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Abstract

Our current understanding of how the brain segregates auditory scenes into meaningful

objects is in line with a Gestaltism framework. These Gestalt principles suggest a theory of

how different attributes of the soundscape are extracted then bound together into separate

groups that reflect different objects or streams present in the scene. These cues are thought

to reflect the underlying statistical structure of natural sounds in a similar way that statistics

of natural images are closely linked to the principles that guide figure-ground segregation

and object segmentation in vision. In the present study, we leverage inference in stochastic

neural networks to learn emergent grouping cues directly from natural soundscapes includ-

ing speech, music and sounds in nature. The model learns a hierarchy of local and global

spectro-temporal attributes reminiscent of simultaneous and sequential Gestalt cues that

underlie the organization of auditory scenes. These mappings operate at multiple time

scales to analyze an incoming complex scene and are then fused using a Hebbian network

that binds together coherent features into perceptually-segregated auditory objects. The

proposed architecture successfully emulates a wide range of well established auditory

scene segregation phenomena and quantifies the complimentary role of segregation and

binding cues in driving auditory scene segregation.

Author summary

In every day life, our brain is able to effortlessly make sense of the cacophony of sounds

that constantly enter our ears and organize them into meaningful sound objects. In this

work, we use an architecture based on stochastic neural networks to ‘learn’ from natural

sounds which cues are crucial to the process of auditory scene organization. The computa-

tional model delivers a hierarchical architecture that mimics multistage processing in the

biological auditory system. It learns a rich hierarchy of spectral and temporal features that

allow the decomposition of an auditory scene into informative components. These fea-

tures are then grouped together into coherent objects based on Hebbian learning princi-

ples. Though trained on unrelated datasets of natural sounds, the model is able to

replicate human perception of auditory scenes in a wide variety of soundscapes ranging

from simple tone sequences to complex speech-in-noise scenes.
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Introduction

We live in busy environments, and our surrounds continuously flood our sensory system with

complex information that needs to be analyzed in order to make sense of the world around us.

This process, labeled scene analysis, is common across all sensory modalities including vision,

audition and olfaction [1]. It refers to the ability of humans, animals and machines alike to

parse the mixture of cues impinging on our senses, organize them into meaningful groups and

map them onto relevant foreground and background objects. Our brain relies on innate dispo-

sitions that aid this process and help guide the organization of patterns into perceived objects

[2]. These dispositions, referred to as Gestalt principles, inform our current understanding of

the perceptual organization of scenes [3, 4].

In most theoretical accounts, the role of Gestalt principles in parsing a scene can be concep-

tualized in two stages: segregation (or analysis) and grouping (or fusion) [5]. In the first stage,

the sensory mixture is decomposed into feature elements, believed to be the building blocks of

the scene. These features reflect the physical nature of sources in the scene, the state and struc-

ture of the environment itself, as well as perceptual mappings of these attributes as viewed by

the sensory system. These features vary in complexity along a continuum from basic attributes

(e.g. edges or frequency components) to more complex characteristics of the scene (e.g. shapes

or timbral profiles). The ubiquitous nature of these profiles often conceals the multiplexed

structures that underlie this analysis of scene features in the brain. In most computational

accounts, this segregation stage is modeled using feature analyses which map the sensory signal

into its building blocks ranging from simple components (e.g. frequency channels) to dimen-

sionally-complex kernels [6, 7].

Processing the distinctive features of a scene is generally followed by a fusion stage which

integrates the state and behavior of the scene’s building blocks using grouping mechanisms

that reflect the local and global distribution and dynamics of the features. This stage employs

‘rules’ that guide how grouped elements give rise to perceptually coherent structures forming

objects or streams [2, 8, 9]. In many mathematical models, these grouping cues are often

leveraged in back-end classifiers that are tuned to capture patterns and relationships within

specific object classes (e.g. speech, music, faces, etc) [10–13]. In doing so, these models effec-

tively capture the inter-dependencies between object attributes and learn their mapping onto

an integrated representational space [14–16]. Ultimately, success in tackling scene analysis

depends on two key components [17]: (i) obtaining a rich and robust feature representation

that can capture object specific details present in the scene; (ii) grouping the feature elements

such that their spatial and temporal associations match the dynamics of objects within the

scene.

Vision models have been very successful in mining these two aspects of scene analysis.

Intricate hierarchical systems have leveraged inherent structure in static and dynamic images

to extract increasingly elaborate features from a scene that are then used to segment it, inter-

pret its objects or track them over time [18–20]. Data-driven approaches have shown that high

dimensional feature spaces are very effective in extracting meaningful semantics from arbitrary

natural images [20–22]; while hand-engineered features like scale-invariant feature transform

(SIFT) [23], histogram of oriented gradients (HOG) [24], and Bag-of-visual-word descriptor

[25] among others have also enjoyed a great deal of success in tackling computer vision prob-

lems like image classification and object detection. Recent advances in deep layered architec-

tures have resulted in a flurry of rich representational spaces showing selectivity to contours,

corners, angles and surface boundaries in images [26–29]. The deep nature of these architec-

tures has also led to a natural evolution from low-level features to more complex, higher-level

embeddings that capture scene semantics or syntax [30, 31].
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In audition, computational approaches to tackle auditory scene organization have mostly

taken advantage of physiological and perceptual underpinnings of sound processing [17]. A

large body of work has built on knowledge of the auditory pathway, particularly the peripheral

system to build sophisticated analysis models of auditory scenes. These systems extract rele-

vant cues from a scene, such as its spectral content, spatial structure as well as temporal

dynamics; hence allowing sound events with uncorrelated acoustic behavior to occupy differ-

ent subspaces in the analysis stage. These models are quite effective in replicating perceptual

results of stream segregation especially using simple tone and noise stimuli [32–37]. Some

models also extend beyond early acoustic features to examine feature binding mechanisms

that can be used as an effective strategy in segregating wide range of stimuli from simple tone

sequences to spectro-temporally complex sounds like speech and music [38–40]. In most

approaches however, the models are built around hand-crafted feature representations, hence

limiting their scope to specific mappings of the acoustic space. With the emergence of deep

belief architectures, recent efforts started learning rich feature spaces from natural sound-

scapes in a data driven fashion, and subsequently using these spaces in domains like music

genre classification, phoneme classification and speaker identification [41–44]. Applications of

deep learning have also successfully tackled the problem of speech separation even with mon-

aural inputs by learning embeddings of a speaker’s time-frequency dynamics against other

speakers [45, 46].

