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1 Introduction

The question of how everyday cluttered acoustic environments are parsed by
the auditory system into separate streams is one of the most fundamental in
perceptual science. Despite its importance, the study of its underlying neural
mechanisms remains in its infancy; with a lack of general frameworks to
account for both psychoacoustic and physiological experimental findings.
Consequently, the few attempts at developing computational models of 
auditory stream segregation remain highly speculative. This in turn has con-
siderably hindered the development of such capabilities in engineering 
systems such as automatic speech recognition, or sophisticated interfaces
for communication aids (hearing aids, cochlear implants, speech-based
human-computer interfaces).

In the current work, we present a mathematical model of auditory stream
segregation, which accounts for both perceptual and neuronal findings of scene
analysis. By closely coordinating with ongoing perceptual and physiological
experiments, the proposed computational approach provides a rigorous frame-
work for facilitating the integration of these results in a mathematical scheme
of stream segregation, for developing effective algorithmic implementations to
tackle the “cocktail party problem” in engineering applications, as well as gen-
erating new hypotheses to better understand the neural basis of active listening.

2 Framework and Foundation

2.1 Premise of the Model

Numerous studies have attempted to reveal the perceptual cues neces-
sary and/or sufficient for sound segregation. Researchers have identified
frequency separation, harmonicity, onset/offset synchrony, amplitude and
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frequency modulations, sound timbre and spatial location as the most
prominent candidates for grouping cues in auditory streaming (Cooke and
Ellis 2001). It is, however, becoming more evident that any sufficiently
salient perceptual difference along any auditory dimension (at the periph-
ery or central auditory stages) may lead to stream segregation.

On the biophysical level, our knowledge of neural properties particularly
in the auditory cortex indicates that cortical responses (Spectro-Temporal
Receptive Fields, STRFs) exhibit elaborate selectivity to spectral shapes, 
symmetry and dynamics of sound (Kowalski et al. 1996; Miller et al. 2002).
This intricate mapping of acoustic waveforms into a multidimensional space
suggests a role of the cortical circuitry in representing sounds in terms of
auditory objects (Nelken 2004). Moreover, this organizational role is sup-
ported by the correspondence between time scales of cortical processing and
the temporal dynamics of stream formation and auditory grouping.

In this study, we formalize these principles in a computational scheme that
emphasizes two critical stages of stream segregation: (1) mapping sounds
into a multi-dimensional feature space; (2) organizing sound features into
temporally coherent streams. The first stage captures the mapping of acoustic
patterns onto multiple auditory dimensions (tonotopic frequency, spectral
timbre and bandwidth, harmonicity and common onsets). In this mapping,
acoustic elements that evoke sufficiently non-overlapping activity patterns in
the multi-dimensional representation space are deemed perceptually distin-
guishable and hence may potentially form distinct streams. We assume that
these features are rapidly extracted and hence this mapping simulates
“instantaneous” organization of sound elements (over short time windows;
e.g. <200 ms), thus evoking the notion of simultaneous auditory grouping
processes (Bregman 1990).

The second stage simulates the sequential nature of stream segregation.
It highlights the principle that sound elements belonging to the same stream
tend to evolve together in time. Conversely, temporally uncorrelated features
are an indication of multiple streams or a disorganized acoustic scene.
Identifying temporal coherence among multiple sequences of features
requires integration of information over relatively long time periods (e.g.
>300 ms), consistent with known dynamics of streaming-buildup. Therefore,
the current model postulates that grouping features according to their levels
of temporal coherence is a viable organizing principle underlying cortical
mechanisms in sound segregation.

