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Abstract

We present a biologically motivated method for assessing the intelligibility of speech recorded or transmitted under

various types of distortions. The method employs an auditory model to analyze the effects of noise, reverberations, and

other distortions on the joint spectro-temporal modulations present in speech, and on the ability of a channel to

transmit these modulations. The effects are summarized by a spectro-temporal modulation index (STMI). The index is

validated by comparing its predictions to those of the classical STI and to error rates reported by human subjects

listening to speech contaminated with combined noise and reverberation. We further demonstrate that the STMI can

handle difficult and nonlinear distortions such as phase-jitter and shifts, to which the STI is not sensitive.

� 2002 Published by Elsevier B.V.

R�eesum�ee
Nous pr�eesentons une approche inspir�eee par la biologie du syst�eeme auditif humain, qui pr�eedit l�intelligibilit�ee d�en-

registrements directes de paroles ou apr�ees transmissions sous diff�eerentes conditions de bruit propre, r�eeverb�eerations, et

autres d�eeformations. La m�eethode est bas�eee sur un mod�eele auditif qui analyse les effets du bruit sur les modulations

conjointes de temps et fr�eequences, pr�eesentes dans la parole. Par ailleurs, cette m�eethode analyse la capacit�ee d�un canal �aa
transmettre fid�eelement ces modulations. Les effets sur les modulations sont convertis en un indice des modulations

spectro-temporelles, appel�ee STMI. La validit�ee de cet indice est �eetablie en comparant ses pr�eedictions �aa celles du STI

classique; ainsi qu�aux r�eesultats exp�eerimentaux des taux d�erreurs de sujets humains qui �eecoutent de la parole conta-

min�eee par des combinaisons de bruit propre et de r�eeverb�eeration. Nous d�eemontrons �eegalement que le STMI est capable

de manipuler des conditions encore plus s�eev�eeres, comme les d�eeformations non-lin�eeaires, tels les d�eecalages et autres

instabilit�ees des phases; conditions auxquelles le STI classique s�av�eere êetre insensible.

� 2002 Published by Elsevier B.V.
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1. Introduction

The articulation index (AI) and speech trans-

mission index (STI) are the most widely used pre-

dictors of speech intelligibility (ANSI, 1969;

mail to: sas@eng.umd.edu
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Houtgast and Steeneken, 1980; Kryter, 1962), and

have proven to be extremely valuable in a wide

range of applications ranging from architectural

designs to vocoder characterization (Bradley,
1986; Houtgast and Steeneken, 1980; Houtgast

and Steeneken, 1985; Steeneken and Houtgast,

1979). In an effort to understand the underlying

biological mechanisms that render such measures

meaningful, and how noise in general compro-

mises the perception of speech and other complex

dynamic signals, we have developed earlier a

computational model to represent spectral and
temporal modulations in the auditory system (Chi

et al., 1999). The model is grounded on extensive

neurophysiological data from mammalian audi-

tory cortex and earlier stages of auditory pro-

cessing (Kowalski et al., 1996; Depireux et al.,

2001), and on psychoacoustical measurements of

human spectro-temporal modulation transfer

functions (MTF) (Chi et al., 1999).
Based on the premise that faithful representa-

tion of these modulations is critical for perception

(Drullman et al., 1994; Dau et al., 1996), we derived

an intelligibility index, the spectro-temporal modu-

lation index (STMI), which quantifies the degra-

dation in the encoding of spectral and temporal

modulations due to noise regardless of its exact

nature. The STI, as we shall discuss below, can best
describe the effects of spectro-temporal distortions

that are separable along these two dimensions, e.g.

static noise (purely spectral) or reverberation

(mostly temporal). The STMI is an elaboration on

the STI in that it incorporates explicitly the joint

spectro-temporal dimensions of the speech signal.

As such, we expect it to be consistent with the STI

in its estimates of speech intelligibility in noise and
reverberations, but also be applicable to cases of

joint (or inseparable) spectro-temporal distortions

that are unsuitable for STI measurements (as with

certain kinds of channel phase-distortions) or se-

verely nonlinear distortions of the speech signal

due to channel phase-jitter and amplitude clipping.

Finally, like the STI, the STMI effectively applies

specific weighting functions on the signal spectrum
and its modulations; these assumptions arise nat-

urally from the properties of the auditory model

and hence can now be ascribed a biological inter-

pretation.
In an earlier report (Chi et al., 1999), we pre-

sented a simplified derivation of the STMI and its

application to classic distortions such as white

stationary noise or reverberation. Here, we elab-
orate on the derivation, validation, and applica-

tion of the STMI in combined stationary noise and

reverberation conditions. We also demonstrate

STMI performance for noise conditions under

which current formulations of the STI would fail

such as phase-jitter and joint spectro-temporal

distortions. Finally, we shall discuss how the

STMI can be used for intelligibility assessment of
both transmission channels and in the case of

noisy recordings (where there is no access to the

channel).