The current study also leverages neural network theory to ‘learn’ Gestalt principles directly

from sound. The work examines what kind of cues can one infer from natural sounds; how

well do these learned cue reflect the known Gestalt components of auditory streams; and how

effective are these cues in explaining perceptual organization of auditory scenes with varying

degrees of complexity. The model is devised as a hierarchical structure that generally follows

the two-stage pipeline of analysis then fusion, in line with prototypical scene analysis theories

[5]. This system analyzes the incoming acoustic signal with a multitude of granularities, hence

allowing both local and global acoustic attributes to emerge. The short-term analysis performs

a local tiling of the spectro-temporal space; hence inferring simultaneous grouping cues [47–

49]. A longer-range analysis extends the segregation stage to examine temporal dependencies

across acoustic attributes over different time scales; hence exploring emergence of sequential
grouping cues [50–54]. Finally, a fusion stage binds the cues together based on how strongly

they correlate with each other across multiple time scales. This integration is achieved using

Hebbian learning which reinforces activity across coherent channels and suppresses activity

across incoherent ones [55–57]. Apart from the basic layout and choice of analysis window

sizes, the network is trained in an unsupervised fashion on a rich sound dataset including

speech and nature sounds hence offering a general inference architecture of auditory Gestalt

cues that are common across many sound environments.

The overall system is tested with a wide range of stimuli where we can quantify the role of

each and every component of the network in driving stream segregation processes. We also

contrast the system performance with a set of control experiments where different components

of the model are deliberately switched on/off in order to examine their impact on the organiza-

tion of different acoustic scenes. These control experiments aim not only to dissect the role of

various system components. They also shed light on how necessary and/or sufficient different

grouping cues are to anchor the analysis of different stimuli structures and sound types. The

paper first presents an in-depth description of the proposed architecture, followed by an analy-

sis of the emergent properties of the trained network and their potential neural correlates in

the auditory pathway. The experimental results outline how the network replicates human psy-

choacoustic behavior in stream segregation and speech intelligibility paradigms. Finally, we

present control experiments that dissect the network architecture and examine the
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contribution its component. We discuss the implications of this network in shedding light on

ties between observed perceptual performance in various complex auditory scenes and the

neural underpinnings of this behavior as implemented in networks of neurons along the audi-

tory pathway.

Results

A Gestalt inference model for auditory scene segregation

A number of Gestalt principles have been posited as indispensable anchors used by the brain

to guide the segregation of auditory scenes into perceptually meaningful objects [8, 47, 58].

These comprise a wide variety of cues; for instance harmonicity which couples harmonically-

related frequency channels together, common fate which favors sound elements that co-vary

in amplitude, and common onsets which groups components that share a similar starting time

and to a lesser degree a common ending time. Most of these cues are thought to be innate in

our auditory system, and evidence for their role is found across many species [59–63]. These

processes likely take advantage of statistical regularities of sounds in natural environments and

reflect the physical constraints of sound generation and propagation (e.g. two sound sources

rarely start at the exactly the same time; periodic vibrations induce resonant modes at integer

multiples of the fundamental frequency). Here, we examine whether a statistical inference

model can learn these cues directly from natural sounds; and if so, how effective are these

learned cues relative to existing hand-tailored segregation systems.

The proposed model is designed as a hierarchical system that explicitly mimics an ‘analysis-

then-fusion’ processing pipeline. The analysis stage is itself laid out in two stages. First, an anal-

ysis of local spectrotemporal cues aims to learn simultaneous Gestalt cues believed to operate

over short-time scales in order to locally segregate sound elements. Second, an analysis of

more global cues operates over longer time-scales and aims to learn sequential Gestalt cues

that enable tracking dynamics of elements from the first stage at a temporal or melodic level

[8]. Following these stages is a fusion step that combines together segregated elements that

constitute different auditory objects, using principles of temporal coherence [39, 64, 65]. The

Gestalt analysis stages are learned directly from natural sounds in a generative fashion, allow-

ing each component of the model to represent natural sounds from its own vantage point fol-

lowing principles of stochastic neural networks, as detailed next. The fusion stage merely

organizes or fuses these learned patterns following the concept of temporal coherence, as also

detailed later.

Fig 1 depicts a schematic of the overall model. It takes as input the acoustic waveform of an

auditory scene u(t) and maps it onto a time-frequency representation, using a biomimetic

peripheral model from Yang et al. [66]. Briefly, this transformation analyzes the acoustic signal

u(t) using a bank of logarithmically-spaced cochlear filters whose outputs are further sharp-

ened via a first order derivative along the frequency axis, followed by half wave rectification

and short term integration over 10ms frames (see Methods for details). This filterbank analysis

results in an auditory spectrogram represented by S(t, f).
The following stage (called L1) is structured as a two-layer sparse Restricted Boltzmann

Machine (sparse RBM) with a fully connected visible and hidden layer [67]. It takes as input 3

consecutive frames of the spectrogram and learns a probability distribution over the set of

these short tokens. RBMs are powerful stochastic neural networks that are conceptually similar

to autoencoders but can infer statistical distributions over their input set [68]. A RBM layer is

chosen for this stage in order to explore the space of local spectrotemporal tokens and learn

latent cues that represent statistical structures in natural sounds over short time scales. The vis-

ible layer units {xk} are real-valued and characterized by a Gaussian distribution fitted over the
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006711 January 22, 2019 4 / 33

https://doi.org/10.1371/journal.pcbi.1006711


input spectrogram S(t, f); while hidden units {hk} are sampled from a Bernoulli distribution for

k = 1, 2, . . ., K where K is the number of nodes in each layer. The network is parameterized by

Θ = {W, A, B} where W represents the interconnected weights between visible and hidden

units, and A (B) represents the visible (hidden) bias, respectively. The network is trained using

a Contrastive Divergence (CD) algorithm with the objective to minimize the reconstruction

error between x and x̂ ¼ hW þ A [69].

By learning the regularities in local spectrotemporal tokens of natural sounds, the connec-

tion weights W effectively span an array of latent cues that reflect the structure of soundscapes.

