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Abstract—When developing automated techniques for 
analysis of auscultation signals, the choice of a proper 
representational space that characterizes all attributes of interest 
in the signal is of paramount importance. In this paper, we 
investigate different feature representation methods and their 
benefits in distinguishing auscultation sounds. The importance of 
choosing an appropriate feature space is explored and validated 
using trained classifiers that distinguish between normal and 
abnormal respiratory sounds. Findings of this study are two-fold: 
i) an increased dimensionality in the feature space can provide a 
more complete and distinct representation of the delicate breath 
sounds and ii) dimensionality of the feature space alone is not 
enough to fully capture discriminative attributes: an informative 
feature space is even more crucial for extracting accurate, 
disease-specific characteristics of respiratory sounds. 

Keywords—biomedical signal processing; digital auscultation; 
lung sounds; respiratory sounds; computerized analysis; 
multiresolution representation; spectrotemporal analysis; time-
frequency analysis; space analysis 

I.  INTRODUCTION  
Chest auscultation has been used over the last 200 years to 

listen to internal sounds originating from the body and lungs, 
for diagnostic purposes. In auscultation care, the stethoscope 
remains the key examination tool, and highly skilled medical 
personnel are required for the interpretation of the captured 
body sounds. Over the last few decades, electronic 
stethoscopes and computer-aided auscultation have improved 
and facilitated the administration of healthcare across the globe 
and offered large diversity in clinical training [1][2]. The 
medical and scientific world has long seen the benefits of 
computer-aided healthcare, dedicating large numbers of studies 
to continuous development and improvement of computerized 
auscultation analysis, with an extended focus on extracting 
informative features from the raw auscultated sounds.  

Lung sound components typically span the range of 50-2500 
Hz. Wheezes (100-2500 Hz) and crackles (100-500 Hz) are the 
most commonly addressed sounds in the literature; adventitious 
sounds are frequently analyzed in the context of computerized 
lung sound analysis, using various techniques for 
discriminating and assessing patients’ isolated breath sounds 
[3]:  spectral methods and variations of the Fourier Transform 
(FT) [4, 5]; and spectro- temporal methods, including the short-

time FT (STFT) [6, 7], Mel-scale Frequency Cepstral 
Coefficients (MFCCs) [8, 9], the Wavelet Transform (WT) and 
other multi-resolution methods [10, 11]. The plethora of 
techniques is an indication that many and different features can 
be used as discriminatory agents in breath sound processing; 
and among all available methods, the feature representation of 
choice should be one that adequately captures the 
characteristics of the breath sounds of interest. But how does 
the choice of a particular feature dimension affect diagnostic 
results on breath-sound discrimination? Can this choice be 
influenced by the particular preference of a feature space over 
another? These aspects have not been extensively addressed in 
the literature.  

Driven by the need for computationally inexpensive 
algorithmic methods, in this work we focus on understanding 
the merit of using an extended feature space, when compared 
to a richer and more accurate representation.  Section II 
discusses the benefits of compact signal representations when 
processing and diagnosing auscultated sounds. Feature 
extraction methods used are described in section III, and 
findings are presented in section IV.  

II. REDUCING DIMENSIONALITY OF EXTRACTED FEATURES  

A. Efficient Computerized Analysis 
Computerized methods for digitally analyzing lung sound 

signals have not yet been standardized; and, as current 
standards suffer from low diagnostic accuracy, many recent 
studies have emerged, demonstrating the need for extended 
standardized protocols for diagnosing respiratory conditions: in 
diagnosing pneumonia cases, the gold standard consists of the 
World Health Organization (WHO) guidelines. In absence of 
alternative standardized protocols, health care providers all 
over the world follow these guidelines during their everyday 
practice. However, a recent study, conducted in a US-based 
pediatric emergency department, reports that the WHO 
guidelines merely achieve a 34% accuracy in predicting 
radiographic pneumonia [12]. The need for alternative 
protocols is clearly depicted in these accuracy numbers, and 
computerized analysis is a strong candidate.  

