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ABSTRACT

Here, we propose a framework that provides a detailed analysis of
the spectrotemporal modulations in the acoustic signal, augmented
with a discriminative classifier using support vector machines. We
have seen that such representation is successful at capturing the non-
trivial commonalties within a sound class and differences between
different classes[1, 2, 3].

Index Terms— Multiresolution analysis, Auditory representa-
tion, Modulation domain.

1. INTRODUCTION

One of the most remarkable feats that humans are able to perform
rapidly and reliably is to recognize and understand the complex
acoustic world that surrounds them. This process, referredto as ‘au-
ditory scene analysis’ [4] is a multi-faceted problem whichencom-
passes various aspects of auditory perception. It encompasses the
ability to detect, identify and classify sound objects; to robustly rep-
resent and identify these objects in multi-source environments; and
to guide actions and behaviors in line with complex goals andshift-
ing acoustic soundscapes. Such capability can provide muchneeded
robustness and flexibility to a number of technologies including
smart robots, surveillance and security systems, target tracking in
sensor networks as well as adaptive communication aids for the
sensory-impaired.

Unlike visual scenes, the difficulty of parsing auditory scenes
stems from challenges of segmenting and separating the different
components given the complex temporal dynamics that different
sound events have, as well as the time-varying nature of their spec-
tral details. Efforts towards classification of auditory scenes have
focused on extracting informative features from the acoustic wave-
forms, that are then exploited to learn generative or discriminative
statistical models of the sound classes of interest. Such efforts have
led to notable successes in recognizing different acousticevents
[5, 6, 7]. Most approaches rely on a short-time analysis of the
signal and derive time-varying spectral information, mostly based
on Mel Frequency Cepstral Coefficients (MFCC) and their related
statistics. As for the statistical analysis of features, various discrim-
inative approaches such as support vector machines [7, 8], multi-
layered perceptron [5] and generative approaches such as Gaussian
Mixture Models (GMM) [9] have been proposed. It has further been
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suggested that discriminative approaches outperform the generative
approaches [9].

Unfortunately, the applicability of these approaches is hindered
by the usefulness of features such as MFCC for a task like scene
classification. By nature, cepstral coefficients capture only the
global spectral details of the signal and fail to analyze thedetailed
and subtle changes in the spectrum as it changes over time. Stud-
ies on mammalian auditory processing suggest that neurons at the
level of primary auditory cortex are more directed at analyzing the
local spectral and temporal modulations in the signal; hence captur-
ing both details of spectral profile, as well as its changing dynamics
over time [10]. In this study, we explore the use of such detailed
feature analysis in parsing informative characteristics of auditory
scenes. We propose a simplified system motivated by processing in
the mammalian auditory system that can perform scene classifica-
tion in isolation. The proposed model is described in Sec. 2 and the
results on the giving training data is described in Sec. 3.

2. METHODS

The proposed model is divided into Sensory Processing, Object
Representation modules. Each of these modules and the experi-
mental setup is described below.

2.1. Sensory Processing

The incoming sound is processed to extract informative features us-
ing techniques that mimic the behavior of the mammalian auditory
system. This can be further divided into two steps - the subcortical
stage and the cortical processing stage. In the subcorticalstage, the
waveform is passed through a set of128 asymmetric filtersh(t; f)
placed uniformly on a logarithmic axis covering5.3 octaves starting
from 180Hz. This is similar to the frequency-space transformation
of the cochlear membrane. This is followed by a spectral derivative
and a half wave rectification stage, which models the lateralinhi-
bition networks in the cochlear nucleus, sharpening the frequency
resolution of these filters. The mid brain processing is implemented
as a short term integration with windowµ(t; τ ) = e−t/τu(t) and
τ = 2ms followed by cubic root compression. These subcortical
transformations can be collectively written as in Eq. 1 and the de-
tails of implementation can be found in [11].

y(t, f) = (max(∂f(s(t)⊗t h(t; f)), 0)⊗t µ(t; τ ))
1

3 (1)

where⊗t represents convolution with respect to time.
This resulting time-frequency representation is referredto as

the auditory spectrogram. In the cortical stage, this spectrogram
is analyzed locally for joint spectrotemporal modulationsusing a
bank of modulation tuned filters. These filters as defined in Eq.
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2, are shaped like 2D Gabors, which are known to be a linear ap-
proximation to the receptive field shapes of auditory cortexneurons
[12, 13]. The temporal modulation rate and spectral modulation rate
are denoted byr ands respectively. The filtering operation can then
be written as simple two dimensional convolution as in Eq. 3 which
yields a four dimensional tensor representation.

MF (f, t; s, r) =
1
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R(f, t; s, r) = |y(f, t)⊗f,t MF (f, t; s, r)| (3)

The MF filters are tuned to10 upward rates and10 downward rates
{r = 2, 3.4, 5.7, 9.5, 16, 26.9, 45.3, 76.1, 128, 215.3 Hz} and11
scales{s = 0.25, 0.35, 0.5, 0.71, 1, 1.41, 2, 2.83, 4, 5.66, 8 cy-
cles/octave}, resulting in a total of220 filters.

2.2. Object Representation

Each audio recording is windowed into1s segments with an over-
lap of 0.5s. We integrate the cortical representationR over the
time duration of each window. To facilitate the machine learning
module we reduce the number of dimensions via Tensor Singular
Value Decomposition [14] to keep99% of the variance resulting in
a 96 dimensional feature vector. We learn the boundaries between
classes using one vs one SVM framework with RBF kernel. To
classify an unknown test recording, the distance from boundaries is
converted to a probability estimate for each class. The probabilities
from each window are weighed by the energy present in the window
and finally averaged over the top 90% energetic frames.

3. RESULTS

On the training data provided we ran a 5-fold cross validation and
achieved an average accuracy of 73% with a standard deviation of
13%.
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