Our hypothesis is that these latent factors represent the so-called simultaneous cues used as

Gestalt principles for sound analysis. After training, connection weights are transformed into a

2D filter Fðt; f Þ, akin to spectro-temporal receptive fields derived from neural activity of bio-

logical neurons in the auditory system [70]. These learned filters are then applied in a convolu-

tional fashion over the incoming spectrogram S(t, f) to derive the outputs of layer L1 nodes.

These responses are further subjected to a neural adaptation stage which imposes a dynamic

regulation of the response of each filter hence suppressing units with weak activation (see

Methods for details).

L1 responses are then processed by the next layer in the model which completes the analysis

stage to infer possible sequential cues that extend over longer time constants. This second layer

L2 is devised as an array of conditional RBMs (cRBMs), which are extended versions of RBMs

designed to model temporal dependencies [71]. Similar to a RBM, a cRBM consists of a visible

layer with units {xk}, assumed to arise from a Gaussian distribution fitted over the input, and a

hidden layer with {hk} units sampled from a Bernoulli distribution. Unlike a RBM, a cRBM

acts as a dynamical system operating over an entire input history τ taking as input occurrences

at times {t, t − 1, . . ., t − τ} in order to capture dynamics in the input space over context τ. In

the current model, we explore sequential cues over a range of temporal contexts and construct

Fig 1. Schematic of the proposed model. An acoustic signal u(t) undergoes a series of transformations starting with a mapping to a time-frequency spectrogram,

followed by two-layers of stochastic neural networks (local analysis L1 and long-range analysis L2), then a fusion stage L3.

https://doi.org/10.1371/journal.pcbi.1006711.g001
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an array of parallel cRBM networks over multiple histories ranging in temporal resolutions

from τ* (30–600 ms). L2 is parameterized by Θ = {W, Aτ, Bτ, Cτ, Dτ} where W represents the

interconnected weights between visible and hidden units and capture the interactions across

input features over an extended temporal history τ, Aτ and Bτ represent the visible and hidden

biases, respectively, while Cτ and Dτ quantify autoregressive weights between past inputs and

the current input (or current hidden unit, respectively). Just like the localized layer L1, the con-

textual layer L2 is trained in a generative fashion using contrastive divergence (CD) in order to

best capture the dynamics in natural sounds using the same dataset of realistic sounds span-

ning speech, music and natural sounds. Here again, our hypothesis is that the stochastic cRBM

learns latent parameters Θ that reflect the sequential cues underlying dynamics of natural

sounds over a wide range of temporal contexts. Once trained, the model parameters are

applied to incoming L1 filter responses in a linear fashion, yielding a multi-resolution output

which is then passed over to the next stage in the hierarchy (see Methods for details).

The next layer in the hierarchy focuses on a fusion operation to facilitate the grouping of

perceptually-coherent objects. This binding stage explores co-activations across all L2 channels

within a given context τ and binds together the units that exhibit strong temporal coherence

[64, 72]. The ‘temporal coherence’ theory posits that emergence of perceptual representations

of auditory objects depends upon strong coherence across cues emanating from same object

and weaker co-activation across cues from competing objects. This coherence is not an instan-

taneous correlation but one that is accumulated over longer time scales, commensurate with

the contextual windows explored in the L2 layer. We implement this concept in a biologically-

plausible fashion via mechanisms of Hebbian learning, which suggests that when two neurons

fire together, their synaptic connection gets stronger [73]. Effectively, Hebbian interactions

operate by reinforcing activity across coherent channels, hence grouping them into putative

objects and inhibiting activity across incoherent channels [74]. We implement a synaptic inter-

action across output channels from layer L2 by introducing a coherence synaptic weight

matrix V. If two units i and j are co-activated at a given time t, their corresponding synaptic

connection Vij is reinforced over time. If the correlation between their activity is weak, the cor-

responding synaptic weight Vij is reduced accordingly. These synaptic weights are applied to

the output of each channel in a dynamic fashion, hence modulating the activity across an

entire ensemble of neurons within each context in layer L2. The net effect gives emergence to

perceptual coherent groups that represent auditory objects in a scene. A final read-out stage is

then appended to the model to extract responses to different stimuli and test the degree of seg-

regation of different objects, as viewed by the model outputs (see Methods for details).

Model characterization

In order to examine the emergent sensitivity of learned layers in the network, we derive the

tuning characteristics of individual nodes or neurons and explore their filtering properties in

the modulation domain [75, 76]. Modulation tuning reflects stimulus cues that best drive indi-

vidual nodes in the model both in terms of temporal variations and dynamics (i.e. temporal

modulations or rates) as well as spectral span and bandwidth (i.e. spectral modulations or

scales). This approach follows common empirical techniques used in electrophyisology and

psychophysics to probe the tuning of a system to specific acoustic cues. It is specifically used to

characterize spectro-temporal receptive fields (STRFs) which offer 2-dimensional profiles of

filtering characteristics of neurons [70].

First, we employ a classic transfer function method using probe stimuli in order to derive

the tuning of both L1 and L2 layers of the network [77–79]. We present modulated noise

signals (called ripples) as input to the model with varying spectro-temporal modulation
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parameters (Fig 2E) and characterize the fidelity of the ripple encoding at various stages of the

network as the ripple modulation parameters are varied [80]. Each ripple is constructed as a

broadband noise signal whose envelope is modulated both in time and frequency, with tempo-

ral modulation parameter ω (in Hz) and spectral modulation parameter O (in cyc/oct) (see

Methods for details).

By sweeping through a range of ripple parameters, we compute a normalized modulation

transfer function (MTF) from the response of layers L1 and L2 which quantifies the synchro-

nized response of each layer to the corresponding dynamics in the ripple stimulus (see Meth-

ods for details). L3 is not a trained layer and hence is not subject to this analysis. Fig 2A and 2B

depict the MTF derived from both L1 and L2. The functions highlight that both layers exhibit

a general low-pass behavior both along temporal and spectral modulations. As expected, layer

L1 is trained over shorter time-scales and does exhibit faster temporal dynamics along the rate

axis, while the contextual layer L2 is mostly tuned to slower dynamics < 30Hz with a slightly

tighter spectral selectivity mostly concentrated below 1 cycles/oct. This outcome is very remi-

niscent of similar transfer functions obtained from neurophysiological data showing contrast-

ing tuning characterizations in the midbrain, auditory thalamus and auditory cortex [81–83],

whereby selectivity of individual neurons along the mammalian auditory hierarchy evolves

from faster to slower temporal dynamics and from more refined to broader spectral spans

along frequency.