A desired standardization of computerized protocols does 
not only hope to improve health care administration, but will 
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also help resolve variations of terminology among healthcare 
professionals and medical publications and researchers [13]. 
And as auscultation sound analysis awaits standardization, 
sophisticated signal processing techniques are being built with 
advanced diagnostic capabilities, where the use of appropriate, 
low dimensional features will help extract crucial information 
and more accurately, and will be able to aid physicians 
administer better health care with faster diagnostic procedures, 
around the globe. And if a faster health care administration 
doesn’t seem a matter of real concern, according to a recent 
study [14]: an average physician would need to spend about 22 
hours per day to provide the recommended care to every one of 
her patients. The objective of extracting suitable and compact 
signal characteristics will significantly help improve processing 
results as well as decision-making time. 

III. METHODS 
In computerized lung sound analysis, various techniques for 

extracting the relevant and crucial information from the sound 
signal have been studied in the literature. Extracted signal 
characteristics vary from low to high-dimensional spaces and 
from moderate to rich representations. Here, we explore 7 
methods for extracting lung sound characteristics with a 
varying size of the feature space. We examine each one of 
these representations and explore their ability to efficiently 
distinguished normal from abnormal breath sounds, by 
imploring SVM classifiers. 

A. Data and Annotations 
Trained medical personnel digitally recorded lung sound 

from children, ages 1 to 59 months (average age 11 11.43), in 
outpatient or busy clinical settings, in Zambia, Kenya, 
Gambia, South Africa, Bangladesh, and Thailand PERCH 
sites [15]. The auscultation protocol called for 7 s recordings 
over 8 body sites with a digital ThinkLabs Inc. stethoscope, 
sampling at 44.1 kHz. In total, 1157 sick children were 
enrolled as cases, having WHO-defined severe or very severe 
pneumonia, or controls, without clinical pneumonia.  

A standardized panel of 8 trained physicians interpreted the 
recordings and indicated respiratory findings in 8 body 
locations. A refined label was given for each location (site), 
corresponding to a clip of arbitrary length that best represented 
findings. Labeled clips were included in the study only if there 
was agreement among primary listeners on a conclusion of 
wheeze (a site with wheezing breaths) or normal (a site with 
no wheeze or crackle sounds). The refined annotations were 
split into non-overlapping 2-sec segments, and grouped into: 
Normal, containing normal-annotated breath sounds (breaths 
without a wheeze annotation) and Abnormal, containing 
wheeze annotations. In total, 935 Abnormal and 1231 Normal 
intervals were isolated. 

B. Pre-processing 
A 4th order low-pass Butterworth filter at 4 kHz cut-off was 

applied to all recorded breath sounds before resampling at 8 
kHz and normalizing to zero mean and unit variance. As lung 
sound content is found below 4 kHz [3], no loss of 
information was anticipated after resampling.  

All lung sound recordings were acquired in busy clinics and 
were highly challenged by various noise contaminations. 
Contaminations included environmental noise, such as vehicle 
sounds, children crying in the waiting room or phones ringing, 
and subject-centric noises coming from infants being restless 
or crying during examination. In order to achieve a cleaner 
lung sound signal before continuing with further processing, 
we invoked a spectral subtraction algorithm efficiently tuned 
to breath sounds, validated for suppressing ambient noise 
while preserving the delicate breath content [16]. Although 
environmental noise was highly suppressed by the algorithms, 
the majority of the recordings were still found to be 
contaminated by non-breath sounds, including subject’s cry 
reverberation sounds and electronic or stethoscope noise 
which frequently occurred due to the challenging young age of 
the enrolled patients and the busy clinics. The remaining 
ambient contaminations can have notably overlapping profiles 
with the lung sound content along both time and frequency 
[17], impeding further analysis. 

