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Chapter 12
Modulation Representations for Speech 
and Music

Mounya Elhilali

Abstract The concept of modulation has been ubiquitously linked to the notion of 
timbre. Modulation describes the variations of an acoustic signal (both spectrally 
and temporally) that shape how the acoustic energy fluctuates as the signal evolves 
over time. These fluctuations are largely shaped by the physics of a sound source or 
acoustic event and, as such, are inextricably reflective of the sound identity or its 
timbre. How one extracts these variations or modulations remains an open research 
question. The manifestation of signal variations not only spans the time and fre-
quency axes but also bridges various resolutions in the joint spectrotemporal space. 
The additional variations driven by linguistic and musical constructs (e.g., seman-
tics, harmony) further compound the complexity of the spectrotemporal space. This 
chapter examines common techniques that are used to explore the modulation space 
in such signals, which include signal processing, psychophysics, and neurophysiol-
ogy. The perceptual and neural interpretations of modulation representations are 
discussed in the context of biological encoding of sounds in the central auditory 
system and the psychophysical manifestations of these cues. This chapter enumer-
ates various representations of modulations, including the signal envelope, the mod-
ulation spectrum, and spectrotemporal receptive fields. The review also examines 
the effectiveness of these representations for understanding how sound modulations 
convey information to the listener about the timbre of a sound and, ultimately, how 
sound modulations shape the complex perceptual experience evoked by everyday 
sounds such as speech and music.
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12.1  Introduction

If one asks a telecommunication engineer what is “modulation”, the answer is rather 
simple: It is the process of multiplexing two signals: a signal that can carry informa-
tion and can be physically transmitted over a communication channel (the carrier 
signal, typically a quickly varying wave) with a signal that contains the information 
or the message to be transmitted or broadcasted (the modulation or data signal, 
typically a slowly varying envelope) (Freeman 2004). This characterization pro-
vides a formal account of modulation but fails to capture the nuances of multiplex-
ing two signals that get rather complicated depending on the domain under study. 
This definition presumes a priori knowledge of the identity, attributes, and behavior 
of such signals, which is only possible in specific applications (e.g., on/off keying—
OOF—used to transmit binary 0/1 codes over a sinusoidal carrier that can be 
decoded directly from the signal amplitude).

On the flip side, defining modulation as a multiplexing operation is rather inef-
fective when it comes to the inverse problem: demodulating a signal in order to 
identify its modulator and carrier components. If one does not have specific con-
straints on these signal components, it is not trivial to untangle them because many 
(possibly infinite) solutions are conceivable. How one judges which solution is a 
reasonable one is again domain and signal specific. As such, the modulation/demod-
ulation problem is ill-posed (Turner and Sahani 2011) but is still fundamental to 
understanding the information-bearing components of signals.

In the case of complex audio signals (speech, music, natural, or communication 
sounds), getting a clear idea of the identity of the message and carrier components 
remains one of the holy grails of research on the physical and perceptual underpin-
nings of sound. Interest in modulations of an audio signal aims to pinpoint the 
information-bearing components of these signals, especially given the redundant 
nature of the waveforms that can emanate from both mechanical (e.g., instrument, 
vocal tract) or electrical (e.g., computer generated) sound sources.

The problem is particularly compounded because complex audio signals, such as 
speech and music, contain information and modulations at multiple time scales and 
across various spectral constructs. In the case of speech, there is an extensive body 
of work dating back to the early twentieth century that explored the span and dynam-
ics of the speech envelope. The argument that the slow envelope is the chief carrier 
of phonetic information in speech is quite old. In the 1930’s, Dudley advocated that 
the dynamics of signal envelopes are important for describing linguistic information 
in speech (Dudley 1939, 1940). In his view, the vocal tract is a sluggish system that 
slowly changes shape, with low syllabic frequencies up to 10 Hz, giving rise to 
varying modulating envelopes that contribute most to the intelligibility of speech.

Building on this work, numerous studies have shown that speech intelligibility is 
well maintained after temporal envelopes are lowpass filtered or degraded, with a 
critical range between 5–15 Hz that spans the range of phonemic and syllabic rates 
in natural speech (Greenberg 2004). Still, the modulation spectrum profile of speech 
is a complex one and reveals that the speech envelope contains energy of the order of 
a few to tens or hundreds of Hertz. This profile highlights key energy fluctuations in 
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speech signals, ranging from hundreds of milliseconds (of the order of multiple syl-
lables or words) to tens of milliseconds (typically spanning subsyllabic and phone-
mic segments) (Rosen 1992; Divenyi et al. 2006). The complexity of speech signals 
includes the multiplexed information across various time scales but also variations 
across frequency bands and in the phase relationships across bands (Pickett 1999).

In the case of music signals, a similar picture emerges spanning multiple time 
scales, frequency bands, and spectral profiles. The information-bearing components 
of a musical signal, be it an isolated note or a full orchestral piece, appear to multi-
plex across a complex construct of spectrotemporal dimensions. Much like speech, 
music signals have melodic, harmonic, and rhythmic structures that intertwine into 
intricate patterns (both in time and frequency) to convey the complex acoustic expe-
rience of music perception. Recent advances in computing power, signal processing 
techniques, and increased availability of digitized audio material have led to fairly 
sophisticated analysis tools to study various aspects of regularity in music, such as 
rhythm, melody, harmony, or timbre (Müller 2015; Meredith 2016).

Despite the intricate nature of spectrotemporal regularities in both speech and 
music, they share fundamental attributes reflected in their decomposition into alpha-
betic tokens (phonemes, syllables, word, notes, chords), assembly of sequences of 
events (accents, grouping, words, phrases), and rhythmic structure (time, stress), all 
interleaved with specific spectral patterns that reflect the sound sources (instrument, 
oral cavity), production style, and contextual attributes. The correlates of these reg-
ularities can be gleaned from examining the modulation patterns in the signal at 
multiple time scales and granularities. This chapter reviews common techniques 
used to represent modulations in speech and music signals and their implications for 
understanding the information-bearing components in these signals. Section 12.2 
reviews signal processing tools commonly used to represent modulations: funda-
mental time-frequency representations (Sect. 12.2.1), spectrotemporal modulation 
profiles (Sect 12.2.2), and temporal modulation spectra (Sect 12.2.3). Sect. 12.2.4 
delves into representations that are unique to speech and music signals and consid-
ers constraints imposed by the physics of the vocal tract and controlled sound pro-
duction through most musical instruments. Section 12.3 offers insights into the 
neurophysiological interpretation of modulations, particularly encoding of the spec-
trotemporal signal envelope along the auditory pathway. Section 12.4 reviews key 
findings in psychophysical and physiological research into the role of modulation in 
speech and music perception. Section 12.5 provides a summary of the main ideas in 
the text along with perspectives on future research directions.