We further examine the selectivity of individual neurons and compare emergent tuning

characteristics common across nodes in the network by employing an agglomerative clustering

algorithm (see Methods for details). This approach clusters nodes exhibiting similar tuning

Fig 2. Modulation characteristics of the network. (A,B) Normalized modulation transfer function for layers L1 -left- and L2 -right- displayed in axes of rate

(temporal modulations in Hz)—scale (spectral modulations in cycles per octave). (C,D) Overlaid on each transfer function is a contour plot of agglomerative

clusters in spectro-temporal modulation space for layers L1 -left- and L2 -right-.(E) Noise ripples are used to analyze the spectro-temporal tuning of the model at

different stages. They are noise signals that are modulated in time and frequency. (F) Example filter tuning Fðt; f Þ from layer L1 for 4 nodes exhibiting tuning to

harmonicity (top, left), onset (top, right), a slow neuron (bottom, left) and a fast neuron (bottom, right). The filter response profiles have been interpolated using

a cubic function for display purposes.

https://doi.org/10.1371/journal.pcbi.1006711.g002
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profiles into common groups hence providing insight into the underlying acoustic cues being

processed by each cluster. Fig 2C and 2D show contour plots from the resulting clusters over-

laid on the MTF profiles for layers L1 and L2. The array of clusters indicates that neurons in

each of these layers do indeed exhibit a wide variety of selectivity to spectral and temporal

dynamics in the input signal. We specifically note a cluster of L1 neurons that is more sensitive

to fast transients or ‘onsets’. This group is labeled ‘O’ in Fig 2C. An example time-frequency

profile Fðt; f Þ of a neuron in the ‘O’ cluster is shown in Fig 2F (upper-right). We also note a

spectrally-structured cluster (labeled ‘H’) centered around spectral modulations 2 [1-2] cyc/

oct corresponding to harmonic peaks present in natural sounds. An example neuron from this

cluster is shown in Fig 2F (upper-left) and highlights the selectivity to specific frequency bands

in the input spectrogram. The clustering procedure also reveals the presence of oriented spec-

tro-temporally selective clusters, likely tuned to detect frequency-modulated sweeps in the sig-

nal over different spectrotemporal scales; as well as other clusters with special selectivity to

spectral or temporal features. Fig 2F (lower panels) shows an example of two L1 neurons with

different temporal dynamics contrasting a slow neuron ‘S’ and a fast neuron ‘F’.

Stream segregation experiments

We test the model’s behavior with a variety of acoustic scenes ranging from classic streaming

paradigms using simple tones to experiments using speech signals. Crucially, all experiments

are tested on the same model (after all layers have been trained), without any adjustment to

model parameters. The stimulus parameters are carefully chosen to closely replicate previously

published human perceptual experiments hence allowing a direct comparison between the

model and human perception. All stream segregation results are shown in Fig 3 organized in 3

columns: the stimulus on the left, a replica of human perception of the same stimulus repro-

duced from the corresponding publication in the center, and the model performance on the

right.

Simple tones. The first experiment employs the classic two-tone paradigm with sequences

of high and low notes, commonly used in streaming experiments [8, 84, 85]. The sequences

are produced by presenting two tones of different frequencies, A and B, repeatedly and in alter-

nation (ABAB−). When the frequency separation ΔF between the A and B tones is relatively

small (<10%), listeners perceive the sequence as grouped or fused and report hearing one

stream. As the frequency separation ΔF increases, listeners hear two separate streams consist-

ing of only low notes (A − A −) or only high notes (−B − B-). In contrast, when the two A and

B notes are presented synchronously (Fig 3A-left), listeners tend to hear the sequence as

grouped regardless of the frequency separation ΔF, in a process reminiscent of temporal coher-

ence which fuses together channels that are co-activated together [64, 72]. Fig 3A-middle repli-

cates results from a study by Micheyl et al. [86]. The study shows that an alternating tone

sequence is perceived as a single stream when the frequency separation ΔF is small and is seg-

regated into two streams when ΔF is large. When the two tones are presented synchronously,

they are always perceived as grouped regardless of frequency separation. The fused percept is

objectively measured using d’ [87, 88]; where listeners are asked to detect a change in one of

the tones presented in the final burst (see Methods for details). Fig 3A-right shows that the

model replicates the same behavior using the same tone sequences presented in alternation or

synchrony. As the frequency separation ΔF increases between the A and B tones, the model is

more likely to perceive them as segregated in the alternating condition but tends to fuse them

in the synchronous condition.

The two-tone paradigm is also often used to probe the phenomenon of buildup of

streaming [8, 89]. The buildup highlights that streaming is a dynamic process, whereby the

A Gestalt inference model for auditory scene segregation
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Fig 3. Primary results of stream segregation using proposed model. Leftmost panel shows the stimuli sequence used for each

experiment. Middle panel shows human listening performance and rightmost panel shows the model performance. Row (A)

replicates experiments from [86], row (B) replicates experiments from [90], row (C) replicates experiments from [92], rows (D) and

(E) replicate experiments from [93], and rows (F) and (G) replicate experiments from [95, 96].

https://doi.org/10.1371/journal.pcbi.1006711.g003
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segregation of the two notes into separate streams is not instantaneous; but builds-up over

time taking up to several seconds to emerge. In a study by Micheyl et al. [90], buildup was

assessed using a variation of the two-tone paradigm using tone triplets (ABA − ABA), as

shown in Fig 3B-left. Fig 3B-middle replicates results from this study [90] whereby listeners

continuously report perception of one or two streams for different frequency separations ΔF.

The behavioral data shows that when the frequency separation ΔF is large, both A and B tones

are perceived as segregated streams relatively quickly. As ΔF decreases, the segregated percept

takes longer to emerge lasting over many seconds. Fig 3B-right replicates the same behavior

using the model and shows that the sequences gradually segregate into separate streams with

different time constants. The model faithfully replicates human performance; demonstrating a

faster buildup at large ΔF, slower buildup at intermediate ΔF, and no buildup at very small ΔF.

