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Abstract A better understanding of auditory scene analysis requires uncovering 
the brain processes that govern the segregation of sound patterns into perceptual 
streams. Existing models of auditory streaming emphasize tonotopic or “spatial” 
separation of neural responses as the primary determinant of stream segregation. 
While partially true, this theory is far from complete. It overlooks the involvement 
of and interaction between both “sequential” and “simultaneous” grouping mecha-
nisms in the process of scene analysis.

Here, we describe a new neuro-computational model of auditory streaming. 
Inspired by recent psychophysical (cf. abstract by Micheyl et al.) and physiologi-
cal findings, this model is based on the premise that perceived segregation results 
from spatio-temporal incoherence, rather than just tonotopic separation. While 
tonotopic separation still plays an important role in this model, it is an indirect 
one: tonotopic overlap tends to reduce temporal incoherence, which in turn 
impedes segregation. The model simulates responses at the level of the primary 
auditory cortex and performs a correlative analysis of cortical responses in order 
to assess how different sound elements evolve in time in relation to each other. An 
eigenvector decomposition of this coherence analysis is used to predict how the 
input stimulus is organized into streams. The model is evaluated by comparing its 
neural and perceptual predictions under various stimulus conditions to physiologi-
cal and psychophysical results.
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46.1  Introduction

A well established Gestalt principle that has been often evoked in visual perception 
is that of common fate; i.e., the tendency to group together objects that move together 
with the same motion pattern and speed (Blake and Lee 2005). In the auditory 
domain, this principle simply translates into the observation that features which 
“move” together in time will likely group together perceptually (Bregman 1990). 
While simple enough in its postulate, this idea has not been explored in studies of 
neural correlates of streaming. Until now, the prevalent view, based on data recorded 
mostly in the primary auditory cortex, has focused on a “spatial” (i.e., tonotopic) 
explanation of how the brain solves the segregation problem (Fishman et al. 2004, 
2001; Micheyl et al. 2005). This view postulates that neuronal populations with spa-
tially segregated average responses will likely give rise to perceptually segregated 
streams. While this principle holds for simple sequential organization conditions such 
as alternating tone sequences, it does not generalize to other stimuli. In particular, this 
principle does not address the interaction between synchrony and sequential grouping 
cues. Mounting perceptual evidence, most recently from the accompanying paper by 
Micheyl et al. (this volume; see also: Micheyl et al. 2010), indicates that these prin-
ciples do indeed interact in guiding how our brain segregates sound.

Based on these results, we explore the idea of temporal coherence as a new 
framework for understanding the neural correlates of streaming. We present 
physiological experiments from recordings in single units, which support a 
spatio-temporal basis of stream segregation. In addition, we propose a model that 
successfully validates the perceptual data using tone sequences, based on response 
properties in cortical neurons.

46.2  Neurophysiological Basis of Stream Organization in AI

We set out to explore the neurophysiological basis of the organization of streams as 
guided by perceptual grouping principles. In this study, we focused on the organiza-
tion of synchronous and sequential tones at the level of primary auditory cortex 
(AI), and explored the nature of the neural code to both stimulus types in order to 
account for their very different percepts.

In this experiment, we examined the distribution of responses to two pure tones, 
the frequencies of which were adjusted relative to the best frequency (BF) of an 
isolated single unit in AI of awake ferrets in five steps (labeled 1–5), where positions 
1 and 5 correspond to one of the tones being at BF. The frequency separation (DF) 
between the tones was fixed at 1, 0.5, or 0.25 octaves, corresponding to 12, 6, and 3 
semitones, respectively. Tones A and B were shifted coherently relative to BF, with 
tone B starting at the BF and tone A ending at the BF. DF between the tones was 0.25, 
or 0.5, or 1 octave, which was fixed within a trial and varied among different trials. 
The total number of conditions was: 5 positions × 3 DF × 2 modes.
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The results from a population of 122 units in the AI of four ferrets are shown in 
Fig. 46.1. We analyzed the average rate profiles of each unit to each tone sequence 
under all frequency separations and frequency position. When the tones are far 
apart (DF = 1 octave; right panel of Fig. 46.1), and when either tone is near BF, 
responses are strong (positions 1 and 5); they diminish considerably when the BF is 
midway between the tones (position 3), suggesting relatively good spatial separation 
between the representations of each tone. When the tones are closely spaced 
(DF = 0.25 octave; left panel of Fig. 46.1), the responses remain relatively strong at 
all positions, suggesting that the representations of the two tones are not well sepa-
rated. More importantly, the average rate profiles are similar for both presentation 
modes; in all cases, the responses are well-segregated with significant dips when 
the tones are far apart (DF = 1 octave), and poorly separated (no dips) when the 
tones are closely-spaced (DF = 0.25 octaves). Thus, based on average rate responses, 
the neural data mimic the perception of the asynchronous but not the synchronous 
tone sequences. Therefore, the distribution of average rate responses does not 
appear to represent a general neural correlate of auditory streaming.