12.2  Representation of Modulations

12.2.1  The Time-Frequency Representation

A complete description of the information content of speech and music signals is 
not possible. However, one can derive a number of low-level empirical descriptors 
that reveal a lot about the structure of these signals. Common ways to explore the 
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nature of these signals involve analysis of the acoustic waveform as well as its fre-
quency content. A time-frequency profile, typically obtained via short-time Fourier 
transform, wavelet, or filterbank analysis (Caetano, Saitis, and Siedenburg, Chap. 
11), best displays the variations of energy as the signal evolves over time. Fig. 12.1A 
depicts the time-frequency representation of a speech utterance produced by a male 
speaker saying /we think differently/. Immediately emerging from this spectro-
graphic view of speech is the fact that the temporal envelope varies slowly over the 
course of tens to hundreds of milliseconds. In fact, one can easily discern the volleys 
of activity across frequency channels, occurring at a rate of 5–7 peaks per second, 
commensurate with phonemic and syllabic contours of the speech utterance. The 
right subpanel in Fig. 12.1A highlights a cross-section of this spectrogram around 
450 Hz, which represents the half-wave rectified output of the auditory filter cen-
tered about that spectral region. The time waveform clearly shows an overall fluctu-
ating pattern around 6 Hz, which closely follows segmental and syllabic landmarks 
of the speech signal (Poeppel et al. 2008). A similar structure emerges spectrally 
with frequency profiles that are largely coarse. The energy distribution across fre-
quency channels appears to mostly delineate harmonic and formant peaks (bottom- 
left subpanel in Fig. 12.1A).

In parallel, Fig. 12.1B illustrates an example of the time-frequency spectrogram 
of the finale of Tchaikovsky’s violin concerto in D major, Op. 35. The time- frequency 
spectrogram highlights the exuberant energy in this piece with a very dynamic tem-
poral profile reflective of the vigorous nature of this finale. The clear steady tones 
typical of bowed string instruments are also clearly visible throughout the passage, 
with the spectral profile showing the clear harmonic nuances of the solo violin per-
formance. Still, the rich energy of this final movement of the concert is not readily 
discernable from the spectrogram view only. The cross-section of this spectrogram 
along time emphasizes the nested dynamics over the course of a 6 s period. The soft 
onset signature of the violin is not very evident due to the multiscale rhythmic mod-
ulations in this extravagantly energetic piece with discernable Russian rhythmic 
undertones (Sadie 2001). The temporal envelope clearly shows a fast- paced profile 
modulated by a much slower rhythmic profile varying at rate of 1–3 peaks/s. The 
spectral cross-section shown in the bottom-left panel in Fig. 12.1B takes a closer 
look at the frequency profile of the signal around 2.3 s. The characteristic profile of 
a violin note clearly emerges with the overall envelope highlighting the resonance of 
the violin body with three obvious peaks (Katz 2006). Within the broad peaks, one 
can glimpse details of the spectral structure imposed by the mechanical constraints 
of the violin along with the unambiguous harmonic structure of the note.

Fig. 12.1 (Continued) as a function of time; a frequency cross-section of the spectrogram around 
250 ms as a function of log-frequency; and the two-dimensional Fourier transform (2D FFT) of the 
time-frequency spectrograms that yields the modulation power spectrum of the signal. The figure 
was interpolated using linear interpolation and compressed to a power of 2.5 to obtain better color 
contrast (for display purposes only). (B) The spectrotemporal details of the finale of Tchaikovsky’s 
violin concerto in D major, Opus 35, using similar processing steps as in panel A
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Fig. 12.1 Spectrotemporal details of speech and music. (A) The time-frequency spectrogram of a 
male utterance saying /we think differently/ over a time span of 1  s and frequency range of 5 
octaves (note the log frequency axis); a temporal cross-section of the spectrogram around 450 Hz 
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12.2.2  The Spectrotemporal Modulation Profile

A better illustration of these spectrotemporal modulation details can be achieved in 
the spectral/Fourier domain, obtained by performing a two-dimensional Fourier 
transform of the time-frequency spectrogram (Fig. 12.1A, B, lower right panels). 
This operation estimates the power distribution of both spectral and temporal com-
ponents over the chosen time and frequency spans and yields the modulation spec-
trum of the signal (Singh and Theunissen 2003). The modulation spectrum is an 
account of the distribution of time-frequency correlations of adjacent and far-away 
elements in the signal and, hence, is an estimate of the degree and dynamics of sig-
nal fluctuations along time and frequency axes. Immediately worth noting in this 
modulation spectrum is that the energy in the Fourier domain is mostly concentrated 
in a highly localized region of the modulation space.

For a speech signal (Fig. 12.1A), the modulation spectrum highlights what was 
already seen in the unidimensional profiles. For instance, the temporal envelope 
induces a strong activation peak between 5 and 7 Hz, while the spectral modulations 
reveal discernable energy at a harmonic rate (i.e., distance between harmonic peaks) 
or coarser (i.e., distance between formant peaks), which appear as strong activity 
around 1 cycle/octave and below. The modulation spectrum energy for the music 
signal (Fig. 12.1B) also accentuates the modulation patterns observed in the cross- 
sections of the spectrogram. A strong activation pattern around 1  cycle/octave 
clearly highlights the crisp harmonic peaks of a violin sound, while the temporal 
modulations show a distributed energy that is strongest below 3 Hz but spread as far 
as 10 Hz, highlighting the strong vibrato and clear articulation in this piece that 
carry the slower rhythmic structure.

Unlike conventional methods for computing the modulation spectrum (tradition-
ally confined to a transform in the temporal dimension, discussed in Sect. 12.2.3), 
the two-dimensional modulation spectrum highlights both  the spectral and temporal 
dynamics of the signal as well as the time alignment of these modulation patterns 
(i.e., cross-channel modulation phase), which is an important component for under-
standing spoken material and music compositions (Greenberg and Arai 2001; 
Hepworth-Sawyer and Hodgson 2016). The combined profile—across time and fre-
quency—is the only mapping able to highlight subtle patterns in the original 
 envelopes, such as frequency-modulations (FM), which are key signatures of many 
patterns in transitional speech sounds (e.g., diphthongs, semi-vowels), and metallic 
or percussive bell sounds (Chowning 1973).