We shall start by giving a brief review of the

auditory model and its parameters (Section 2),

then define the STMI and compare it to the

STI and to results of intelligibility tests with hu-

man subjects under various noise conditions
(Section 3). Finally, we discuss the performance

of the STMI in more difficult noise conditions

under which the STI fails and the fundamen-

tal differences and similarities between these

indices.
2. Methods

Conceptually, the STMI is a measure of speech

integrity as viewed by a model of the auditory sys-

tem. In this section, we review briefly the structure
of the auditory model employed in this study. We

then define the intelligibility index, and describe

two practical modes for its application. A more

complete description of this model is available in

(Chi et al., 1999).
2.1. The auditory model

The computational auditory model is based

on neurophysiological, biophysical, and psycho-

acoustical investigations at various stages of the

auditory system (see Lyon and Shamma, 1996;

Wang and Shamma, 1994; Yang et al., 1992 for a

detailed description). It consists of two basic
stages.
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• An early stage, which models the transforma-

tion of the acoustic signal into an internal neu-

ral representation referred to as an auditory

spectrogram.
• A central stage, which analyzes the spectrogram

to estimate the content of its spectral and tem-

poral modulations using a bank of modulation

selective filters mimicking those described in

the mammalian primary auditory cortex (Chi

et al., 1999; Wang and Shamma, 1995).

2.1.1. The early auditory system

The early stages of auditory processing are

modeled as a sequence of three operations depicted

in Fig. 1 (Lyon and Shamma, 1996; Shamma et al.,

1986).

• The acoustic signal entering the ear produces a

complex spatio-temporal pattern of vibrations

along the basilar membrane of the cochlea (Fig.
1, left panel). The maximal displacement at each

cochlear point corresponds to a distinct tone fre-
Fig. 1. Schematic of the early stages of auditory processing. Sound is an

of a bank of 128 constant-Q bandpass filters with center frequencies

spanning 5.2 octaves (e.g., 0.1–4 kHz). Each filter output is then half-w

produce the auditory-nerve response patterns (middle panel). A spatial

of a lateral inhibitory network (LIN) which sharpens the spectral repr

(Shamma, 1998). In this study, the short-term integration is performed

channel results in the auditory spectrogram depicted on the right.
quency in the stimulus, creating a tonotopically

ordered response axis along the length of the

cochlea. Thus, the basilar membrane can be

thought of as a bank of constant-Q highly asym-
metric bandpass filters ðQ ¼ 4Þ equally spaced

on a logarithmic frequency axis. Our model em-

ploys 24 filters/octave over a 5 octave range.

• The basilar membrane outputs are then con-

verted into inner hair cell intra-cellular poten-

tials. This process is modeled as a 3-step

operation: a highpass filter (the fluid-cilia cou-

pling), followed by an instantaneous nonlinear
compression (gated ionic channels), and then a

lowpass filter (hair cell membrane leakage). De-

tailed description of the mechanisms involved in

each step can be found in Lyon and Shamma

(1996) and Shamma et al. (1986).

• Finally, a lateral inhibitory network detects

discontinuities in the responses across the tono-

topic axis of the auditory nerve array (Shamma,
1998). It is modeled as a first difference opera-

tion across the channel array, followed by a
alyzed by a model of the cochlea (depicted on the left) consisting

equally spaced on a logarithmic frequency axis (tonotopic axis)

ave rectified and lowpass filtered by an inner hair cell model to

first-difference operation is then applied mimicking the function

esentation of the signal and extracts its harmonics and formants

over 8 ms intervals. A final smoothing of the responses on each
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half-wave rectifier, and then a short-term inte-

grator. This stage effectively sharpens the band-

widths of the cochlear filters from about Q ¼ 4

to 12, as explained in detail in (Wang and Sham-
ma, 1994).

The above sequence of operations effectively

computes a spectrogram of the speech signal (Fig. 1,

right panel) using a bank of constant-Q filters, with

a bandwidth tuning Q of about 12 (or just under

10% of the center frequency of each filter). Dy-

namically, the spectrogram also encodes explicitly
all temporal ‘‘envelope modulations’’ due to inter-

actions between the spectral components that fall

within the bandwidth of each filter. The frequencies

of these modulations are naturally limited by the

maximum bandwidth of the cochlear filters.

2.1.2. The central auditory system

Higher central auditory stages (especially the

primary auditory cortex) analyze further the

auditory spectrum into more elaborate represen-
Fig. 2. The cortical multi-scale representation of speech. (A) and (B) T

away/, spoken by a male is analyzed by a bank of spectro-temporal m

(STRF) of one such filter (tuned to x ¼ 4 Hz and X ¼ 1 cyc/oct) is s

computed by convolving the STRF with the input spectrogram, to pro

output as a function of time from the model is therefore indexed by

collapse (integrate over) the frequency axis ðxÞ for display purposes w

time-function as shown on top of the spectrogram in (B, right panel). T

scale-rate plots as shown in (A, right panels).
tations, interpret them, and separate the different

cues and features associated with different sound

percepts. Specifically, from a conceptual point of

view, these stages estimate the spectral and tem-
poral modulation content of the auditory spec-

trogram as illustrated in Fig. 2. They do so

computationally via a bank of modulation-selec-

tive filters centered at each frequency along the

tonotopic axis (Chi et al., 1999). Each filter is

tuned ðQ ¼ 1Þ to a range of temporal modulations

(x, also referred to as rates or velocities (in Hz))
and spectral modulations (X, also referred to as
densities or scales (in cyc/oct)). It has a spectro-