Overall, the results from the physiological experiments in awake ferrets reveal 
that a simple rate profile of responses in primary auditory cortical neurons is not 
sufficient to explain the perceptual difference between synchronous and alternating 
tone sequences. Clearly, a model that is successfully able to predict perception from 
these neural data will need to incorporate the time dimension.

Fig. 46.1 Single unit recordings in AI using synchronous and alternating tone sequences
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46.3  Spatio-Temporal Coherence Model

In this work, we emphasize the need for incorporating the temporal dimension in 
any model of stream organization. The basic premise of the model is that temporal 
coherence of sound features is an important principle for organizing sound mixtures 
into streams.

46.3.1  Auditory Processing from Periphery to Cortex

It is well established that acoustic signals undergo a series of transformations as they 
journey up the auditory system starting at the periphery all the way to cortex, mapping 
signals into a higher-dimensional representation. In order to capture this 
mapping in a mathematical formulation, we employ a model of auditory processing 
which abstracts from existing physiological data in animals and psychoacoustical 
data in human subjects as explained in details by Chi et al. (1999, 2005) and Elhilali 
et al. (2003).

The early auditory stages process the incoming acoustic signal through a 
sequence of stages representing cochlear filtering, hair cell transduction, and lateral 
inhibition to yield a final auditory spectrogram output (Fig. 46.2). This sequence of 
operations effectively computes a spectrogram of the signal using a bank of 
constant-Q filters, with a bandwidth tuning Q of about 12 (or just under 10% of the 
center frequency of each filter).

The central cortical stages further analyze the auditory spectrum into more 
elaborate representations and separate the different cues and features associated 
with different sound percepts. Electrophysiological evidence shows that cortical 
neurons are tuned to a variety of sound features, including BF, spectral bandwidth, 
and temporal dynamics. In the present study, we focus on the temporal integration 
tuning of cortical neurons. The time-scales of cortical dynamics are commensurate 
with dynamics of stimuli used in streaming experiments, as well as the dynamics 
of speech (Chi et al. 1999; Elhilali et al. 2003), musical melodies, and many other 
sensory percepts (Carlyon and Shamma 2003; Viemeister 1979). Mathematically, 
this analysis is achieved via an affine wavelet analysis of the auditory spectrogram. 

Fig. 46.2 Schematic of the spatio-temporal coherence model
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The cortical temporal model estimates the temporal modulation content of the 
auditory spectrogram via a bank of modulation-selective filters (the wavelets) 
centered at each frequency along the tonotopic axis. Each filter is tuned (Q = 1) to 
a range of temporal modulations (also referred to as rates or velocities (in Hz)), 
and is constructed by a temporal gamma function. This mother wavelet is scaled 
and shifted at different rates (Wang and Shamma 1995). Effectively, the model 
analyzes the time-sequence from each frequency-scale channel by convolving it 
with a temporal receptive field, effectively integrating the signal energy over a 
multiple scales of time ranging from 4 Hz to 64 Hz in logarithmic steps. It is worth 
noting that 64 Hz is a relatively high upper limit to known cortical dynamics. It is 
however used in the present study to ensure that short sounds (of the order of tens 
of milliseconds, such as one short tone) do indeed induce a response through the 
cortical integration stage.

46.3.2  Coherence Analysis

The focal proposition of this model is that features are grouped based on their 
coherence over time. The premise is extensible to a range of dimensions, and 
should be valid when applied to acoustic features, including frequency, spectral 
shape (or timbre), pitch, spatial location, etc. For details of correlation analysis 
based on spectral shape, (Elhilali and Shamma 2007) describes an analysis of 
informational masking stimuli.