2.2 Stage 1: Multi-dimensional Cortical Representation

Current understanding of auditory cortical processing inspires our model
for the multi-dimensional representation of sound. The model takes in as
input an auditory spectrogram, and effectively performs a wavelet decompo-
sition using a bank of linear spectro-temporal receptive fields (STRFs). The
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analysis proceeds in two steps (as detailed in Chi et al. 2005): (i) a spectral
step that maps each incoming spectral slice into a 2D frequency-scale repre-
sentation. It is implemented by convolving the time-frequency spectrogram
y(t,x) with a complex-valued spectral receptive field SRF, parametrized by
spectral tuning Ωc and characteristic phase φc; (ii) a temporal step in which
the time-sequence from each frequency-scale combination (channel) is con-
volved with a temporal receptive field TRF to produce the final 4D cortical
mapping r. Each temporal filter is characterized by its modulation rate ωc and
phase θc. This cortical mapping is depicted in Fig. 1A, and can be captured by

s (t, x; Ωc, fc) = y (t, x)*x SRF (x ; Ωc, fc) 

r(t, x; wc, Ωc,qc, fc) = s (t, x; Ωc, fc)*t TRF(t; wc,qc)
(1)

We choose the model’s parameters to be consistent with cortical response
properties, spanning the range Γ=[0.5–4] peaks/octave spectrally and 
Ψ = [1–30] Hz temporally. Clearly, other feature dimensions (such as spatial
location and pitch) can supplement this multidimensional representation as
needed.

Fig. 1 A,B Schematic of stream segregation model



2.3 Stage 2: Temporal Coherence Analysis

The essential function of this stage is twofold: (i) estimate a pair-wise
correlation matrix (C) among all scale-frequency channels, and then (ii)
determine from it the optimal factorization of the spectrogram into two
streams (foreground and background) such that responses within each
stream are maximally coherent.

The correlation is derived from an instantaneous coincidence match
between all pairs of frequency-scale channels integrated over time. Given that
TRF filters provide an analysis over multiple time windows, this step is equiv-
alent to an instantaneous pair-wise correlation across channels summed over
rate filters (Fig. 1B):

( ) ( ) ( ) ( )Correlation Matrix s t s t dt r r C*
i j i j ij- _= ~ ~

!~ }
# / (2)

where (*) denotes the complex-conjugate. We can find the “optimal” factor-
ization of this matrix into two uncorrelated streams, by determining the
direction of maximal incoherence between the incoming stimulus patterns.
Such a factorization is accomplished by a principal component analysis of the
correlation matrix C (Golub and Van Loan 1996), where the principal eigen-
vector corresponds to a map labeling channels as positively or negatively cor-
related entries. The value of its corresponding eigenvalue reflects the degree
to which the matrix C is decomposable into two uncorrelated sets, and hence
reflects how ‘streamable’ the input is.

2.4 Computing the Two Streams

Therefore, the computational algorithm for factorizing the matrix C is as
follows:

1. At each time step, the matrix C(t) is computed from the cortical represen-
tation as in Eq. (2). The correlation matrix keeps evolving as the cortical
output r(t) changes over time. However for stationary stimuli, the correla-
tion pattern reaches a stable point after a buildup period.

2. Given its hermitian nature (since it is a correlation matrix), C can be
expressed as C = lmm† + e, where m is the principal eigenvector of C, l its
corresponding eigenvalue, and e(t) the residual energy in C not accounted for
by the outer-product of m. (†) denotes the hermitian transpose. The ratio of
l2 to the total energy in C corresponds to the proportion of the correlation
matrix accounted for by its best factorization m. This ratio is an indicator of
the separablity of the matrix C, and hence the streamability of the sound.

The principal eigenvector m can be viewed as a ‘mask’, which can differentially
shape the scale-frequency input pattern at any given time instant. This mask
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consists of a map of weights that positively scales channels with a common
orientation and suppresses channels in the opposite direction. Effectively, m
(and its complement 1-m) acts as a “filter” through which we can produce
the foreground (and background) stream.

3 Simulation Results

The model was tested on several classic stream segregation conditions to
demonstrate its ability to emulate known percepts as reported by human sub-
jects. The first row in Fig. 2 illustrates results of the classic alternating tone
paradigm (Bregman 1990). The leftmost panel shows the mask profile m for
this stimulus. Given its stationary nature, the matrix C stabilizes rapidly, and
its factorization m reveals that the energy in channel A (low tone) is tempo-
rally anti-correlated with channel B (high tone), and hence should belong to
a different stream.