temporal impulse response (usually called spectro-

temporal response field, STRF) in the form of a

spectro-temporal Gabor function (see Eq. (5) in

Chi et al., 1999). An example of an STRF is shown

in Fig. 2B, together with the result of convolving it

with the auditory spectrogram to the left. Since the

response is a 4 dimensional complex-valued func-
tion (time, frequency, rate and scale); then, for

display purposes, we shall sometimes provide only
he auditory spectrogram of a speech sentence /come home right

odulation selective filters. The spectro-temporal response field

hown in (B, left panel) below. The output from such a filter is

duce a new spectrogram as shown in (B, right panel). The total

three parameters: scale-X, rate-x, and frequency-x. We often

hich reduces the output from each filter to a one dimensional

he total output in this case becomes a series of two-dimensional
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the magnitude of the response as a function of

frequency at each time instant (or for all time if it

is constant, as for a stationary stimulus). Where

the spectro-temporal modulation content of the
spectrogram is of particular interest, we shall dis-

play the summed output from all filters with

identical modulation selectivity or STRFs (i.e.,

integrate the x-axis out) to generate the scale-rate

plots as shown in Fig. 2A (right panel). The final

view that emerges is that of a continuously up-

dated estimate of the spectral and temporal mod-

ulation content of the auditory spectrogram. All
parameters of this model are derived from physi-

ological data in animals and psychoacoustical data

in human subjects as explained in detail in Chi

et al. (1999); Kowalski et al. (1996); and Depireux

et al. (2001).
2.2. The spectro-temporal modulation index

(STMI)

Broadly speaking, the STMI is a measure of the

changes in the auditory model output when noise,

reverberations, or other distortions are applied to

the sound signal. Thus, to measure the intelligi-
bility of a noisy token of speech or other complex

sounds, or to characterize a channel (e.g., a re-

cording or transmission medium, a room, or a

vocoder), we use the auditory model to estimate

the change in the spectro-temporal modulations

that a test speech signal undergoes. We propose

here two types of STMI: the first (denoted later as
Fig. 3. Schematic of the STMIT computation. The clean and noisy s

outputs are normalized by the base signals as explained in the text. Th

inputs. These cortical patterns are then used to compute the template
STMIT) is derived directly from the speech sam-

ples; the second (STMIR) is based on characteriz-

ing the integrity of spectro-temporally modulated

test signals (called ripples) when transmitted
through the channel under study. These two in-

dices are analogous to two versions of the STI:

one is derived directly from the speech signal and

uses the clean speech modulations as the refer-

ence (Payton and Braida, 1999); the second is

based on the standard definition using narrow-

band noise carriers (Houtgast and Steeneken,

1980).
2.2.1. Computing the STMI of speech samples

(STMIT)

The STMI quantifies the difference between the

spectro-temporal modulation content of the noisy
and clean speech signals. The procedure is depicted

in Fig. 3. We first analyze the clean speech sen-

tence through the auditory model as in Fig. 2. The

4-D output is averaged over the stimulus duration

to generate the 3-D template of the speech token

fTg. Similarly, the averaged output fNg of the

noisy speech token is computed. In both cases, the

auditory outputs must be adjusted by subtracting
from each the output due to its own ‘‘base’’ spec-

trum. The ‘‘base’’ is a stationary noise with a

spectrum identical to that of the long-term average

spectrum of the appropriate signal (clean or noisy

speech). The STMI is then computed, and denoted

by STMIT to emphasize that a speech template is

used as the clean reference:
peech signals are given as inputs to the auditory model. Their

e right panel shows the cortical output of both clean and noisy

-based STMI.
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STMIT ¼ 1 � kT � Nk2

kT k2
ð1Þ

where the distance kT � Nk2
is taken to be the

shortest distance between the model outputs of the

noisy token and the clean template(s).
2.2.2. Computing the STMI with ripple stimuli

(STMIR)

The STMIR of a channel can also be defined

with respect to the fidelity of its transmission of
specially designed spectro-temporally modulated

test signals called ripples. Specifically, we use the

auditory model and the ripple stimuli to measure

the effects of a noisy channel on the overall MTF.

Ripples combine both spectral and temporal

modulations, and have been previously described

in detail in (Chi et al., 1999). We first briefly de-

scribe the ripples, and then provide the procedure
for using them to measure the MTF and compute

the STMIR.
a;b a;b a;b
2.2.2.1. The ripple stimuli. The moving ripple
stimuli used in this study are broadband complex

sounds consisting of 280 tones equally spaced

along the logarithmic frequency axis, over a range

of 5 octaves (250–8000 Hz). The spectral envelope

of these stimuli forms sinusoids whose amplitude is

modulated by an amount specified by DA (typically

100%) on a linear modulation scale. For example,

DA ¼ 0% corresponds to zero modulation of the
flat ripple spectrum, whereas DA ¼ 100% corre-

sponds to 100% modulation of the flat ripple. This

construction forms a drifting sinusoidally shaped

spectrum along the frequency axis. The envelope of

a moving ripple stimulus ðSðx; tÞÞ is fully described

by the equation:

Sðx; tÞ ¼ Lð1 þ DA sinð2pðxt þ XxÞ þ uÞÞ ð2Þ

where L denotes the overall level of the stimulus, t
is time, and x is the tonotopic axis, defined as

x ¼ log2 f =f0, with f0 being the lower edge of the

spectrum, and f the frequency. x is the ripple

velocity (in cyc/s), X is the ripple density along the

x-axis (in cyc/oct), and u is the phase of the ripple.