In the present paper, we focus on applying the model along the frequency 
dimension. Specifically, a signal is processed through the peripheral processing 
stage (described in sect. 46.3.1) yielding a time-frequency representation. The out-
come is then passed through the cortical temporal analysis described in sect. 46.3.1, 
where each spectral channel is integrated through multirate analysis windows. A 
correlation analysis is then performed on the channel against each other, as 
described in the steps below:

1. Map the signal x(t) into a time-frequency spectrogram y(t,x)

2. Perform the cortical multirate analysis: ( ) ( ), ; , , * ( ; , )c c t T c cr t x y t x h tω θ ω θ=

3. For each 

 [ ]0 1 0 2 0 0( , , ) ( ; , , ), ( ; , , ), , ( ; , , ) T
c c c c c c N c cR t r x t y x t y x tω θ ω θ ω θ ω θ= K , 

 perform a correlation analysis:RR* (where * denotes complex-conjugate).
4. Integrate all matrices over the range of rate filters Y: 

0 0 0 0( ) ( , , )C t R t ω θ
Y

= å
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46.3.3  Decomposing the Coherence Matrix

The matrix C captures the degree of coherence in the neural responses at different 
frequency locations along the tonotopic axis. A high correlation value between two 
channels indicates a strong coherent activity at these two locations, while a low 
correlation value indicates lack of coherent activity. In order to determine the 
optimal factorization of the matrix in terms of maximally correlated channels, we 
perform an Eigen Value Decomposition (EVD). The structure of the significant 
eigenvectors is informative about which channels should be grouped together as 
one stream, and which should belong to a different stream. If a sound mixture 
contains only mutually coherent activity, its EVD will yield one strong eigenvalue 
corresponding to the channels that are maximally coherent. If, instead, a sound 
mixture contains two streams, their uncorrelated activity over time will emerge in 
the coherence matrix as two main directions, which will give rise to two strong 
eigenvalues. In the simulations presented in this work, we will use the ratio of second 
to the first eigenvalue as a correlate of this segregation: The smaller the ratio, the 
more likely the original sound contains one stream. In order to explore the actual 
structure of the streams associated with these eigenvector, we use the corresponding 
eigenvectors as weights on the different frequency channels.

46.3.4  Model Validation

In order to test the model’s performance, we simulate a range of stimuli consisting 
of tone sequence with various spectro-temporal organizations. In the first simula-
tion, we vary the degree of synchrony between 2 tone sequences, spanning the 
continuum from fully synchronous to fully asynchronous. In the second and third 
simulations, we explore the interaction between synchrony and sequential grouping 
cues, following the perceptual studies presented in the accompanying study by 
Micheyl et al. (2009).

46.3.4.1  Varying Degrees of Synchrony

In the first simulation, we use a sequence of a low A tone fixed at 300 Hz, and a 
high B tone at 952 Hz. Both tones were 75 ms long, with 10 ms onset and offset 
raised cosine ramp. We vary the onset to onset delay between the A and B tones 
from DT = 0% (for fully synchronous) to DT = 100% (fully asynchronous) with 
graduate steps in between. Figure 46.3a shows the ratio of eigenvalues as a function 
of DT. At the lowest end (DT = 0%), the coherence matrix maps to almost one main 
eigenvalue, hence the eigen-ratio is very small correlating with a percept of one 
stream (Elhilali et al. 2009). In this case, the coherence matrix can be mapped onto 
one main dimension, which yields an almost zero second eigenvalue. At the other 
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end of the continuum, the relative ratio of l
2
 to l

1
 reaches a high value indicating 

that both l
1
 and l

2
 are almost of equal value. In this case, the coherence matrix is 

in fact almost a rank 2 matrix, which can be mapped onto two main dimensions. 
In between these two extreme cases, we gradually vary the degree of synchrony 
between the two sequences. In this case, the relative ratio of l

2
 to l

1
 increases 

gradually; hence, allowing us to parametrically follow the influence of degree of 
asynchrony on grouping of two frequency streams, thereby allowing us to predict 
the transition between the percepts of one and two streams.

46.3.4.2  Experiment I: Synchrony Overrides Sequential Grouping

Next, we test the model using the same Experiment I paradigm used by Micheyl 
et al. in the accompanying paper (Micheyl et al. 2009). The stimuli consist of 
sequences of A and B, where A was fixed at 1,000 Hz and B was set at DF = 6, 9, 
or 15 semitones above the A tone. Each tone was 100 ms in duration, including 
10 ms raised-cosine onset and offset ramps. The silence interval between consecu-
tive B tones was fixed at DT

B
 = 50 ms. The silence between consecutive A tones 

Fig. 46.3 Model simulation results
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(DT
A
) was varied across conditions. It was equal to 50 ms (in which case, the A and B 

precursors were synchronous), 30, or 70 ms (in which case, the A and B precursors 
were asynchronous).