Because of its span of the joint time-frequency space, the spectrotemporal modu-
lation power spectrum (MPS) representation has been used as a dashboard to explore 
the precise loci of modulation energy driving the perception of speech and music. 
Recent work examined detailed tiling of the spectrotemporal modulation spectrum 
using granular techniques that inspected the perceptual contribution of various 
regions or building-blocks of the two-dimensional modulation profile. These meth-
ods, originally developed in vision research, aim to assign a quantifiable contribu-
tion of specific modulation energies to perceptual recognition of sound constructs 
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using an approach referred to as “bubbles” (Gosselin and Schyns 2001). Because 
the spectrotemporal modulation profile is in a fact an image with temporal modula-
tions on the x-axis and spectral modulations on the y-axis, the adoption of vision 
techniques can be seamlessly applied. These approaches have shown that the intel-
ligibility of speech signals depends significantly on both spectrotemporal modula-
tions that carry considerable modulation energy in the signal as well as those that 
carry linguistically relevant information (Venezia et al. 2016). A similar observation 
has also been reported for musical instrument recognition where low spectral and 
temporal modulation are the most salient regions to correlate with musical timbre, 
though signatures of individual instruments can be clearly discerned in the MPS 
space (Thoret et al. 2016). Alternative tiling techniques that use filtering (low-pass, 
notch filters) as well as dimensionality reduction and scaling have also been used to 
explore the informative regions of the MPS space (Elliott and Theunissen 2009; 
Elliott et al. 2013).

Overall, the MPS representation is proving to be a powerful descriptor of sound 
identity and timbre representation. It is also a space where joint interactions across 
time and frequency can be readily discerned. Still, it is not a very intuitive mapping 
of the acoustic waveform because it is a representation derived from the signal via 
at least two (typically more) transformations: from the acoustic signal to a time- 
frequency spectrogram and then to a time-frequency modulation spectrum (in addi-
tion to computing magnitude, power, binning operations, etc.). The models 
employed to perform these transformations do shape the salient details of the modu-
lation profile and can invariably emphasize different aspects in this mapping, be it 
stimulus energies or perceptual energies.

The representation shown in Fig. 12.1 employs a straightforward two- dimensional 
Fourier transform to the time-frequency spectrogram. Other approaches have been 
proposed, including the use of two-dimensional wavelet transforms (Anden and 
Mallat 2014), bio-mimetic affine transforms mimicking receptive fields in mam-
malian auditory cortex (Chi et al. 2005), or even physiologically recorded receptive 
fields from single neurons in primary auditory cortex (Patil et al. 2012). Naturally, 
incorporating nonlinearities as reported in auditory processing can further color the 
readout of such modulation profiles, though limited work has been done that can 
shed light on the biological and perceptual relevance of nonlinearly warping the 
modulation space (as discussed in Sec. 12.5).

One of the other limitations of the modulation spectrum stems from the funda-
mental limit in precision by which modulations can be measured simultaneously in 
time and frequency. Much like the uncertainty principle is applied in a time- 
frequency spectrogram, the same is true in the modulation domain, which is effec-
tively a transformation of the original space. The uncertainty principle, or Heisenberg 
principle, articulates the trade-off that one can achieve when attempting to represent 
time and frequency with infinite precision (Cohen 1995; Grochenig 2001). The 
smaller the window in time used to perform the analysis, the larger the bandwidth 
of spectral resolution afforded by this analysis because these two quantities have 
effectively a fixed product. Similarly, the temporal and spectral modulations derived 
within these constraints are also restricted relative to each other and, as such, pro-
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vide a limited view of the spectrotemporal modulation profile of a signal (Singh and 
Theunissen 2003). How the brain deals with these limitations remains unknown, 
though they may explain the multi-resolution mapping of modulation in auditory 
cortical networks, as discussed in Sec. 12.3.

12.2.3  The Temporal Modulation Spectrum

As discussed in Sect. 12.2.2, the notion of modulation aims at identifying the pat-
terns of inflection or change imposed on a signal. While the formal definition of 
such change does not necessarily identify the dimension on which it needs to oper-
ate, there is a large body of work that has focused on the temporal envelope. The 
temporal envelope is the main carrier of rhythmic fluctuations in the signal, and 
therefore its timescale and timespan are crucial information-bearing components of 
the signal. It is important to note that modulations along frequency also play a cru-
cial role (as mentioned in Sect. 12.2.2; this issue will be expanded further in Sect. 
12.4). Still, the temporal profile has garnered particular interest because of its sim-
ple mathematical derivation yet powerful importance in speech and music percep-
tion (Patel 2008).

The temporal modulation spectrum is obtained through a series of transforma-
tions that pass a signal x[n] through a bank of M bandpass filters in order to derive 
the envelope of each filter output. While this process is traditionally done on band-
limited signals at the output of each filter, the premise of the computation does not 
preclude using broadband signals nor does it confine the bandwidth of the filterbank 
to a specific range. Naturally, the fluctuations of the filter outputs will be dictated by 
the choice of filterbank parameters, bandwidths, and frequency span.

Techniques used in the literature vary from using simple Fourier-like spectral 
decompositions (e.g., Fig. 12.1) to more perceptually grounded spectral mappings 
based on critical bands or a Bark scale (Moore 2003). The output of this filterbank 
analysis is an array of M filter outputs:

 x n m Mm [ ] = …; , ,1  

The fluctuations of these output signals are then further isolated using an envelope 
extraction technique (either using the Hilbert transform or other transformations 
such as half-wave rectification and low-pass filtering), which results in a smooth 
envelope of each filter output (E[xm]) whose variations are bounded both by the 
original bandwidth of the filterbank as well as the constraints of the envelope- 
tracking technique (Lyons 2011). Typically, this process is followed by a nonlinear 
mapping that compresses the linear envelope output using a nonlinear scaling func-
tion, such as square, logarithm, or a biologically motivated nonlinearity-mimicking 
nonuniform gain compression in the activation of the auditory nerve (Yang et al. 
1992; Zhang et al. 2001). The compression is also used to counter the strong expo-
nential nature of envelope amplitudes in natural sounds (Attias and Schreiner 1997). 
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The readout of the fluctuations in the envelope signal is then obtained in the Fourier 
domain by mapping the time-domain signals onto a frequency-axis profile that is 
then summed across channels and transformed into power, root-mean-squared 
energy, or compressed magnitudes (Fig. 12.2).

Historically, this approach has been developed in the room acoustics literature 
via the concept of a modulation transfer function (MTF) (Houtgast and Steeneken 
1985) and thus has relied on modulation filters employed to analyze the energy in 
the envelope signal at specific modulation points chosen along a logarithmic scale. 
An equivalent readout can be obtained using linearly spaced filters or by directly 
employing a Fourier transform on the compressed envelope signals. In either case, 
the resulting profile can then be combined across frequency bands and properly 
binned and scaled to yield an amplitude modulation spectrum that reflects envelope 
energies along different modulation frequencies. A major underlying assumption in 
this transformation is that such modulation frequencies of interest are below the 
pitch range, focusing primarily on the true envelope patterns or slow fluctuations in 
the signal. A number of constraints in the design of the processing steps must be 
considered in order to avoid artifacts or distortions that could mislead the readout of 
the spectrum profile (Qin Li and Les Atlas 2005).