Fig. 4A illustrates the spectrogram of such a
downward sweeping ripple.
2.2.2.2. Using the ripples to measure MTF. The

MTF of the auditory model (with or without an

additional channel) is measured using single rip-

ples at rate-scale ðx � XÞ combinations over a
range of X ¼ 0:25–8 (cyc/oct), and x ¼ �32–32

(Hz), with negative rates denoting upward moving

ripples. The input stimuli are all defined over a

finite spectral range x 2 ½0;X � (typically 5 octaves),

and temporal extent t 2 ½0; T � (typically 1 s). The

MTF calculation procedure is described below,

and illustrated schematically in Fig. 4B.

For each input ripple combination fa; bg, the
fxa;Xbg ripple with contrast DA ¼ 100% is given

as input to the auditory model. The corresponding

auditory spectrogram ya;bðt; x;DAÞ is computed

and then analyzed by a bank of cortical filters

fSTRFð�Þg to generate the final integrated output

pattern frð�Þg for each cortical filter ði; jÞ:

ri;ja;bðx; 100%Þ

¼
Z
T
kya;bðt; x; 100%Þ  t;x STRFi;jðt; xÞkdt ð3Þ

where t;x is the convolution in time ðtÞ and mul-

tiplication in frequency ðxÞ; STRF denotes the

spectro-temporal impulse response of each filter,

indexed by the best ripple scale and rate fxi;Xjg of

the filter, and k � k denotes the instantaneous

magnitude of the final response. Note that the final

output magnitude is integrated over the interval T ,

which may be as short as one frame of speech (8
ms) or the entire stimulus (as in the case of the test

stationary ripples and static noise interference).

The values of ði; jÞ correspond to the indices of the

filter fxi;Xjg in the discrete set ðŵw; bWW Þ. The output

pattern ra;b is illustrated in Fig. 4B (rightmost

panels) for the ripple xa ¼ 4 Hz, Xb ¼ 1 cyc/oct.

In order to take into account the base level of

the input stimuli in the transfer function calcula-
tion, we repeat the procedure for the same ripple

fxa;Xbg, but this time with contrast DA ¼ 0% to

get the output pattern ri;ja;bðx; 0%Þ following the

same calculations as in Eq. (3). This flat (0%) re-

sponse pattern is then subtracted from the 100%

contrast response to yield the actual response

Ri;j
a;bðxÞ defined as:

Ri;j ðxÞ ¼ ri;j ðx; 100%Þ � ri;j ðx; 0%Þ ð4Þ



Fig. 4. The ripple-based STMI and modulation transfer function (MTF). (A) The ripple spectrum at one instant in time is shown in the

left panel. The ripple envelope is moving down at a rate of 2 Hz (i.e., the envelope drifts at 2 cyc/s) and has a spectral density of 0.6 cyc/

oct (see text for details). The right panel illustrates the spectrogram of the envelope of the ripple. (B) To measure the MTF of a channel

at a particular ripple, we first compute the auditory model outputs in response to the clean and channel-distorted ripples, and then

normalize them by the output to the (flat) base of the ripple (see text for details). The panels on the right depict the cortical output

collapsed on the rate-scale axes. Note the effect of the channel distortion on the clarity of the ripple representation in the auditory and

cortical representations (see Chi et al., 1999 for more details). The MTF for this ripple is defined as the global gain (or attenuation) in

the cortical output. This procedure is repeated at all ripple parameters to compute the total MTF. (C) The left panel depicts the global

MTF obtained by averaging across cortical filters. The right panel shows the modulation spectrum computed by averaging across input

ripples velocities and densities. Both graphs (left and right panels) are shown as a rate-scale plot. The frequency axis x is collapsed for

display purposes.
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Finally, the responses to all the ripple stimuli

(all a; b) are averaged over all filters ði; jÞ 2 ðŵw; bWW Þ
to yield the overall transfer function of the system:

MTFðx;xa;XbÞ ¼
1

jŵwj � j bWW j

X
i

X
j

Ri;j
a;bðxÞ ð5Þ

Note that this is a 3D pattern indexed by

ðx;xa;XbÞ, respectively, the frequency, input ripple

velocity and density. This overall MTF is depicted

in Fig. 4C (left panel); Note that for display pur-

poses, the MTF here is averaged over the fre-

quency dimension ðxÞ.
An alternative representation of the transfer

characteristics would be in the form of an average

modulation spectrum of all ripples presented at

equal (unit) amplitude. This pattern results from

taking the sum in Eq. (5) over all ripples ðxa;XbÞ
(instead of over the channels centered at xi;Xj).

Because of the band-pass nature of the filters, the

resulting modulation spectrum (indexed by
ðx;xi;XjÞ) is roughly similar to the MTF as illus-

trated in Fig. 4C (right panel). Again, this modu-

lation spectrum is averaged over the frequency axis

x for display purposes.