Complex tones. Next, we explore stream segregation using complex tones. These com-

plexes highlight the wide range of acoustic cues that aid in the segregation of auditory scenes;

including frequency separation (as shown earlier), as well as amplitude modulations (AM),

harmonicity, temporal synchrony, etc. [3, 51, 58, 91]. In this simulation, we focus on the role

of modulation cues in stream segregation by replicating a classic study by Grimault et al. [92]

where alternating noise bursts with different AM rates are presented (Fig 3C-left). As the dif-

ference in modulation rate ΔAM increases, noise bursts tend to segregate into two streams

with distinct AM rates. Once the rate difference ΔAM reaches about 2 octaves, the modulated

noises fully segregate into two distinct streams. Fig 3C-middle shows human perception of

segregated streams as a function of ΔAM replicating the results from the study by [92]; while

Fig 3C-right shows the performance of the model on the same stimuli. As shown in the Fig-

ure, the model closely replicates human perception as reflected by increase in probability of

stream segregation. The model appears to leverage the explicit encoding of amplitude infor-

mation in its trained layers to facilitate the segregation of noise sequences into corresponding

streams.

Next, we examine the role of harmonicity and temporal synchrony as putative grouping

cues. Both these cues are believed to exert strong grouping, acting as a bond that fuses sound

elements together as shown in a study by Micheyl et al. [93]. In this work, a target tone at fre-

quency 1000 Hz is masked by background tones that are either harmonically related or in tem-

poral synchrony with the the target tone. The study examines two kinds of stimuli: ‘MBS’

-multiple burst same- stimuli (Fig 3D-left) have the same burst of tones presented every time;

while ‘MBD’ -multiple burst different- stimuli (Fig 3E-left) vary the harmonicity relationship

between target and background tones at every burst based on different fundamental frequen-

cies (see Methods for more details about the stimuli). Fig [3D] and [3E]-middle replicate

the results from the study by Micheyl et al. [93] in which listeners detect a change in the final

burst of the target tone. The study shows that when target and background tones are either

harmonically related or in temporal synchrony with each other, d’ is low indicating a strong

background-target fusion. Listeners’ ability to segregate the target improves when either har-

monicity or sychrony is perturbed. Fig [3D] and [3E]-right show the model performance on

the same MBS and MBD stimuli respectively. When target and background tones are harmon-

ically-related or in synchrony, the model favors fusion and results in a small d’. In contrast,

when perturbing harmonicity by shifting the harmonics, the model favors a segregated inter-

pretation resulting in increased d’. Similarly, when target and background tones are asynchro-

nous, there is a significant increase in d’, again suggesting strong segregation.

Speech intelligibility. Next, we examine the model’s behavior using complex sounds such

as speech in presence of competing noise. In all experiments, a speech utterance is presented

to the network either in clean or masked by background noise that includes speech modulated

noise, babble noise, cafe noise or an interfering speech utterance. All speech utterances are
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part of the CRM corpus where each utterance consists of a call sign and a color–number com-

bination, all embedded in a carrier phrase [94]. A typical sentence would be “Ready baron, go

to red four now,” where ‘baron’ is the call sign, and ‘red’-‘four’ is the color–number combina-

tion. Fig [3F] and [3G]-left show spectrograms of speech utterances from the CRM corpus

mixed with speech modulated noise and an interfering speech utterance respectively.

Fig [3F] and [3G]-middle replicate the results from two behavioral studies using the CRM

corpus in a dichotic listening paradigm where subjects identified the “number” and “color”

mentioned in the target utterance under different noise conditions [95, 96]. The behavioral

data yield a measure of speech intelligibility (in word percent correct) as a function of signal to

noise ratio (SNR) with different noise maskers. Fig [3F] and [3G]-right depict the model’s per-

formance replicating the same paradigm as closely as possible (see Methods for details). The

model yields a correct identification of speech tokens (numbers, colors, or both) that is closely

related to the SNR condition following an S-shaped curve typical of similar measures of speech

intelligibility in noise. The model performance plateaus at about 98% correct identification at

SNRs above 3dB (Fig 3F-right); whereas it degrades quite rapidly from -3 to -9 dB before

reaching chance performance at -18 dB. When comparing effects of noise type, both human

and model performance are poorer in presence of an interfering utterance, relative to babble

and cafe noise conditions.

Model function and malfunction

As outlined earlier, Fig 3 contrasts the model’s performance against reported human percep-

tual results in a range of stream segregation experiments. Next, we reexamine our initial

hypotheses; namely that the model is able to infer simultaneous and sequential grouping cues

by learning statistical regularities in natural soundscapes. The experimental results shown in

the previous section suggest that simultaneous cues (tonotopic organization, AM rate, harmo-

nicity, temporal synchrony, etc), sequential cues and grouping mechanisms play an important

role in streaming paradigms. In order to shed light on their individual contributions, we run a

series of control experiments where we look at malfunctions in the model if certain compo-

nents of the system are disrupted individually.

Role of simultaneous cues. The tuning characteristics of layer L1 show that model neu-

rons naturally cluster around specific modulation regions, hence, revealing a wide selectivity

to different acoustic cues that emerge in natural sounds. Here, we focus on four L1 neuron

clusters with particular selectivity to harmonicity, onsets, fast and slow temporal modulations.

We individually ‘turn off’ each of these clusters from the system and replicate all stream segre-

gation experiments shown earlier. Fig 4 shows the model performance as follows: The leftmost

column shows the model performance when L1 harmonicity-neurons are turned off, the mid-

dle column with L1 onset neurons turned off, and the rightmost column with fast and slow L1

units turned off respectively. In these experiments, L2 is not altered but is retrained based on a

modified input (i.e. its input dimensionality is reduced because harmonicity, onset, slow or

fast channels are removed).