12.2.4  Domain-Centric Representations

Some approaches have considered more structured analyses of the signal. In the 
case of speech sounds, the source-filter model of speech production has led to 
widely used techniques such as Linear Predictive Coding (LPC) (Schroeder and 
Atal 1985; see Caetano, Saitis, and Siedenburg, Chap. 11). The approach builds on 
the minimal but powerful simplification of speech production as a coupling of a 
vibrating source that generates the carrier signal with a filter that colors this carrier, 
hence giving speech its spectral shapes. As such, being able to decompose the signal 
into these two fundamental components disentangles the voicing characteristics pri-
marily present in the source from the timbral cues primarily shaped by the filter, 

Fig. 12.2 Schematic of processing stages to derive the temporal modulation spectrum from an 
acoustic signal. The acoustic signal undergoes an initial analysis to map it onto a time-frequency 
representation before transformations of this spectrogram extract a temporal modulation spectrum 
from the envelope across different frequency channels. DFT, discrete Fourier transform; RMS, 
root-mean-squared
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though there is a strong interaction between the two. From a linear systems point of 
view, separating the source (glottal signal) from the system (parameters of the vocal 
tract) means that the current speech sample can be closely approximated as a linear 
combination of past samples (hence the name linear predictive coding) (Rabiner and 
Schafer 2010). While an oversimplification of the complex dynamics of speech pro-
duction, LPC modeling offers an indirect, yet effective, account of the spectral 
modulations shaping phonetic tokens of speech signals, though the temporal dynam-
ics are often ignored by assuming the system (vocal tract) is quasi-stationary over 
short periods of time that span the analysis window.

A similar decomposition of source and filter cues underlies the widely popular 
cepstral decomposition, which provides a transformation of the filter characteristics 
in the cepstral domain. The cepstrum (a rotated version of the word spectrum) is an 
application of homomorphic signal processing techniques that apply a nonlinear 
mapping to a new domain wherein two components of a signal can be disentangled 
or deconvolved (Rabiner and Schafer 2010). Applied to speech signals, the power 
cepstrum of a signal is defined as the squared magnitude of the inverse Fourier 
transform of the logarithm of the magnitude of the Fourier transform of a signal 
(Caetano, Saitis, and Siedenburg, Chap. 11). Effectively, the cepstrum domain sepa-
rates the slowly varying envelope (or modulation) signal from the rapidly varying 
excitation carrier signal, allowing the analysis of each component separately. The 
result is cepstral coefficients (and the related mel-frequency cepstral coefficients or 
MFCC) that offer an effective account of phoneme-dependent signal characteristics 
(Childers et al. 1977). Much like LPC, cepstral analysis remains limited to static 
representation of short segments of the speech signal (typically of the order of a 
phoneme) and focuses solely on the spectral characteristics of the modulating 
envelope.

Other approaches have been used to extend these representations to the time 
domain by computing derivative and acceleration over time, often referred to as 
delta and delta-delta coefficients of the signal, in an attempt to capture some of the 
temporal dynamics in the speech signal driven by prosodic and syllabic rhythms. 
While derivatives are rather simplistic extensions to capture the intricate temporal 
structure of the vocal tract during speech production, techniques such as LPC and 
MFCC remain powerful tools that provide a basic bread-and-butter analysis of 
speech signals with a formidable impact on many applications of speech analysis 
(Chen and Jokinen 2010; Hintz 2016). Their popularity speaks to the tremendous 
redundancies in speech signals as well as the powerful impact of a simple source- 
filter model in capturing some of the nuances of how speech signals are shaped and 
how they carry information.

While this source-filter view is rather unique to the speech production system, 
it is also applicable and quite popular for music analysis (Collins 2009; also see 
Caetano, Saitis, and Siedenburg, Chap. 11). Many musical instruments can be 
viewed as pairings of a source (a vibrating object such as a string) coupled with 
a filter (the body of the instrument that shapes the sound produced). Unlike a 
unitary model of source-filter analysis in speech, a common production system 
cannot be applied across instruments since the production may depend on vibrat-
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ing strings, membranes, or air columns. As such, the distinction between the 
source and the filter is not as distinct as it is in speech and poses some challenges 
when applied to music signals, especially for non-Western music or polyphonic 
music (Muller et al. 2011).

While many approaches for music analysis borrow from a long tradition of 
speech processing, a number of elegant techniques have been developed specifi-
cally for music analysis particularly applied to domains of pitch, harmony, beat, 
tempo, and rhythm. The modulatory fluctuations in music, of both the spectral 
profile as well as the temporal envelope, have inspired a number of clever decom-
positions of music in order to hone in on the modulatory fluctuations in the sig-
nal. Some of these techniques extend the concept of a temporal modulation 
spectrum across multiple time scales. For instance, a family of modulation spec-
tra spanning fast tempi (called meter vectors) offer a hierarchy of modulation 
spectra that summarizes the temporal patterning of events in a music signal 
nested across multiple time constants (Schuller 2013).

Overall, the analysis of modulations in speech and music signals is often 
informed by particular aspects of signal perception or production under study or 
with the ultimate goal of identification, recognition, or tracking. As such, the field 
enjoys a wide variety of tools developed from different perspectives that represent 
various facets of modulation. Ultimately, the modulation spectrum (in its many 
forms) has rather direct neurophysiological interpretations, as discussed in Sec. 
12.3, though the elucidation of the exact substrate of specific forms of modulation 
encoding remains an open area of research.

12.3  Neurophysiological Interpretation of Modulations

The mapping of the informative acoustic attributes of an incoming signal takes dif-
ferent forms and varying levels of granularity as the signal is analyzed along the 
auditory pathway (Eggermont 2001). As early as cochlear processing, a sound sig-
nal entering the ear is decomposed along many bandpass frequency regions that 
span the basilar membrane, resulting in a time-frequency representation much like 
a short-term Fourier transform. The intricate details of sensory hair cell transduction 
shape the response across cochlear channels through a number of processing stages 
often modeled using half-wave rectification, low-pass filtering, and nonlinear com-
pressions (Yang et al. 1992; Ibrahim and Bruce 2010). This process, analogous to 
deriving the envelope of an analytic signal using the Hilbert transform, effectively 
tracks the temporal variations of the signal along different frequency bands, which 
not only highlights the overall temporal patterns of the signal but specifically under-
scores the profiles of onsets and sustained activity as well as rhythmic changes (e.g., 
temporal cross-sections in Fig. 12.1).