In the presence of any kind of noise, a similar

procedure is followed to derive the noise-contam-

inated MTF. The input ripples used in this case are

first contaminated by the noise (for example, by
passing them through the channel under investi-

gation). The resulting noisy transfer function

MTF* ðx;xa;XbÞ is computed according to Eq. (5)

as described above (see Fig. 4B).
2.2.2.3. Defining the ripple-based STMIR. For a
given noise condition in a channel (communication

link, auditorium), we estimate the STMIR as a

global measure of the attenuation of the spectro-

temporal modulations in the signal when passed

through the channel. This eventually translates to

a measure of the expected intelligibility of a speech

signal transmitted through this channel. The

STMIR is defined as:

STMIR ¼ 1 � kMTF � MTFk2

kMTFk2
ð6Þ

where
kMTFðx;x;XÞk ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
k

X
i

X
j

ðMTFðxk;xi;XjÞÞ2

s
ð7Þ
3. Results

In this section, we illustrate how the STMI is

computed and used to characterize the integrity of
the spectro-temporal modulations when distorted

by various kinds of noise. For speech, we consider

the STMI as a measure of the intelligibility of the

signal in the same manner the AI and STI have

been traditionally used. Since the STMIR is anal-

ogous to the traditional STI (using narrow-band

carriers), we begin by comparing its estimates to

those of the STI under different noise and rever-
beration conditions. Next, we illustrate examples

of STMIT measurements for speech, and compare

them to results of psychophysical tests.

3.1. The effect of noise and reverberations on

STMIR

The representation of acoustic spectro-temporal

modulations in a signal is progressively degraded

when noise or reverberations are added to it. The

extent of the degradation is dependent on the rate

and scale of the modulations, and the spectral

content of the signal. This is illustrated in Fig. 5,
where we plot the STMIR derived from the MTF

as in Eq. (6), but for a single ripple at different

rates and scales, under various white noise and

reverberation conditions.

The stationary white noise condition used here

is generated by adding to the original signal a

random Gaussian signal whose amplitude is de-

fined according to the signal-to-noise ratio (SNR)
level. The reverberation effect is produced by

convolving the signal with Gaussian white noise

whose envelope is exponentially decaying.

The first observation is that increasing the level

of stationary noise attenuates ripple modulations

(and hence the STMIR) equally regardless of rate

and scale (Fig. 5A). This is not the case with in-

creasing reverberation, where ripples with faster
rates are attenuated more severely as expected



Fig. 5. Effect of white noise and reverberation on the MTF with single ripples. (A) White noise attenuates the output of a single ripple by

the same amount regardless of ripple rates (2–16 Hz) or spectral densities (0.5, 4 cyc/oct). (B) Reverberation attenuates the responses to

high rate ripples (16 Hz) significantly more than to low rate ripples (2 Hz) regardless of spectral density.
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from the low-pass (smoothing) effect of the rever-
beration on the ripple envelope (Fig. 5B).

Fig. 6 summarizes the effect on all ripples (and

the clean MTF of the auditory model in Fig. 6A)

of the added white noise (Fig. 6B), of different

levels of reverberation (Fig. 6C), and of the com-

bined effect of noise and reverberation (Fig. 6D).

In each case, the MTF* is plotted as a function of

fxi;Xjg, i.e., we integrate out the frequency axis x.
It is important to note here that one can apply any

arbitrary noise condition and compute the result-

ing MTF* using exactly the same expressions

presented in the previous section. These plots il-

lustrate the effects of each of these distortions as

follows. For noise (Fig. 6B), the MTF* is gradu-

ally and equally attenuated over all ripples. For

increasing reverberation (Fig. 6C), higher rate
ripples are more severely attenuated than lower
rates. Both these trends are seen in Fig. 6D for the
combined noise and reverberation conditions.

Note that the ‘‘random’’ weak patterns seen in Fig.

6D reflect the random noise structure in a given

trial, and hence are variable over different trials.

3.2. Comparing the STMIR and STI for noisy and

reverberant conditions

STMIR values are computed from clean and

degraded modulation transfer functions (MTF

and MTF*) using Eq. (6). They are displayed in

Fig. 7A for the two sets of conditions. As expected,

the STMIR decreases with increasing noise and

reverberation. Fig. 7B (left panel) illustrates the

STI estimates for the same conditions. These were

computed using commercially available software:
Lexington’s Speech Transmission Index Program,



Fig. 6. Effect of white noise and reverberation on the global MTF. (A) The global (clean) MTF of the auditory model computed from all

ripples, summarized by the rate-scale plot (i.e., collapsing the frequency axis x). (B) The attenuation of the global MTF (rate-scale plot)

with increasing levels of white noise. (C) The attenuation of the global MTF at higher rates with increasing reverberation. (D) The

combined effect on the global MTF of both additive white noise and reverberation.
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based on the MTF method derived by Steeneken

and Houtgast (1979). The software is available at
http://hearingresearch.org/STI.htm. Although dif-

ferent in details, the STMIR and the STI measures

http://hearingresearch.org/STI.htm


Fig. 7. Effect of combined white noise and reverberation on

STMIR and STI. (A) The STMI values shown in this plot are

computed according to Eq. (6) for noise conditions combining

stationary noise and reverberation. (B) The correspondence

between the STMI and STI is given in the left panel for specific

conditions of stationary white noise, and reverberation. The

right panel shows the overall correspondence between STMI

and STI for all conditions.
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deteriorate similarly under these noise and rever-

beration conditions, and an approximate mapping

between these two measures can be derived as

shown in Fig. 7B (right panel).