Switching off harmonicity-L1 nodes has no effect on the system’s performance in a two

tone paradigm (Fig 4A-left) or sinusoidally amplitude-modulated noise bursts (Fig 4B-left). In

contrast, the ability to segregate MBS and MBD sequences in case of mistuned harmonics is

drastically affected by the absence of harmonicity-tuned nodes in the network (Fig 4C and 4D-

left). Similarly, the network’s ability to detect speech (both colors and numbers in the CRM

corpus) is severely impacted in absence of harmonicity-tuned nodes (Fig 4E-left). Taking a

closer look at the behavior of the network in detecting numbers, we note a systematic drop in

performance across all digits which all contain prominent voiced phonemes (Fig 4F-left).
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Fig 4. Control experiments introducing malfunction in layer L1. The layout of the figure in each column is similar to that of Fig 3 showing

model response to different stimuli. The leftmost column remove L1-harmonic neurons, middle column removes L1-onset neurons and

rightmost column contrasts only fast or slow L1 neurons.

https://doi.org/10.1371/journal.pcbi.1006711.g004
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Disabling L1-onset nodes results in its own malfunction of the model. Streaming two-tone

sequences and sinusoidally amplitude-modulated noise bursts is not affected by switching off

onset units (Fig 4A and 4B-middle). However, the MBD and MBS stimuli appear to be affected

in an interesting way (Fig 4c and 4D-middle) where we note an improvement of segregation in

case of mistuned harmonics. The design of these stimuli puts temporal synchrony and harmo-

nicity in conflict. Free of onset-detectors, the model is able to judge segregation mostly driven

by harmonicity or lack thereof in the case of mistuning. Conversely, in case of temporal asyn-

chrony, there is a drop in segregation performance in absence of onset-detectors, though the

model is able to exploit the harmonic relationship between target and background tones to

induce streaming. A comparable drop in speech intelligibility performance is also noted (Fig

4E-middle), attesting to the important role of onsets in speech perception. Taking a closer look

at the model performance with individual digits (Fig 4F-middle), we note severe drops for

tokens like “three”, “six” and “seven” that contain prominent fricative and plosive unvoiced

phonemes.

Selectivity to temporal dynamics plays a complementary role in the model’s ability to per-

form stream segregation. We manipulate the selectivity of L1 neurons to different range of

amplitude modulations by testing only-slow (< 25 Hz) or only-fast neurons (> 25 Hz). The

segregation of two-tone sequences appears to be unaffected by presence or absence of slow or

fast units alone, and is likely mostly driven by the tonotopic organization of the nodes in the

network (Fig 4A-right). In contrast, streaming of sinusoidally-modulated noise bursts is

heavily affected when L1 units tuned to faster modulations are turned off, though only mild

changes are noted when slower-units are turned off (Fig 4B-right). Streaming of MBD and

MBS sequences appears unaffected by the time-constants of temporal modulations left in the

L1 layer; and we observe no changes to the model behavior (Fig 4C and 4D-right). Interest-

ingly, speech intelligibility is also unaffected when faster L1 units are turned off (Fig 4E-right).

In contrast, switching off slower units drastically affects the model’s ability to separate speech

from noise, especially at low SNRs, strongly corroborating the role of midrange-modulations

in speech perception [76].

Role of sequential temporal dynamics. Next, we examine the impact of model parame-

ters responsible for temporal integration on stream segregation over longer time scales. First,

we observe the model’s behavior if we switch off neural adaptation at the output of L1 nodes.

This mechanism aims to adjust the dynamics of neurons’ responses by eliminating nodes with

moderate activation over time. Fig 5-left contrasts the model’s performance with and without

this neural adaptation. Fig 5A-left shows that neural adaptation is important for segregating

alternating two-tone sequences. Adaptation appears to aid the temporal coherence layer in

‘shutting down’ neurons from competing streams which facilitates segregation. In its absence,

both tones in the stimulus continue to compete at the output of the model hence affecting the

ability to segregate. Furthermore, this continued competition appears to slow-down the

buildup process (Fig 5B-left compared to the original model behavior in Fig 5B-right). As

noted in the figure, a tone sequence with frequency separation of ΔF = 9 semitones takes many

seconds to eventually reach a segregated percept with modified model as compared to 1-2 secs

in the original model, owing to the continued competition between the two tones. While the

temporal coherence model is able to note the out-phase relationship between the streams, this

process is assisted by neural adaptation which supresses activity from competing streams

hence speeding up stream segregation in line with observed behavioral responses (Fig 3B-mid-

dle). A similar behavior is observed in case of sinusoidally amplitude-modulated noise bursts

in Fig 5C-left. Here again, removing adaptation from the network allows competition across

channels to linger longer hence hampering the role of temporal coherence in detecting consis-

tent incoherent activity across competing streams. In the case of MBD and MBS sequences,
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Fig 5. Control experiments introducing malfunction in temporal dynamics of the network. The layout of the figure in each

column is similar to that of Fig 3 showing model response to different stimuli. The leftmost column remove neural adaptation, middle

column removes L2-slow neurons and rightmost column removes the L3 temporal coherence.

https://doi.org/10.1371/journal.pcbi.1006711.g005
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adaptation appears to have a mild effect with the exception of mistuned harmonics in the case

of MBD sequences and temporal asynchrony for MBS sequences (Fig 5D and 5E-left).

We next explore the role of temporal dynamics in cue extraction, particularly the role of

slower time-constants which are thought to play a crucial role in sequential integration of

acoustic cues as the scene evolves. We probe this role in a control experiment by switching off

the L2 units with strong selectivity to very slow modulation rates (< 15 Hz) and compare this

modified network against the full architecture. The results comparing the two models are

shown in Fig 5-middle and reveal wide spread after-effects across all streaming experiments.

In the case of the two-tone paradigm, removing slower neurons from L2 significantly impairs

the network’s ability to segregate 2 streams as ΔF increases (Fig 5A-middle). Also of note is

that the streaming buildup is severely affected and quickly settles on final assessment of segre-

gation between streams regardless of ΔF value likely reflecting the inherent spectral-based sep-

aration across the neurons in the network but failing to track how activity across the neural

population evolves over time (Fig 5B-middle). Segregation of modulated noise bursts is also

severely affected (Fig 5C-middle). The probability of perceiving 2 streams drops dramatically,

indicating a poor integration of neural activity across differentiated neurons. The same effect

is observed in the case of MBS and MBD sequences, where the network fails to segregate the

target tone from background masker tones even in presence of mistuned harmonic relation-

ships (Fig 5D and 5E-middle). This drop is also noted for both stimuli in the case of asyn-

chrony, even though the drop is not as dramatic, suggesting the network still relied on some

degree of temporal alignment across the fast neurons remaining in the L2 network to judge

relationship between tone bursts. Finally, in the case of speech in noise experiments, the net-

work containing ‘faster’ neurons is severely impaired across all SNR values (Fig 5F-middle).

The drop in performance is clear across all digits (Fig 5G-middle). The absence of slow L2

units clearly affects the network’s ability to match the slow changes in temporal structure of

speech tokens even in presence of simultaneous cues hence failing to facilitate stream segrega-

tion. This result reinforces the joint role of both spectral and temporal (local and global) attri-

butes in speech encoding and comprehension [76, 97].