C. Feature Extraction Methods 
All data coming from the refined annotations were used for 

feature extraction. One of the most common processing 
techniques used is the frequency (spectrum) analysis. We 
invoked the method described by Waitman et al. for acquiring 
a binned version of the signal’s Fourier representation within 
the frequency range of interest [4], which we call here FFTW; 
the predefined !"#$%&'()*+,)!+-#)varied)+,)./001)2003.   

Next we extracted MFCCs, capturing information both along 
the time axis and a transformed frequency. They encode 
information about the peak energies or resonances of a sound 
signal and we can consider them here as indirectly related to 
the impulse response of a system related to the thoracic area.  
Different formations of the thoracic area are expected to yield 
changes in the MFCC sequences of the recorded sound. Here 
we invoke the method described in [8], called here MFCCJ. 
Ten or twenty triangular filters were used to extract the 
MFCCs, over 35 msec frames with 50% overlap, resulting in 
100 or 200 feature dimensions.  

The next set of features comes from a multi-dimensional 
representation, inspired by the way sound is being processed in 
the auditory pathway. Briefly, a bank of 128 cochlear filters 
h(t;f), modeled as constant-Q asymmetric bandpass filters 
equally spaced on a logarithmic frequency scale spanning 5.3 
octaves, transforms the sound signals s(t) into a modified short-
time spectral representation representing the sharpened 
response of auditory nerve signals. A midbrain model is 
achieved using short term integration (or low-pass operator µ(t; 
! ) with constant !=2msec), resulting in a final time frequency 
representation, the auditory spectrogram (1).  

 y(t,f)=max["f ("t (s(t) * h(t;f))),0]*#(t;!). (1) 
The next step models the processing signals undergo at the 
central auditory stages where a rich representation is obtained. 
The operation is modeled as 2D affine Wavelet transform. 
Each filter is tuned (Q=1) to a specific temporal modulation $0 
(or rate in Hz) and spectral modulation %0 (or scale in 
cycles/octave or c/o), as well as directional orientation in time-
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frequency space (+ for upward and & for downward). The 
response of each cortical neuron is given by  

 r±(t,f;$0,'0)= y(t,f) *t,f STRF±(t,f;$0, '0) (2) 

where 4t,f corresponds to convolution in time and frequency 
and STRF± is the 2D filter response of each cortical neuron. 
The resulting cortical representation is a mapping of the time 
waveform onto a high-dimensional space. 28 scale filters in 0-8 
c/o and 21 directional rate filters were used in 8-128 Hz, in 
logarithmic steps [10, 18]. We isolated 5 multi-resolution 
representations derived from the cortical features:   

1) Feature set SF, corresponding to the spectral modulations 
found in the breath sounds, along the frequency axis: 
SF(f;'0)=!t y(t,f) *t,f STRF±(t,f;'0)dt;  

2) Feature set RF, corresponding to the temporal variations 
found in the breath sounds, along the frequency axis: RF(f; 
$0)=!t y(t,f) *t,f STRF±(t,f;$0)dt ;  

3) Feature set [SF, RF] corresponding to the concatenation 
of feature sets SF and RF above;  

4) Feature set SR, corresponding to the spectral and 
concurrent temporal modulations found in the breath sounds, 
disregarding the information of the frequency axis:  
SR($0, '0)=!f !t y(t,f) *t,f STRF±(t,f; $0, '0)dt df;  

5) Feature set SRF described in (2), integrated over time:  
SRF(f; $0,'0) = !t y(t,f) *t,f STRF±(t,f; $0,'0)dt. This 
representation is rich in information, containing concurrent 
temporal and spectral modulations, along the frequency axis 

All sets contain rich information extracted from the breath 
sounds: information on how fast or slow the particular 
frequency contents change and in which directionality (RF) or 
information on how wide- or narrowband the breath content is, 
along frequency (SF).  SRF provides a high dimensional 
representation (original dimensions 28 x (2x21) x 128) of 
concurrent spectral and temporal modulations along the 
frequency axis. Data dimensionality was achieved using tensor- 

Singular Value Decomposition (SVD). Data were unfolded 
along each feature dimension and the principal components 

were calculated from the covariance matrix. Components were 
ranked and selected according to their ability to capture the 
total feature variance. 