The details in this temporal profile are encoded with gradually lower resolutions 
along the auditory pathway where the neural code appears to be increasingly selec-
tive to the slower dynamics that modulate the signal profile (Miller et  al. 2002; 
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Escabi and Read 2003). This selectivity is reflected in the tuning parameters of 
neurons from the midbrain all the way to primary auditory cortex. Neural tuning 
characteristics are typically summarized using spectrotemporal receptive fields 
(STRF) (Elhilali et al. 2013). The STRF is a powerful tool in studying the selectivity 
of neurons to particular patterns in the stimulus. It typically treats a neuron as a 
system with a known input (the sound stimulus) and a measured output (the neural 
response). As is common in systems theory, the characteristics of a system (i.e., the 
system function) can be derived from its input and output or a class of inputs and 
corresponding outputs. This system function allows one to think of a neuron as a 
filter with a STRF that reflects the characteristics of the stimulus that best induces a 
strong response.

This STRF representation has been invaluable in shedding light on tuning char-
acteristics of neurons along the auditory pathway. Of particular interest to the cur-
rent discussion is the selectivity of neurons at the level of auditory cortex. While 
there is a great deal of variability across species and cortical layers, most auditory 
cortical neurons are sensitive to slow temporal and spectral modulation patterns 
(Depireux et al. 2001; Liu et al. 2003) commensurate with scales and dynamics of 
interest in modulation profiles, as discussed in Sect. 12.2. Unlike tuning in periph-
eral auditory nuclei, which captures mostly tonotopic energy across frequency, cor-
tical neurons exhibit tuning sensitivity across at least three dimensions: (1) best 
frequencies (BF) that span the entire auditory range; (2) bandwidths that span a 
wide range from very broad (∼2 octaves) to narrowly tuned (< 25% of an octave) 
(Schreiner and Sutter 1992; Versnel et  al. 1995); and (3) temporal modulation 
dynamics that range from very slow to fast (1–30 Hz) (Miller et al. 2002).

Interpreting this representation from the vantage point of signal modulations, 
neural responses of a whole population of cortical neurons are mostly driven by 
temporal dynamics in the signal that are commensurate with the sound envelope (< 
30 Hz). As a population, ensemble tuning of cortical neurons can therefore be tied 
to the temporal modulation spectrum of natural and complex sounds (Depireux 
et al. 2001; Miller et al. 2002). Complementing this axis are the spectral dynamics 
of the neural response across a cortical ensemble of neurons, which also spans spec-
tral energies typical in signals with a characteristic resonance structure (extended 
over many octaves), that are able to extract harmonic and subharmonic structures in 
the spectrum (Schreiner and Calhoun 1995; Kowalski et  al. 1996). The spectral 
selectivity of cortical neurons appears to match rather well the distinctive profile of 
spectral shapes in natural sounds, supporting the theory of a faithful alignment 
between acoustic modulation energy and neural encoding of such spectral modula-
tions, which ultimately guides processing and perception of complex sounds (Leaver 
and Rauschecker 2010). Taking both dimensions into account, the considerable 
match between the modulation spectrum (derived directly from a signal corpus) and 
the tuning characteristics of an ensemble of cortical STRFs has been argued in the 
literature as possible evidence for the underlying role of the mammalian auditory 
cortex in encoding information-bearing components of complex sounds (Singh and 
Theunissen 2003).
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While this view—at the ensemble level—reveals a formidable match between 
the acoustic properties of the signal and cortical neural tuning, the details of how 
these contours are derived are important to bear in mind because they impose a 
number of constraints on the modulation profiles under study and their interpreta-
tions. As mentioned earlier, the STRF is commonly interpreted through a systems 
theory view that deduces a system function based on the mapping between the input 
stimulus and the recorded neural response. Given interest in a system function that 
spans both time and frequency, a spectrotemporal representation of the stimulus is 
often preferred. However, the exact signal processing transformation used to map 
the spectrotemporal space dictates, to a great degree, the view and details emerging 
about the STRF. For instance, the tiling of the time-frequency space, the detailed 
resolution or sampling of such space, and the scaling of the amplitude energy profile 
of the stimulus can greatly affect the readout emerging from the neural mapping of 
this transformation and its match to the brain responses induced by complex acous-
tic stimuli.

Of particular interest is whether the use of a wavelet-based representation (based 
on logarithmic filter spacing) versus a spectrogram approach (akin to a Fourier 
transform) is more informative about the modulation spectrum and its neural under-
pinnings. On the one hand, wavelet-based analyses are generally preferred in 
explaining a number of perceptual findings, including modulation-tuning thresholds 
(Chi et al. 1999), given the closer biological realism in mimicking the frequency 
resolution provided by the auditory periphery. On the other hand, the time-frequency 
resolution tradeoff allows more modulation dynamics at the higher frequency bands 
of a wavelet representation and could magnify the effect of faster temporal dynam-
ics. As such, linearly spaced filters have been preferred for deriving modulation 
spectra, especially when considering the temporal dynamics (Jepsen et al. 2008; 
Elliott and Theunissen 2009).

Though it is difficult to objectively quantify and compare the adequacy of dif-
ferent time-frequency mappings, a common technique used in the literature is to 
assess the goodness-of-fit for different mappings. A report by Gill et al. (2006) 
performed a systematic study of sound representations in an effort to elucidate 
the importance of certain factors in the derivation of neuronal STRFs. The study 
examined a number of parameters, particularly the use of linear versus logarith-
mic spacing of modulation filters, in deriving the time-frequency representation 
of the signal. Gill et al. (2006) found little evidence for a clear advantage in using 
linear versus logarithmic filter tiling for the derivation of time-frequency spec-
trograms of the stimulus and, subsequently, for the goodness-of-fit models of 
auditory neurons in the songbird midbrain and forebrain.

In contrast to the different ways of spectral tiling, which show little to no effect, 
Gill et al. (2006) reported stronger effects of adaptive gain control and amplitude 
compression of the stimulus in assessing auditory tuning. Those two aspects reflect 
the need for nonlinear transformations (both static and dynamic) in characterizing 
the neural underpinnings of auditory tuning to sound modulations. Nonlinear map-
pings of the time-frequency profile of the stimulus not only reflect the complex 
nature of neural processing along the auditory pathway, they also highlight the mul-
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tiplexed layers of information-bearing components of natural sounds (Santoro et al. 
2014). Reducing the concept of modulations to an envelope riding on top of a carrier 
is too simple to explain its role in timbre perception, especially for complex sounds.