Finally, the role of temporal fusion across channels is examined by testing the model’s per-

formance without the temporal coherence mechanism in layer L3. Much like earlier control

experiments, removing temporal coherence has sweeping effects on the model’s ability to per-

form stream segregation. In the two-tone paradigm, the model treats the synchronous and

alternating notes similarly as it fails to judge the phase relationship across spectral channels

(Fig 5A-right). The buildup of streaming is also completely annihilated regardless of frequency

separation across channels strongly suggesting that integration over time and across frequency

channels plays an important role in the brain’s ability to consolidate information spectrally

and temporally while it examines possible configurations or interpretations of the scene (Fig

5B-right). This process is very much what the temporal coherence stage contributes and is

clearly impaired without coherence. Segregation of modulated noise bursts is also affected

although the probability of segregation does increase with increased AM rate difference ΔAM
albeit with reduced probability suggesting poorer segregation performance of the modified

network (Fig 5C-right). In the case of noise complexes in the MBD and MBS paradigm, the

network completely fails to achieve any form of segregation (Fig 5D and 5E-right) suggesting

that the presence of simultaneous cues (e.g. harmonicity) is not sufficient. Complex noise pat-

terns tend to activate a wide range of channels which require an integration mechanism such

as L3 temporal coherence to interpret the across-channel consistency and phase relationships.

Speech segregation is slightly affected by disabling temporal coherence (Fig 5F-right) and

more noticeably at lower SNR values for both colors and numbers. Fig 5G-right) highlights

these mild reductions in segregation that are observed consistently across all digits.
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Discussion

The current study presents a biologically-plausible model of stream segregation that leverages

the multiplexed and non-linear representation of sounds along an auditory hierarchy. While

the model is formulated to focus on local and global cues in everyday sounds, it is structured

to ‘learn’ these cues directly from the data. The unsupervised nature of the architecture yields

physiologically and perceptually meaningful tuning of model neurons that support the organi-

zation of sounds into distinct auditory objects. The three key components of the architecture

as shown in Fig 1 are: (1) A stochastic network RBM layer that encodes two-dimensional input

spectrogram into localized specto-temporal bases based on short term feature analysis; (2) A

dynamic cRBM layer that captures the long-term temporal dependencies across spectro-tem-

poral bases characterizing the transformation of sound from fast changing details to slower

dynamics. (3) A temporal coherence layer that mimics the hebbian process of binding local and

global details together to mediate the mapping from feature space to formation of auditory

objects.

The layout of the model closely replicates the physiological layout of auditory processing in

the brain where an acoustic signal undergoes a series of transformations from the cochlea all

the way to auditory cortex (A1), effectively extracting a rich feature representation that forms

the basis for perceptual grouping of sound objects [98–103]. The sound transformations in the

biological system evolve in temporal and spectral resolutions from temporally fast, spectrally

refined as is typically observed in the periphery and levels of the midbrain to markedly slower

and spectrally broader in cortical networks [81, 104, 105]. The current model ‘learns’ similar

structures as can be seen from the modulation transfer functions for both layers L1 and L2

(Fig 2). The fact that the model evolves in temporal resolution from short to longer analyses is

not surprising as it is one of the structural designs of the system. However, the detailed analy-

ses learned in each layer are intriguing and suggest a close connection between neural selectiv-

ity along the auditory pathway and the progression of processes underlying Gestalt principles

from a local analysis of simultaneous cues to global sequential cues [8]. This connection has in

fact been postulated in a number of studies of auditory neurophysiology, particularly contrast-

ing the differences in tuning characteristics between individual neurons in the midbrain (par-

ticularly the inferior colliculus) and cortex [81, 106, 107]. The current model does appear to

also exhibit a similar variety of tuning characteristics and it is tempting to interpret the modu-

lation profiles emergent from layers L1 and L2 as potentially aligned with a midbrain/cortex

hierarchy. However, we should also entertain the possibility that both layers L1 and L2 could

map to different sub-populations in auditory cortex. Cortical substructures have been reported

to exhibit a variety of heterogeneous behaviors and variability in encoding temporal details

about an incoming sound by multiplexing temporal and rate representations [108]. Interpret-

ing the model output based on such dichotomy in integration mechanisms raises an interest-

ing possibility attributing statistical-constraints of Gestalt cues solely to cortical networks in

the brain. This alternative merits further examination in future work especially considering

more intricate network architectures that extend across more layers including extra hidden

layers in a true tradition of deep learning [68]. Follow-up analyses should also examine the

encoding of stimulus features across an even wider array of temporal resolutions that span the

contribution of finer details including temporal fine structure to even longer multi-second

time dynamics [109, 110].

Role of simultaneous layer. Extracting relevant information from incoming acoustic waves

is the backbone of any processing and sound interpretation system. The model replicates this

feature analysis in a data-driven fashion by employing a diverse dataset of natural sounds

including human speech, animal vocalizations and street ambient sounds. Structuring the
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local layer using a RBM architecture allows the model to learn a rich tiling of spectro-temporal

basis functions. The results indicate that these bases capture fine details in the acoustic stimu-

lus, as suggested by the modulation transfer function (Fig 2). The tuning of individual model

neurons is itself well-structured and localized in this spectro-temporal space with clear organi-

zation of subsets to a wide range of acoustic cues spanning frequency proximity, harmonicity,

onset, and AM rate among others, as shown by the clustering analysis.

Traditionally, biomimetic computational models of stream segregation have attempted to

replicate some or all of these cues to enable stream segregation. Often, this process is achieved

by hand-selecting specific axes of feature analysis that best suit the auditory scenes of interest

in these specific studies [111–113]. One of the drawbacks to feature selectivity in model design

is confining the testable signals to those that take advantage of these specific features. By

employing an unsupervised approach to feature selection, the current model not only repli-

cates known simultaneous cues in auditory scene analysis, but also nonlinearly spans multi-

tudes of features given the fully-connected nature of the Restricted Boltzman Machine (RBM)

used in layer L1. Across-feature integration is in line with recent findings suggesting that

many auditory neurons are driven by a multitude of stimulus features [114]. This feature inte-

gration is particularly crucial in case of complex sounds where a multitude of dimensions pro-

vide the perceptual system with converging evidence about the organization of the scene [115,

116]. The complementary value of this cross-feature mapping is clearly visible in control

experiments where dropping different components of the simultaneous layer have different

effects on the model’s ability to perform stream segregation (Fig 4).