3.3. Comparing STMIT to human perception

As the STMI of a channel gradually decreases,

speech transmitted through it should exhibit a

concomitant loss of intelligibility that can be ex-

perimentally measured as increased phoneme rec-

ognition error rates. To relate the STMI values

directly to experimental measurements of speech

intelligibility, we plot in Fig. 8A the STMIT of

speech tokens (computed from Eq. (1)) with in-
creasing additive noise and reverberation distor-

tions. The template used in this simulation was

derived by averaging the model output for each

clean speech token over the entire duration of the

utterance of that particular token. The noisy pat-

tern fNg is similarly computed by averaging the

model output of the noisy speech token. While the

trends in the STMIT values are essentially similar
to the STMIR estimates in Fig. 7A, the one no-

ticeable difference is the shallower drop of the

STMIT with reverberation, presumably due to

time-averaging of the output patterns. Another

source of the difference between the two measures

is that they are conceptually different––the STMIT

is based on the modulation spectrum while the

second, STMIR, on the MTF. While the two are
close (Fig. 4C), they are not identical, especially

when the modulation filters are not very selective

ðQ ¼ 1Þ leading to interactions among simulta-

neously applied ripples.

These results were compared to actual intelli-

gibility scores from four subjects using speech

samples contaminated by the same combined sta-

tionary noise and reverberations. Each subject was
presented with 240 sets of noise-contaminated

speech samples through a loudspeaker in an

acoustic chamber and asked to repeat them. Each

set consisted of five different words. A count of the

correct phonemes reported was then averaged over

all test subjects for each noise condition. The

percent correct recognition scores found in these

experiments are given in Fig. 8B. The good cor-
respondence between the STMIT and the human



Fig. 8. Comparing the effect of combined white noise and rever-

beration on the STMIT and speech intelligibility. (A) The STMIT

of speech signals distorted by noise and reverberation. The

STMIT is computed according to Eq. (1) using same speech as

template. (B) Experimental measurements of correct phoneme

recognition of human subjects in noisy and reverberant condi-

tions. (C) The STMIT vs. correct percentages of human psycho-

acoustic experiments for the noise conditions given in (A) and (B).
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scores (summarized by the data re-plotted in Fig.

8C) confirms that the STMIT is indeed a direct

measure of the intelligibility of noisy speech under

conditions of combined white noise and reverber-
ation.

Finally, for completeness, we show in Fig. 9 the

STMIT computations of speech using templates

derived from clean speech samples that were dif-

ferent from the noisy speech samples. In these

simulations, both clean and noisy speech samples

were derived from randomly selected sentences in

the TIMIT database. For each simulation, we used
10 different sentences that were sampled at 8 kHz.
Fig. 9. Effect of combined white noise and reverberation on

speech STMIT using generalized templates. (A) The trends in the

STMIT decrease with noise and reverberation are similar to the

case in Fig. 8. (B) Expansive nonlinear function to correct

the STMIT values to match those of Fig. 8A.
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Again, the STMIT trends are essentially similar to

those of Fig. 9 with one significant difference,

namely the lower values of the STMIT in the clean

conditions due to the inevitable mismatch between
the (clean) tested speech and the templates. The

STMIT derived from these two types of templates

(Figs. 8A and 9A) can be related by the sigmoid

non-linearity shown in Fig. 9B.
3.4. Comparing the STMIT and STI with phase

jitter and shifts

The STI has been widely and successfully used
in speech intelligibility assessments under noise

and reverberant degradation, and has also been

adapted for use with speech signals directly (Pay-

ton and Braida, 1999). Therefore, the results

described above only demonstrate the correspon-

dence between the STMI and STI, and hence the

validity of the new measure. Here we compare the

two measures under more difficult types of degra-
dations: random phase-jitter and phase-shifts.

These are chosen specifically because the STI

clearly fails to characterize them correctly. Speech

samples distorted by these conditions are available

at http://www.isr.umd.edu/CAAR/pubs.html. Also

included in this section are the results of psycho-

acoustic experiments measuring the loss of intelli-

gibility experienced by four subjects listening to
words distorted by these two conditions. All ex-

periments were conducted exactly as described

earlier in Section 3.3. The subjects were presented

with 160 different distorted words. The subjects

were then asked to repeat the words heard. Scores

of average correct phonemes reported are pre-

sented in Figs. 10 and 11 for the two conditions.
3.4.1. Phase jitter distortions

The first condition is phase jitter, a condition
commonly associated with telephone channels and

caused by the fluctuations of the power supply

voltages (Lee and Messerschmitt, 1994; Bellamy,

2000). Communication engineers report that

channels cannot be defended against such degra-

dation, but it must be taken into account in the

design of the receiver (Lee and Messerschmitt,

1994). Therefore, studying the effect of this dis-
tortion on speech intelligibility is critical for im-

proving the channel and receiver designs.