The second row of Fig. 2 depicts simulation results for a target tone in a
multi-tone background, commonly used in Informational Masking (IM) tests.
This stimulus is the focus of the remainder of this study, where we attempt to
use the model to account for perceptual and physiological results using the
same paradigm.

The right lower panels of Fig. 2 show the outcome of applying the mask
m to the IM spectrogram. As the correlation pattern builds up in time, the
target tone is flagged as temporally un-correlated with the background tones,
and hence is slowly suppressed in the left stream. Given the random nature of
the background, some maskers are occasionally labeled as weakly correlated
with the target. This explains why the target stream has a weak contribution
from the maskers.

The Correlative Brain: A Stream Segregation Model 251

Fig. 2 Model simulations



4 Perceptual Measures

To validate the simulation results against human perception with IM stimuli,
we derived a measure of how detectable the target is, based on our mask 
profile. The measure quantifies the mean vectorial distance between the 
complex-valued energy of m at the target channel, and energy in any other
masker channel. Figure 3 illustrates the change in this distance d as the pro-
tection zone separating the target from the maskers varies. In accord with
findings from psychoacoustic tests (Micheyl et al. 2007), the trend in this dis-
tance plot reveals that unmasking effects of the target depend on the size of
the spectral protective region around the target tone. Additionally, the model
reveals that temporal regularity of the target does not seem to be a critical cue
for target detection. The open symbols in Fig. 3 demonstrate that regular tar-
gets or roved irregular targets (average of one target every two masker bursts)
yield virtually similar distance values; and hence result in similar unmasking
levels, as shown by perceptual findings in (Micheyl et al. 2007).

5 Physiological Correlates

In addition to mimicking human perceptual performance, the model enables
us to explore neural correlates of streaming and attention, as observed in
physiological studies using the same IM paradigm (Yin et al. 2007). To do so,
we add more biological realism to the model by incorporating a stage of neu-
ronal adaptation, simulated via mechanisms of synaptic depression known to
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Fig. 3 Predicted target detection



operate at the thalamo-cortical projections (as described in Elhilali et al.
2003). This stage shapes the energy pattern of each channel at the input of the
cortical model by effectively adapting its activity in a nonlinear fashion. This
neuronal adaptation has been explored as a potential mechanism underlying
observed tuning curve changes in naïve or non-behaving animals presented
with streaming-like paradigms (Yin et al. 2007). Consistent with these specu-
lation, our simulations reveal a drop in tuning curve gain during the buildup
period (Fig. 4). These tuning curves are obtained by weighting the model’s
spectral receptive fields (SRF) region around the target tone with its corre-
sponding mask profile m at different time epochs of the stimulus.

By contrast, simulating behavioral shifts in trained animals has to evoke
top-down attentional mechanisms which would for instance modulate the
weights of the cortical map, by emphasizing the STRF regions associated
with the task at hand. Specifically, when a trained animal is performing a
detection task of a single tone surrounded by broadly distributed masker
tones (referred to as Task 2 in Yin et al. 2007), a potential mechanism at play
is learning to promote narrowly tuned neuronal ensembles so as to focus on
a single target tone. Such consistent attentional emphasis can be simulated by
applying a high-pass to the scale dimension in Fig. 1, hence amplifying the
response from the high scales (i.e., narrowband) region. Conversely, when
the animal learns to attend to the broadband masker background tones
(Task 1), it could potentially emphasize activity in the broadband region. We
simulate this situation by a low-pass along the scale dimension. The effect of
these task dependencies is illustrated in Fig. 5, which depicts the changing
bandwidth of a tuning curve during the performance of these two tasks, as
shown in physiological findings in (Yin et al. 2007).
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Fig. 4 Gain change of target tuning curve as predicted by model’s mask response



