across all
classes. One possible reason for decreased performance of the hy-
brid system for some sound classes could be due to the greater het-
erogeneity in those subsets which undermines the score fusion using
a simple logistic model. Another interesting observation is the per-
formance of the GMM vs HMM systems across different classes.
For instance, the HMM classifier clearly outperforms the GMM for
a class like ‘Musical’ which includes different tones with varying
degree of spectral and temporal modulations. The temporal char-
acteristics of melodies in this class appear to be best represented
using the HMM model; in contrast with a class such as ‘Water’ for
instance.
Generally, musical signals have a rich temporal structure and ex-

hibit high degree of temporal regularity [28]. HMM models cap-
ture these ‘hidden’ regularities in a much effective manner than
GMM by means of its probability transition matrix. Figure 2 depicts
the HMM model’s probability transition matrix for 40 states corre-
sponding to classes ‘Musical’ and ‘Water’. In ‘Musical’, there is a
very strong activity across the diagonal elements of the transition
matrix which means the frequency channels tend to remain in their
own state across multiple time frames corresponding to their strong
temporal regularity. In case of ‘Water’ , the non zero probabilities in
non-diagonal elements of the matrix show that the frequency chan-
nels tend to make rapid transitions across each other which affects
the temporal structure of the scene. However, because of compli-
mentarity of the information present in temporal structure and av-
erage statistics of the scenes, the combination of GMM and HMM
models via model fusion gives a tremendous boost in classification
accuracy of both the classes as shown in Figure 1.

5. CONCLUSION

In this paper, we examine the role of temporal dynamics of modu-
lation features in capturing intricate details in auditory scenes that
extend beyond average statistics of the scene and track the hetero-
geneous dynamics commonly encountered in these scenes. Specif-
ically, we propose that temporal trajectories of local spectral and

temporal profiles do provide complimentary information in addi-
tion to their mean statistics. A fusion system based on both repre-
sentations provides a better model of each sound class relative to the
individual models. Such hybrid modeling is crucial in case of com-
plex and unconstrained recordings such as the BBC sound effects
data. It is common in such datasets that audio samples representing
a similar nominal class but different scenarios are grouped under
the same label. Modeling these disparate settings requires not only
a representation of the characteristics of the sound sources in the
scene, but aspects of their temporal dynamics as well. The proposed
model based on a hybrid GMM-HMM model along with derivative
components provides noticeable improvement over a MFCC-GMM
system (by about 30%) as well as individual GMM or HMM sys-
tems (by an average of 14%).
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