12.4  How Informative are Modulations?

12.4.1  Modulations in Speech

What does the speech modulation spectrum reveal about understanding spoken lan-
guage? Work dating a few decades back showed that comprehension of speech 
material is highly impaired in acoustic environments where distortions attenuate 
energies between 2–8 Hz (Steeneken and Houtgast 1979; Houtgast and Steeneken 
1985). Those observations were further corroborated by later work in different lan-
guages that showed a dramatic decline in intelligibility if the integrity of the tempo-
ral modulation profile of speech was altered (with operations such as low-pass or 
bandpass filtering) (Drullman et al. 1994; Arai et al. 1999). Similar distortions dis-
rupting the integrity of the spectral modulation profile by phase jitter or bandpass 
filtering are also equally detrimental to intelligibility, even if they do not alter the 
temporal envelope profile of speech (Arai and Greenberg 1998; Elhilali et al. 2003). 
In contrast, numerous studies have argued that any manipulations of speech that do 
not disrupt the integrity of its spectrotemporal modulations are harmless to its intel-
ligibility (Shannon et al. 1995; Zeng et al. 2005). All in all, there is growing evi-
dence that the spectrotemporal features captured by the speech MPS (see Sect. 
12.2.2) offer a representation that closely maintains the phonetic identity of the 
sound as perceived by human listeners (Elliott and Theunissen 2009). The fidelity 
of the speech MPS correlates closely with intelligibility levels of speech in the pres-
ence of ambient noise and other distortions (Elhilali and Shamma 2008). The more 
a noise distorts the speech MPS, the more the decline of speech intelligibility. 
Conversely, noises that fall outside the core acoustic energy of the speech MPS have 
little effect on its intelligibility levels (Carlin et al. 2012).

The role of the spectrotemporal modulations of speech as information-bearing 
components has been leveraged extensively to sample speech signals for many 
applications, particularly automatic speech recognition (ASR) in the presence of 
background noise. Modulation-based analysis has enjoyed a lot of success as front- 
ends for ASR systems. Most studies have focused on the temporal evolution of the 
signal envelope to quantify modulation spectra (Kingsbury et al. 1998; Moritz et al. 
2011), or estimations of the envelope pattern using temporal envelopes (Hermansky 
and Sharma 1999; Morgan et al. 2004), or using frequency-domain linear prediction 
(FDLP) (Athineos and Ellis 2003; Ganapathy et al. 2010). Also, a few attempts have 
been made to extend the analysis of modulations to both spectral and temporal 
domains; these studies have focused mainly on using two-dimensional Gabor filters 
(or other variants) as localized features for analysis of speech (Kleinschmidt 2003; 
Meyer et al. 2011). Across all of these different representations, the common thread 
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is that once the speech signal is mapped onto a space that directly highlights its 
modulation content, the fidelity of that representation is sufficient to maintain the 
speech content and facilitate its robust recognition (Nemala et al. 2013). As such, 
this robustness provides empirical corroboration that such envelope modulations are 
indeed important information-bearing components of speech.

A faithful representation of speech signals has direct relevance for hearing pros-
thetics, particularly cochlear implants (CI), for which the fidelity of the signal has 
direct perceptual implications for the user (for more on timbre perception by CI 
users, see Marozeau and Lamping, Chap. 10). Speech modulations along the spec-
tral axis are of particular interest in the case of cochlear implants because they dic-
tate the resolution of the frequency axis and, ultimately, the channel capacity of the 
prosthetic device. Numerous studies have reported minimal disruption of speech 
comprehension in noise-free environments when only a few frequency channels are 
present over a range of hundreds of Hertz below 4  kHz (Shannon et  al. 1995). 
Importantly, as few as four channels (i.e., a spectral resolution as low as 1.6 cycles/
octave) are sufficient to maintain intelligibility. Such resolution is generally too low 
for acceptable levels of speech recognition in noise and also results in impoverished 
music perception (as discussed in Sec. 12.4.2). By the same token, it has been 
argued that fully resolving formant spectral peaks (up to 2 cycles/octave) results in 
great improvement in intelligibility, especially when speech is corrupted with noise 
(Friesen et al. 2001; Elliott and Theunissen 2009). The tradeoff between the spectral 
resolution sufficient for speech perception in quiet settings and the spectral resolu-
tion necessary for speech recognition in the presence of noise remains a matter of 
debate (Friesen et al. 2001; Croghan et al. 2017). This is especially important given 
the variability across listeners in their ability to utilize the spectrotemporal cues 
available to them.

The debate over modulations and spectrotemporal resolutions necessary for 
speech perception highlight the fact that there is more to speech than just its enve-
lope (Moore 2014). While the view of modulations as an envelope fluctuation riding 
a fast carrier is true to a great extent, that view conceals the complex role played by 
the underlying fast structure of the signal in complementing the representation, and 
ultimately the perception, of speech signals. The temporal fine-structure and  spectral 
details play key roles in speech perception in noise (Qin and Oxenham 2003; 
Shamma and Lorenzi 2013), sound localization (Smith et  al. 2002), lexical-tone 
perception (Xu and Pfingst 2003), repetition or residue pitch perception (deBoer 
1976), and fundamental frequency discrimination (Houtsma and Smurzynski 1990). 
Psychophysical evidence suggests that one of the advantages that normal subjects 
have over hearing-impaired listeners is improved local target-to-masker ratios, 
especially in the presence of spectrally and temporally fluctuating backgrounds 
(Peters et al. 1998; Qin and Oxenham 2003). The notion of listening in the spectral 
and temporal “dips” of the masker sounds is less realizable for hearing impaired 
listeners because of poor spectral selectivity and reduced temporal resolution 
(Glasberg and Moore 1992).

Fine details of speech (especially along the spectrum) are also crucial for dealing 
with stationary and narrowband noises and pitch-centric speech processing 
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(McAuley et al. 2005; Wang and Quatieri 2012). Hence, one has to be careful in 
interpreting the perceptual salience of the slow envelope for speech perception as an 
exhaustive account of the speech signal. Reducing the speech signal to a dichotomy 
consisting of two independent components—envelope and fine-structure—is a 
flawed premise. The envelope and fine-structure components are not only impossi-
ble to tease apart, but they also convey complementary information about the speech 
signal, especially in everyday listening environments (Shamma and Lorenzi 2013).

12.4.2  Modulations in Music

Much like speech, music signals carry a multiplexed and highly layered structure of 
dynamics both spectrally and temporally. Music perception evokes a complex expe-
rience that spans multiple elements that include pitch, melody, timbre, and rhythm 
among others. The representations of signal modulations in their different forms 
directly encode many facets of these musical attributes (see Caetano, Saitis, and 
Siedenburg, Chap. 11). Among musical elements, modulations have a very tight 
affiliation with the perception of timbre both in terms of sound identity but also as 
musical quality.