6 Final Remarks

We have demonstrated that analysis of response coherence in a model of
auditory cortical processing can account for the perceptual organization of
sound streams. While response coherence emerges as the key overarching
organizational principle, its computational implementation can take differ-
ent but essentially equivalent forms. For instance, this paper focused on the
correlation matrix C and its factorization as the vehicle for the analysis.
Alternatively, a focus on predicting response consistency within different
streams results in a Kalman filtering interpretation (Elhilali and Shamma
2006). Ongoing and future investigations must also incorporate biologically
plausible adaptive mechanisms to account for the observed effects of behav-
ior on cortical responses during streaming.
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Comment by Yost

The discussion following your excellent talk, underscored what I think can be
an important distinction. I do not believe that ‘streaming’ and ‘source’ segre-
gation are always the same thing. That is, in your A-B example two sounds
(A and B) that occur at the same time can be perceived as coming from two
sources, but they may not be perceived as being a continuation of the sources
perceived at a different point in time – segregation may occur but streaming
did not. From my perspective, streaming is a form of source segregation that
involves an element of continuity over time. Or, put another way streaming
is an example of source segregation, but they are not the same thing. You pre-
sented your model as a stream segregation model, but it appears that with the
proper time constants it might also be used for source segregation in the
absence of perceived continuity from stimulus presentation to stimulus pres-
entation. For instance, with a very short time constant the model might be
able to account for the segregation of two different transients that occurred
at the same time. Is this correct?

Reply

I agree with your argument about the use of the model (namely the first stage
of a sound multi-feature representation) as a scheme for segregating sound
components present in the environment at any instant in time. In this multi-
dimensional representation, acoustic elements that evoke sufficiently non-
overlapping activity patterns in the feature space are deemed perceptually
distinguishable and can hence be perceived as individual components in a
complex scene at any instant in time. This sound representation builds up
over tens of milliseconds (<150 ms), but reflects the instantaneous segrega-
tion of an acoustic scene. In contrast, the temporal coherence stage of the
model reflects the dynamic nature of stream segregation as it builds up
over time requiring information integration over few hundred milliseconds.
Hence, as expressed in your comment, the ‘instantaneous’ elements parsed in
the first stage might or might not evolve to a percept of segregated streams,
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depending on whether they maintain a coherent evolution over time from
one stimulus presentation to the next stimulus presentation.

My only disagreement with your statement is the use of the term ‘source’
segregation, because that expression reflects more the physical cause of a
sound, and not necessarily our perception of the individual components of a
sound. Hence, I would prefer to call this instantaneous segregation a parsing
of the scene into its constituent elements; which allow us at every instant of
time to perceive different elements present in the environment (which you
called sources).

Comment by Divenyi

I don’t think anybody would argue that the basic premise of streaming is
source perception. When a sequence is perceived as two streams, it is that we
attribute the two alternating sounds as coming from two different sources.
Conversely, when the sequence is perceived as a single stream, we attribute the
whole sequence to a single source. So, when two sounds that are segregated
into two streams are now played simultaneously and repeated over a longer
period, they are grouped together by virtue of their shared temporal proper-
ties. I think that the listener will end up considering the ensemble as being
produced by a single source, just like a consonant burst is considered as com-
ing from one source regardless of how many disparate spectral patches it may
consist of. In music, too, a repeated chord, no matter how complex, will be
considered as the same repeated event. Would not it be preferable that the cor-
relation metric you propose would indicate the number of sources instead?

Reply

I do agree that the percepts that arise from many acoustic scenes do not nec-
essarily reflect the actual physical sound sources present in the environment.
However, I would disagree with your statement that the premise of streaming
is source separation. Rather, I would agree with Bregman’s definition of
stream where he argued to reserve the word ‘stream’ for the perceptual rep-
resentation, and the word ‘sound’ or ‘source’ for the physical cause. Aside
from the nomenclature issue, I completely agree with your argument.

As far as the use of the model for indicating the number of streams (or
‘sources’) in the scene, we can definitely expand our formulation to incorpo-
rate information from the second and higher principal dimensions of the
coherence correlation matrix C (after performing the matrix factorization).
These additional degrees of freedom can indicate the presence of a third or
fourth stream whose components are highly correlated amongst themselves.
We have not yet explored this extension of the model in the current study, but
will try to incorporate it in alternative implementations of the model.
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