IV. RESULTS  
The time waveforms of the lung sounds were augmented and 

transformed into richer representations using the various 
methods discussed.  Examples of how each feature space 
transforms the breath sounds are shown in Fig.1.  

The search for an outperforming classifier is not in of the 
scope of this paper. In this work, Binary Support Vector 
Machines (SVM) classifiers were used for the two-class data 
discrimination problem, with Radial Basis Function kernels 
((=0.1). Classifiers were trained on 90% of the data and tested 
on 10% of the data, using a 10-fold cross validation and 10 
independent Monte Carlo (MC) runs, for each different feature 
set and feature set dimension. To avoid biasing the classifiers, 
an equal size of Abnormal and Normal sounds were used for 
every cross-validation, by randomly sampling the Normal 
group to match the size of the Abnormal group. Performance 
was reported in terms of Accuracy, where 
Accuracy=100*(True Positives + True Negatives)/(all). The 
discriminative capabilities of the different feature sets are 
illustrated in Fig.2, where the x-axis depicts the effect of the 
feature set size on discriminatory accuracy. Accuracy values 
appear with their standard deviation errors across MC runs. For 
the multi-resolution representations, the number of features 
corresponds to the number of principal components, ranked 
and selected to capture at least 99% of the variance.  

Evidently, space representations that are less rich do not 
seem to capture distinguished features in an efficient way: 

Fig. 1.   Different feature extraction representations of an Abnormal (left column) and a Normal (right column) breaths recorded from two distinct enrolled 
subjects: a) FFTW; b) MFCCJ; c) SF; d) RF; e) SR; f) SRF. 
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method FFTW performed in the low side of the accuracy map; 
as the data representation was enriched using the MFCCJ 
method, performance results increased. The increment in the 
dimensionality for FFTW and MFCCJ methods did not seem to 
affect discrimination.  

Looking at various multiresolution representations, 
methods SF, RS and RF all proved to adequately capture lung 
sound characteristics and achieve discrimination accuracy 
results above 76%. The error bar levels indicate that although 
these set of features capture different characteristics in nature, 
they can perform equally well to the task at hand; a small 
number of singular vectors were enough to capture most of the 
data variation. A highly reduced space of 100 total features was 
adequate here for capturing distinct sound characteristics. SF, 
RS and RF sets enclose unique information and were all shown 
capable on the discrimination task. Similarly we expect the 
concatenated [SR-RF] set to achieve equal or better 
performance. Looking at Fig. 2, as expected, [SR-RF] 
moderately surpasses the individual marginal spaces, revealing 
that both spectral and temporal modulations of the signal 
capture unique, necessary lung sound content. Further, notice 
how in the [SR-RF] space, increased dimensionality appears to 
introduce a slight confusion to the classifier. This can be 
attributed to a number of reasons: First, the corresponding error 
bars show a fair performance variation and might partially 
explain the apparent performance inconsistency with increased 
dimension. The inherent irregular and unpredictable ambient 
noise of the breath sounds can also be a contributing factor, 
occurring unexpectedly, and confusing the classifier both with 
relation to time and spectral information, when increased 
feature details are included [17]. Similarly the inclusion of 
more dimensions can also signify an increase in the amount of 
included shared information between groups. A final 
prospective factor is the well-known curse of dimensionality; 
increased signal representation spaces require an increased 
number of training examples, with practically an exponential 

relation. Therefore it is not surprising to experience 
fluctuations in the performance curve, as the feature 
dimensions increase and the number of training examples 
remains constant [19]. Part of this confusion seems to 
disappear when an even richer and improved representation 
space is used: the SRF space captures simultaneous 
modulations along the spectral and temporal axis, and provides 
a highly informative space and a more robust representation. 
With a 99.87% reduction of the original space (when total 
feature size is reduced to 200) the classifier achieves favorable 
accuracy results above 86%.  