Acoustically, a musical note is shaped by the physical constraints of the instru-
ments as well as the motor control of the player. These constraints whittle the acous-
tic signal with modulatory envelopes that carry some of the timbral properties of 
music. The acoustic signature of these constraints naturally shapes both spectral and 
temporal profiles of the acoustic signal, and they ultimately inform the perceptual 
experience as these cues are decoded by the auditory system. Numerous perceptual 
studies have shed light on these acoustic correlates (McAdams, Chap. 2; Agus, 
Suied, and Pressnitzer, Chap. 3) with spectrum as the most obvious candidate. The 
spectral shape of a musical note is naturally shaped by the vibration mode and reso-
nances of the instrument and that modulates not only the spectral energy profile but 
also frequency peaks, spectral sharpness and brightness, amplitudes of harmonic 
partials, spectral centroid, and spectral irregularities. The temporal envelope of the 
signal is also heavily modulated, and correlates of timbre can also be gleaned from 
the energy buildup, onset information, attack over time, and the spectral flux over 
time. All these attributes, spanning both spectral and temporal modulations, not 
only determine the identity of a musical instrument but also the perceived timbral 
quality of musical-instrument sounds.

In a study directly relating spectrotemporal modulations to the perception of 
timbre, Patil et al. (2012) explored the fidelity of neural activation patterns in mam-
malian auditory cortex in accurately replicating both classification of musical 
instruments as well as perceptual judgements of timbre similarities. The study 
examined the ability of a cortical mapping to reflect instrument-specific character-
istics. Patil et al. (2012) specifically assessed whether a processing pipeline that 
mimicked the transformation along the auditory pathway up to primary auditory 
cortex was able to capture the instrument identity from a wide variety of isolated 
notes from eleven instruments playing 30–90 different pitches with 3–10 playing 
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styles, 3 dynamic levels, and 3 manufacturers for each instrument (an average of 
1980 tones per instrument). The model was able to distinguish the identity of differ-
ent instruments with an accuracy of 98.7%, corroborating the hypothesis that timbre 
percepts can be effectively explained by the joint spectrotemporal analysis per-
formed at the level of mammalian auditory cortex.

Patil et al. (2012) also examined a more stringent constraint to explore how well 
this cortical mapping reflected distances between instruments that correlated with 
the perceptual judgements of timbre similarity by human listeners. In other words, 
it is not sufficient to judge whether a timbre representation is able to distinguish a 
violin from a cello, but can it also discern that a violin is perceived as more similar 
to a cello than it is to a bassoon. The representation based on spectrotemporal recep-
tive fields was indeed able to project notes from individual instruments onto a space 
that maintains their relative distances according to similarity judgements of human 
listeners. The faithful representations of spectrotemporal modulations in the cortical 
space were correlated with human similarity judgements with an accuracy of 
r = 0.944.

While the relation between spectrotemporal modulation tuning at the level of 
primary auditory cortex and timbre perception is quite strong, it is important to note 
a number of observations. The fact that the timbre space spans a complex interplay 
of spectral and temporal dimensions is not surprising and has been established 
through a large body of work spanning many decades (see Siedenburg, Saitis, and 
McAdams, Chap. 1). What timbre analysis via a biomimetic cortical model sheds 
light on is the fact that the decoding of acoustic modulations along both time and 
frequency over a rich representational space appears to be necessary and sufficient 
to almost fully capture the complete set of acoustic features pertinent to instrument 
identity and timbre similarity. It also pushes forth the debate about the cardinality of 
a timbre space, one that extends beyond few descriptors to require a high number of 
dimensions. This direct relationship between modulations and timbre perception 
reinforces the theories tying modulation with information-bearing components of 
the musical signal.

One of caveats to this theory (that the study by Patil and colleagues brought to 
light) is that the modulation space cannot be a separable one, spanning marginally 
along time and frequency (Patil et al. 2012). Rather, the joint representation along 
both directions is crucial, emphasizing spectrotemporal dynamics in the timbre pro-
file (see McAdams, Chap. 2). For instance, frequency modulations (FM), such as 
vibrato, impose rich dynamics in music signals, and they can only be discerned 
reliably by examining the joint spectrotemporal space. The role of spectrotemporal 
modulations that underly music perception has been directly reported using psycho-
physical studies that correlate music perception abilities and modulation detection 
thresholds for time alone, frequency alone, and joint time-frequency (Choi et al. 
2018). The correlations are stronger with spectrotemporal modulation-detection 
thresholds, further corroborating the idea that the configuration of the timbre space 
directly invokes a modulation space based on joint spectrotemporal dynamics 
(Elliott et al. 2013).

Another important observation from the Patil et al. (2012) study is that timbre 
representation in a biomimetic spectrotemporal modulation space is only effective 
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at replicating human judgements when augmented by a nonlinear mapping bound-
ary. A number of studies, in fact, have established this nonlinear behavior, espe-
cially at the level of auditory cortex, as it pertains to encoding of complex sound 
patterns (Sadagopan and Wang 2009). The exact nature, neural underpinnings, and 
the specificity of this nonlinearity to different sound classes remain unclear. As 
such, the quest for a direct mapping between spectrotemporal modulations and a 
timbre space remains unfulfilled.

12.4.3  Common and Unique Modulation Profiles in Speech 
and Music

As one examines the relationship between modulation profiles and the perception of 
speech and music, a natural question that arises pertains to commonalties and differ-
ences between profiles of these two sound classes. While temporal dynamics of speech 
are widely diverse and multiscale (e.g., variations across speakers, languages, prosodic 
profiles), variations in musical temporal patterns are even more diverse across genres, 
performances, and arrangements (Patel 2008). An analysis of modulation temporal 
profiles contrasting speech with Western musical samples shows drastic differences 
between these two sound classes (Fig. 12.3). This analysis, reproduced from (Ding 
et al. 2017), depicts temporal modulation profiles obtained by computing a discrete 
Fourier transform (DFT) of narrowband power envelope signals representing the root-
mean-squared of the outputs of cochlear channels that correspond to four frequency 
bands. This processing contrasts the dynamics of a speech corpus, consisting of nine 
languages (American English, British English, Chinese, Danish, Dutch, French, 
German, Norwegian, and Swedish), against datasets of Western music samples that 
include classical music by single-voice string instruments and multi-voice instruments, 
symphonic ensembles, jazz, and rock (for details, see Ding et al. 2017). Immediately 
notable is the shift in the peak temporal modulation between speech and music. While 
speech has the now established peak around 4–8 Hz (typically attributed to physical 
dynamics of speech production articulators), the music dataset analyzed in this study 
shows visibly lower peaks with a plateau between 0.5–3 Hz. A number of physical and 
perceptual constraints can offer some explanations for the disparity. The kinematics of 
hand movements in music production (for the Western samples analyzed) impose a 
natural constraint on the temporal rates of movement with a preferred frequency of arm 
movements at around 1.5 Hz (Van Der Wel et al. 2009). There is also a relationship 
between emergent temporal modulations of music signals and underlying beats of the 
musical phrasing that also tend to highlight a rate of 1.5–3  Hz (van Noorden and 
Moelants 1999).