Phase jitter is commonly modeled by:

rðtÞ ¼ RefsðtÞejHðtÞg ¼ sðtÞ cosðHðtÞÞ ð8Þ

where sðtÞ is the transmitted signal, rðtÞ is the re-

ceived signal, and HðtÞ is the phase jitter function

modeled as a random process uniformly distrib-

uted over ½0; 2ap� ð0 < a < 1Þ. This jitter effectively

destroys the carrier of the speech signal leaving its
envelope largely intact (Fig. 10A), especially for

values of a that are large enough. For a ¼ 1, the

speech signal becomes a modulated white noise

with the same envelope as before. Fig. 10B illus-

trates the expected loss of intelligibility as a func-

tion of jitter severity (a) as measured by the STI,

STMIR, and STMIT (computed as the mean of 10

different speech sentences from the TIMIT data-
base). The STI is insensitive to such a distortion.

By contrast, the STMI deteriorates with increasing

a. The fundamental reason for this disparity is that

the effect of phase jitter is mostly manifested in the

spectral dimension (Fig. 10A), and hence does not

affect the modulation amplitude of the narrow-

band carriers used in the STI measurement. The

effect on the spectrogram of oriented ripples is
substantial, and hence the STMIT and STMIR

change accordingly. Note that by contrast the

speech-based STI (Payton and Braida, 1999) will

not sense the speech deterioration since the average

modulation spectrum remains largely unaffected

by the phase-jitter. Finally, we also show in Fig.

10B the results of human subject intelligibility

testing which match well the predicted results from
the STMI.
3.4.2. Inter-channel phase-shifts or delay scatter

The second type of channel distortion is a linear
phase-shifting of signal frequencies over limited

ranges as demonstrated in Fig. 11A. Specifically,

the effects of this distortion are seen in the spec-

trogram as an inter-channel delay scatter or a

de-synchronization of the channel outputs, with

minimal change in the envelope modulation pat-

terns on any given channel, as illustrated by the

distorted spectrogram of Fig. 11A. The phase-shift
function here is given by U ¼ xsi, applied over

http://www.isr.umd.edu/CAAR/pubs.html


Fig. 10. Effect of phase jitter on STMI and STI. (A) The input signal sðtÞ is sent through the channel, and received as rðtÞ. The channel

has a phase jitter function HðtÞ. In this figure, HðtÞ is uniformly distributed over the range ½0; 2p0:4�. The right panel shows the

spectrogram of the sentence /come home right away/ with and without the effect of the phase jitter. The spectrograms illustrate that the

time dynamics of the signal are maintained while the spectral modulations are strongly affected by this type of noise. (B) The STMIT

and STMI drop as the jitter increases; STI fails to capture the presence of noise in this channel.
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300 Hz frequency bands (each indexed by i) over
the range 400–1900 Hz ði ¼ 1; . . . ; 5Þ, where

x ¼ 2pf is the frequency at which the phase-shift is

applied, and si is a parameter which controls the

slope of the phase function (and hence the delay

imposed) in the ith band. Fig. 11B illustrates the

decrease in STMIR and STMIT with increasing

delay scatter (over a range of s values), consistent
with the increasing channel distortion of the spec-
trogram of the ripple and speech signals. The

STMIT drops faster because of the specific arbi-

trary choice of frequency bands and shifts; and the

drop (while it always occurs) is variable in steep-

ness depending on the exact sentence. As with the

previous phase-jitter distortion, STI measures

(noise or speech-based) are expected to be insensi-



Fig. 11. Effect of linear phase shift on STMI and STI. (A) The input speech signal sðtÞ (/come home right away/) is distorted by linear

phase shifts on different frequency bands. Five frequency bands (of uniform 300 Hz ranges going from 400 to 1900 Hz) are phase-

shifted according to the vector ½s; 2s;�3s; 4s; 5s� (a different phase shift per frequency band) where s is the parameter that controls the

amount of shift per band. The result is a de-synchronization of the different frequency bands relative to each other. This effect can be

seen in the spectrograms of the clean and noisy sentences depicted in the right panel. The shift parameter used in this case is s ¼ 0:5

(average time shift across channels of T ffi 73 ms). (B) The effect of the shift parameter s (or T ) on the STMI, STMIT and STI. Since for

each value of the shift parameter ðsÞ different frequency bands are time-shifted with various amounts relative to each other, the x-axis

of the graph gives an average estimate ðT Þ of the time shifts across the different frequency bands (where T ffi 146:s (ms)). The values of

STMIT shown in this plot are computed for the sentence /come home right away/, whose spectrogram is given in the upper panel.
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tive (Fig. 11B) to such phase-shift because this

distortion does not significantly affect the modu-

lated envelope of the narrow-band carrier test sig-

nals used in standard STI computations, nor does it
affect the envelope modulations of the speech

spectrogram. Human intelligibility exhibits the

same deterioration as that predicted from the

STMI as illustrated in Fig. 11B. Our results are
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comparable to those of Greenberg and Arai (1998)

who studied the intelligibility of a similarly (but not

identically) distorted speech and concluded that

scores dropped below 50% only after the channel
jitter exceeds 200 ms.
4. Summary and conclusions

We have argued in this report that a multi-scale

analysis of the spectro-temporal modulations can

be effectively used to quantify the intelligibility of

speech signals and the ability of a channel to

transmit intelligible speech. The model parameters

of the modulation analysis are based on physio-
logical findings in the primary auditory cortex and

on psychoacoustical measurements of human

sensitivity to spectral and temporal modulations.