To further explore the apparent decrease of the accuracy 
slope for higher dimensions, we created a second pool of data, 
reducing the Normal group to 946 sounds, where we excluded 
breaths highly corrupted by loud crying or prominent electronic 
noise or recording interruptions. Due to the significant overlap 
of the abnormal breath profiles with noise contamination [16], 
we did not exclude sounds from the Abnormal group but 
randomly matched the number of Normals during 
classification, to avoid bias. The same setup was used, 
including the various feature extraction methods and SVM 
classification. The obtained results were similar to the ones 
presented in Fig.2, besides a modest overall increase in 
accuracy levels. We include results for dimension={600,700}, 
showed with filled color markers in Fig.2 (see corresponding 
legend marker in parenthesis). Despite the use of this “cleaner” 
pool of data, there remained an apparent drop in the accuracy 
slope for most of the multi-resolution feature sets. The 
exclusion of prominently corrupted breath sounds did not 
change the performance curves, indicating that a) the nature of 
these particular contaminations did not previously affect the 
classifier’s capabilities and the inherent discrimination 
difficulty comes from complex or convoluted environmental 
noise, or from the overlapping shared information among 
breath sounds of the two groups, or b) exploring detailed 
temporal and spectral information of the breath manifestations 
have introduced extra confusion and the benefits of a high-
dimensional space are obscured by its complexity. 

V. CONCLUSION 
The choice of the most appropriate feature set for data 

classification is considered one of the holy grails in machine 
learning. This feature set has to take into account the 
commonalities and differences within and across classes, and 
be robust to a number of factors (noise, unpredictable 
variability). In the case of sound analysis and classification, a 
combination of spectral and temporal features has often been 
sought to represent signals along their frequency content and 
dynamics as sound evolves over time.  

Overall, the results demonstrate that a rich space is required 
to best capture the intricate details inherent in lung sounds, 
particularly for the purpose of distinguishing normal breathing 
patterns from abnormal ones. A rich space is necessary but not 
sufficient. Even with fixed dimensionality of the feature space, 
a representation that combines joint spectral and temporal 
attributes of the signal (SRF) is more informative than one that 
combines the spectral and temporal features separately [SF-

 
 

Fig, 2.   Accuracy curves on the task of discriminating Normal from Abnormal 
breath sounds. The size of feature space varies along x-axis. 
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RF]. These joint modulations that change along both time and 
frequency (e.g. a frequency modulation) cannot be easily 
captured by the marginal spectral and temporal distributions; 
even if both representations span a rich feature space of few 
hundred dimensions. That being said, the richness of the 
feature space also faces its own curse of dimensionality. As 
the number of dimensions was increased, it does not always 
lead to an increase in classification accuracy. Further 
constraints and appropriate prior knowledge on the signal 
characteristics can be more important than dimensionality.   

Due to the challenging nature of the dataset (pediatric 
sounds acquired in busy and outpatient clinics), a certain 
degree of noise or distortion is unavoidable. To what extent 
the inherent noise affects the observed accuracy results, as 
opposed to more pathological reasons, remains to be seen. 
These findings merit further exploration in order to expand the 
possibilities of automated lung sound analysis that can be 
deployed in the field without limitations and constraints on 
environmental or pathological requirements. The current study 
aims to emphasize the role of a rich and carefully carved 
feature space as a necessary step in developing such 
unconstrained auscultation systems. Continuing work on both 
well-controlled and challenging recordings will help 
determine and isolate the direct effect of the inherent noise, as 
opposed to the effect of the shared content between normal 
and abnormal breaths. Extended work with an augmented pool 
of adventitious sounds will help medical scientists understand 
the value of different feature representations with respect to 
the auscultated sounds of interest. 
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