In addition to temporal modulation profiles, the distinction between speech and 
musical sounds is also very prominent with respect to their spectral profiles. Speech 
perception remains effective even over rather coarse sampling of the spectral axis. 
A case in point is the effectiveness of cochlear implants at conveying intelligible 
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speech with very few channels, at least in favorable listening conditions (Wilson 
2004). That is far from being the case for music perception (McDermott 2004), for 
which poor spectral resolution directly impacts melody recognition as well as tim-
bre perception, two crucial aspects of the complex experience that constitutes music 
perception. Fig. 12.3 reproduces an illustration by Shannon (2005) that highlights 
the effects of spectral resolution on the perception of speech and music signals in 
addition to the effect of difficulty of listening. Panel B provides a meta-analysis 
across a number of studies that examine speech and music recognition rates as a 
function of the number of spectral channels in a noise-band vocoder. Speech detec-
tion in quiet listening conditions is contrasted with the same task under more 
 challenging situations (including more difficult sentences, background noise, recog-
nition in a second language, etc.). The trends show a clear need for improved spec-
tral resolution under challenging conditions. This requirement for finer spectral 
resolution is further underscored when a task of melody recognition in the presence 
of competing melodies is used. This latter study results in the interesting contrast 
between speech versus melody identification: as low as 3 channels to achieve 75% 
correct identification of speech sentences in quiet listening conditions to as high as 
40 channels to achieve 75% correct identification of melodies (Smith et al. 2002).

An interesting question regarding the distinction between spectral and temporal 
modulations of speech and music signals is how the perceptual system integrates 
across these modulation cues. For speech signals, joint spectrotemporal modula-
tions capture temporal fluctuations of certain spectral peaks (e.g., formant transi-
tions or speech glides). But work on automatic speech recognition suggests that 
joint spectrotemporal modulations are not necessary to improve recognition of 
words in the presence of distortions (Schädler and Kollmeier 2015).
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Fig. 12.3 Modulation profiles in speech and music. (A) The modulation spectrum of speech 
(black), single-instrument (gray), and multi-part music (colors). (B) Meta-analysis incorporating 
results across many studies to examine speech and music recognition (y-axis) as a function of the 
number of spectral channels (x-axis) in a noise band vocoder (A reprinted from Ding et al. 2017; 
B reprinted from Shannon 2005; both used with permission from Elsevier)
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These results argue that capturing signal transitions along both time and fre-
quency may be less crucial for recognizing speech in noise. Instead, a reduced rep-
resentation of spectral and temporal modulations (separately) is argued to yield 
comparable recognition as the joint-modulation representation. Unfortunately, there 
have been limited extensions of this exploration to definitely rule out a role of joint 
spectrotemporal modulations in speech recognition.

In contrast, the role of joint spectrotemporal modulations in musical timbre has 
been clearly demonstrated. There is strong evidence that a separable space, span-
ning time and frequency separately, is insufficient to capture the nuances of timbre 
required for distinguishing the timbre of different musical instruments. Instead, a 
modulation representation of both time and frequency axes is important to explicitly 
encode key musical constructs such as frequency modulations common in string 
vibrato (Patil et al. 2012; Elliott et al. 2013).

The divergence in acoustic attributes of both sound classes offers a potential 
rationale for different neural circuits that underlie the processing of speech and 
music in the brain (Zatorre et  al. 2002; Norman-Haignere et  al. 2015). The left 
hemisphere plays a more prominent role in complex linguistic functions; whereas, 
the right hemisphere appears to notably favor tasks involving tonal patterns or spec-
tral processing, two aspects that are most related to the perception of music 
(Liégeois-Chauvel et al. 1998). This specialization beyond auditory cortex builds on 
an underlying common circuitry of mid-level and primary cortical representations 
that appear to focus primarily on extracting spectrotemporal modulations in incom-
ing complex sound patterns. These very modulations appear to be a crucial back-
bone needed to carry information about complex sounds such as speech and music.

12.5  Summary

Theoretically, modulation is nothing but a mapping of an acoustic signal that high-
lights its fluctuations or indicates how its energy changes over time and frequency. 
These modulations are shaped by the source from which the signal emanates; hence, 
they can inform about the physics of that source and ultimately the signal’s timbre. 
In practice, however, quantifying modulations is a nontrivial endeavor that takes 
many formulations and interpretations. Modulations of complex signals, such as 
speech and music, are a multifaceted construct that varies along multiple time scales 
and granularities, and they are shaped as much by the physics of the source as by the 
neural representations of acoustic energy in the brain. This chapter reviews some of 
the common representations of modulations and reflects on their perceptual and 
neural interpretation.

A number of questions surrounding the representation and role of modulations 
remain open. For example, what is the contribution of nonlinearities, which are 
pervasive in brain networks, in shaping the encoding of signal modulations in the 
auditory system? As discussed throughout this chapter, most constructs of modula-
tions rely on transformation of the signal energy to another domain via spectral 
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mappings such as the Fourier transform. These transformations maintain operations 
in the original vector space of time-frequency and, as such, are limited in their abil-
ity to manipulate or warp the mapping of spectrotemporal modulations. This is also 
true in the case of biomimetic constructs, such as spectrotemporal receptive fields, 
used to analyze neural activity in the central auditory system (Depireux and Elhilali 
2013). While the receptive field view of auditory processing offers a rich set of tools 
to explore the encoding of sound characteristics, they are very much limited by 
approximative assumptions of linearity that are often compensated for in backend 
systems by means of nonlinear kernels that are often used in machine learning 
(Hemery and Aucouturier 2015). Understanding these nonlinearities is not only 
essential in the study and modeling of brain networks but also crucial to truly grasp 
the role played by sound modulations in informing perception.

The encoding of modulations is likely to be further shaped by active engagement 
in listening tasks and deployment of cognitive processes, notably attention. These 
top-down processes are known to greatly modulate neural encoding of incoming 
signals (Shamma and Fritz 2014), yet their role in shaping the representation of 
signal modulations remains largely unknown. Future research efforts addressing 
these questions will shed light on aspects of modulations that the brain hones in on 
when listening in multisource environments, for instance, their function in helping 
the auditory system deal with the cocktail party problem (Elhilali 2017).
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