The model was used to derive an intelligibility in-

dex, the STMI, which simply reflects the deterio-

ration in the spectro-temporal modulation content

of ripples or speech due to any added noise or

reverberation. The STMI was validated by dem-
onstrating that its predictions match those of the

classical STI and also match error rates of human

listeners in the case of speech contaminated with

combined noise and reverberation.

However, a fundamental advantage of the

STMI over the STI is its sensitivity to joint spectro-

temporal modulations, and hence its detection of

distortions that are inseparable along the temporal
and spectral dimensions. For example, phase dis-

tortions as in Figs. 10 and 11 severely degrade

intelligibility, but do not affect substantially tem-

poral modulations on a single channel and hence

are undetectable by the STI which does not look

across channels. We conjecture that the opposite

situation occurs with a special kind of distortion

called ‘‘deterministic noise’’ by Noordhoek and
Drullman (1997). A specific example of such a

distortion is the clipping of the temporal envelope

of the spectrogram (‘‘BLK NOISE’’). STI tends to

overestimate the detrimental effects of such a

manipulation compared to human perception

(Noordhoek and Drullman, 1997), presumably

because it distorts the modulation waveform ra-

ther severely. However, this manipulation does not
change the relative phase of the temporal modu-
lations on different spectral channels, and hence

does not substantially distort the overall shape of

the spectrogram. Consequently, we hypothesize

that the STMI measured from the same sentences
will be less sensitive compared to the STI, in line

with human results.

We have defined two versions of the STMI: a

ripple-based (Eq. (6)) and a speech-based (Eq. (1))

version. While the trends in the two measures are

very similar under different noise conditions, the

absolute values differ somewhat especially under

reverberant conditions (Figs. 7A and 8A). The
speech-based STMIT are analogous to STI mea-

sures based directly on speech signals (Payton and

Braida, 1999). Our definition however is derived

completely from the auditory model (just as for the

ripple-based STMI), and interestingly, it incorpo-

rates (implicitly) some of the ‘‘weighting func-

tions’’ that are introduced in the STI to remove

significant artifacts. For example, one is a higher
emphasis placed on modulations in the higher

frequency octave bands; another is a limit on the

maximum modulation frequencies considered in the

STI computation. The STMI incorporates both of

these weighting functions. The first arises from a

spectral pre-emphasis due to the lateral inhibition

stage in the auditory spectrum computation (see

discussion and eq. (19) in Wang and Shamma,
1994). The second is implicit in the band-pass nature

of the MTF, emphasizing mostly intermediate

modulation frequencies (4–12 Hz). Most artifacts

are in higher modulation rates which are de-em-

phasized in the overall auditory model for reasons

explained in detail in (Chi et al., 1999).

Finally, we note that two versions of the STMIT

were defined in Eq. (1) depending on the nature of
the clean templates: that of the speech signal under

investigation, or generalized average template(s).

It is evident from the results in Fig. 8B that testing

human subjects with meaningful words is best

modeled by the first version of the STMIT (Fig. 8A

versus Fig. 9A). This is understandable since

templates of these (English) words are available to

the subjects. We conjecture that the generalized
template method (second version) is a better model

of performance when using nonsense words, be-

cause no templates are available and hence the

subjects would likely use (‘‘generalized’’) phonemic
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templates. Therefore, we hypothesize that human

subject intelligibility tests with nonsense words will

yield results more like those shown in Fig. 9A ra-

ther than 8A.
There are several recent technological develop-

ments that are consistent with this ‘‘spectro-tem-

poral modulations’’ view of the speech signal and

its intelligibility. One concerns the possibility that

encoding speech in terms of its modulation rate

representation may prove to be a highly efficient

and robust means for encoding speech in both ul-

tra-low bit-rate and high-fidelity communication
(Atlas, 2001). Another application area concerns

the utility of the scale-rate representation for

filtering noise to enhance robustness of speech

recognition systems. For example, by removing

spectral or temporal modulations that are beyond

the normal range found in speech, one may clean up

and stabilize the input from a microphone or a

telephone channel into a speech recognizer. This
has been well demonstrated by the widely used

RASTA algorithm in modern recognition systems

(Hermansky and Morgan, 1994). Furthermore,

recent experiments have demonstrated the remark-

able perceptual robustness of highly impoverished

speech, such as speech with few independent spec-

tral bands (Shannon et al., 1995), highly reverber-

ant conditions (Greenberg et al., 1998; Arai et al.,
1996), temporally desynchronized spectral bands

(Greenberg and Arai, 1998), or severely distorted

acoustic waveforms (Saberi and Perrott, 1999).

These results are entirely consistent with the notion

that any manipulation of speech that does not dis-

rupt significantly the integrity of its spectro-tem-

poral modulations (in the critical range shown in

Fig. 6A) is harmless to its intelligibility.
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