In this simulation, we test how segregated are the two sequences under all 
variations of DF and DT

A
. The psychoacoustic experiments show that the synchro-

nous condition yields small thresholds even at the largest frequency separation 
(15 semitones). This low threshold is explained by the subjects’ ability to make 
timing judgments within-stream, which is consistent with other results that 
synchronous tone sequences do indeed form a single perceptual stream even at large 
frequency separations exceeding 1 octave. In contrast, the asynchronous conditions 
where DT

A
 = 30 or 70 ms yield larger thresholds, which in turn is consistent with an 

across-stream judgment (Bregman and Campbell 1971). The model simulations for 
these conditions are shown in Fig. 46.3b. The plot reveals that the synchronous 
condition (dark filled circles) does indeed yield a low eigen-ratio. This result is 
consistent with the perceptual finding that the 50 ms condition does indeed result 
from a percept of a single stream. It is worth noting that the eigen-ratio is low for 
all three frequency separation values of 6, 9, and 15 semitones. In contrast, the 
asynchronous conditions at DT

A
 = 30 or 70 ms yield considerably higher eigen 

ratios, consistent with the perceptual findings.

46.3.4.3  Experiment II: Sequential Capture Overrides Synchrony Detection

In the next experiment, we explore the effect of sequential capture on synchrony 
judgments. This paradigm follows the design of Experiment II by Micheyl et al. 
(2009). The stimuli consisted of 3 tones, a single A tone at 1,000 Hz, a B tone at 6 
or 15 semitones above A, and a C tone (“captor”) at the same frequency as A 
(“On-frequency captor”) or 6 semitones below A (“Off-frequency capture”). 
All tones were again 100 ms long with 10 ms raised-cosine onset and offset ramps. 
In the “On-frequency captor” condition, the A and B pair was surrounded by 
“captor” tones at the A frequency, with five captor tones before, and two captor 
tones after, the A–B pair. The captor tones were separated from each other, and 
from the target A tone, by a constant delay of 50 ms (Fig. 46.3c). In this condition, the 
target A tone formed part of a temporally regular sequence. In the “Off-frequency 
captor” condition, the frequency of the captor tones was set 6 semitones below the 
A tone, hence affecting the sequential grouping cues. The simulation results for this 
experiment are shown in Fig. 46.3c. Here, we show the results for frequency 
separation between A and B set at 15 semitones. In the first row, we show the 
simulation of the “On-frequency captors” condition. The leftmost panel shows the 
actual input analyzed by the model. After the coherence matrix is generated, we use 
the eigenvector structure to weigh the different frequency channels and group all 
coherent activity into one stream, and anticorrelated activity into a second stream 
(middle and rightmost panels). As shown in the figure, the sequential grouping cues 
override the presence of the synchronous A–B token, and groups the A tone with 
the preceding captor C tones. It is important to note that this result is only possible 
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because of the cortical integration stage in the model, which gives the segregation 
of the streams inertia to look over relatively longer time scales; hence, allowing 
sequential cues to supersede the rules of synchrony. By this same inertia, a portion 
of the B tone is also “grabbed” along, though its energy is very weak because its 
presence was not long enough to drive responses from the cortical filters. The 
remaining energy of tone B is left in stream 2, though it does not show clearly in 
the spectrogram of the second stream. In contrast, the “off-frequency captors” con-
dition results in a different organization (Fig. 46.3c, second row). In this case, the 
coherent activity from the C channel has no reason to group the A–B tones, hence 
segregating them into a separate stream.

46.4  Conclusions

Overall, the physiological data supports the proposal that our current thinking of 
streaming in the auditory system needs to incorporate the temporal axis as a key 
principle in organizing acoustic scenes. It is however important to emphasize that 
this principle does negate the rule of spatial segregation. If two alternating tones are 
too close together in frequency, their activation pattern will not be distinct enough 
to be able to see their anti-correlated temporal coherence. Hence, the overall principle 
is truly a spatio-temporal model of stream segregation, as tested directly by our 
computational model. An outstanding question remains as to the exact biological 
mechanisms involved in the process of “matrix decomposition” (i.e., detection of 
temporal coherence), and whether it is indeed a process that occurs at the level 
of the primary auditory cortex or beyond.
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