Role of sequential layer. Along the same lines, the sequential layer provides an integrated

non-linear mapping of the feature space from localized details to slowly evolving spectro-tem-

poral patterns. The use of a cRBM layer allows the model to ‘learn’ tuning from natural sounds

along slower time-constants. The transfer function analysis reveals a strong selectivity to slow

temporal modulations present in natural sounds typically in the range * 2–32 Hz as shown in

Fig 2. This tuning is reminiscent of modulation transfer functions derived from the mamma-

lian auditory cortex revealing neurons that are slightly broader spectrally and slower tempo-

rally [81, 82, 104]. This global analysis has not been extensively investigated in models of

auditory scene analysis, though few models have leveraged cortical-like processing to comple-

ment local feature analysis [113, 117–119]. Engineering approaches have also leveraged this

global analysis especially in the case of speech processing systems. Approaches such as RASTA

(relative spectra), high-pass and band-pass filtered modulation spectra take advantage of slow

articulatory structures of speech production as well as the sensitivity of human perception to

such slow dynamics to offer a more robust processing of speech sounds in presence of noise

[120–122].

Role of temporal coherence layer. While feature analysis is a crucial ingredient in auditory

scene analysis, fusing the relevant cues together is an equally important complementary stage

to group the features into meaningful objects. Perceptual and physiological data have strongly

suggested that temporal coherence achieves the feature fusion needed for object formation [64,

123, 124]. While its exact neural underpinnings are not well understood yet, empirical evi-

dence strongly suggest that it plays an important role in scene organization by the auditory

system [39, 65, 125, 126]. Indirect neurophysiological evidence suggest that coherence mecha-

nisms operate beyond auditory cortex likely in a network engaging the intraparietal sulcus and

superior temporal sulcus [65, 126–128]. The current model employs a rather simple biologi-

cally-plausible Hebbian interaction across channels to rapidly adapt co-operative and competi-

tive interactions between coherent and non-coherent responses [72]. Effectively, channels that

exhibit a high degree of temporal correlation across feature dynamics are mutually strength-

ened while incoherent channels are gradually weakened hence facilitating segregation of target
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signals from background interference. Naturally, the Hebbian-based approach is not the only

implementation for this fusion stage and numerous techniques for such fusion have been

explored in areas of data mining and analytics. In fact, feature fusion has become an important

topic of research in the deep learning literature particularly when applied to computer vision

and sensor networks. Ultimately, the architecture used to implement such grouping stage will

have to infer relationships between activities of model sub-components based on some pre-

defined loss function (in case of unsupervised learning). In the current model, we reduced this

learning function to the basic principle of temporal coherence [64].

Scene segregation and fusion

The analysis of control experiments quantifies the complementarity of rich feature representa-

tion and grouping mechanisms in driving scene segregation. The proposed architecture faith-

fully replicates human psychoacoustic behavior on steaming paradigms over wide range of

stimuli ranging from simple tones to speech utterances as demonstrated in Fig 3. In case of

two tone streaming paradigm shown in (Fig 3A), the network exhibits stream segregation

when two alternating tones are widely separated across tonotopic frequency axis. This behav-

ior is consistent with well established psychophysical and physiological findings of stream seg-

regation induced by differences in tonotopic cues [129–132]; and relies heavily on the

activation of different groups of neurons with distinct frequency selectivities as captured in L1.

In absence of temporal correlation between these two groups, the temporal coherence layer

aided by the adaptation mechanism suppresses the anti-correlated groups of units, hence

inducing stream segregation in the final stage of the network. However when ΔF is small

enough, there is high degree of overlap resulting in a single stream percept. This segregation/

integration effect is strongly maintained regardless of a number of manipulations to the model

architecture. The key components crucial to the organization of tone sequences are the pres-

ence of tonotopic or frequency selectivity combined with temporal integration that examines

activity across neural channels at relatively longer time-scales. This observation is very much

in line with the spatio-temporal view of auditory stream segregation which requires neural

channels to be widely separated in addition to temporal asynchrony across these channels

[133].

The interaction of spectral and temporal dynamics during the organization of tone

sequences supports the view of stream segregation as a dynamic process. The buildup effect

reported in the current model (Fig 3B) is in line with established psychoacoustic behaviors [90,

134–136] and suggests that segregation of two streams is not instantaneous; but strengthens

over time and can lead to segregation when frequency difference (ΔF) is large enough. The

current model highlights that this effect is in fact reflecting the competition across neural

channels as viewed by the temporal coherence layer. The binding of correlated groups of neu-

rons strengthens over time while suppressing the anti-correlated units over time in the same

process. Interaction across multiple features is also noted in other simulations that pit against

each other harmonicity, onsets and temporal dynamics (Fig 3[C], 3[D] and 3[E]). Simulations

using complex tones directly examine the role of localized spectro-temporal tuning in L1 as an

encoding of simultaneous cues such as harmonicity, onset and fast amplitude modulations

among others. Sequential cues emergent in L2 are crucial in tracking the activity emerging in

the localized layer over longer amplitude modulations; which are then fused together in the

last L3 layer.

Through this rich selectivity learned directly from natural sounds, the network offers a

wide span of selectivity across the spectrotemporal space. This tuning proves effective in tack-

ling complex auditory scenes composed of speech with various interferers. In line with human
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perceptual data, the model shows that speech tokens are harder to identify in presence of utter-

ances from same corpus compared to babble and cafe noise as the signal-to-noise ratio gets

smaller. The model highlights that this variable response is largely caused by the dominance of

neural activity from the interfering set relative to the target. The distinct activation between

target and interferer is further blurred in absence of of slow sequential cues which integrate

information about the speech utterance beyond just that target number/color. As shown in the

control experiments, a network that lacks slow sequential cues is further impaired in making a

judgment about the identity of the target token, likely due a to an enhanced confusion between

its representation and that of the interferer. Once this activity reaches the temporal coherence

layer, the weakly responsive neurons get suppressed, hence resulting in the actual number/

color token getting wrongly identified as the one in the interfering utterance.

Concluding remarks

Overall, the proposed model highlights three key results: (i) Using the right configuration, we

are able to infer a wide-range of Gestalt cues directly from natural sounds. The proposed RBM

architecture offers a cooperative and nonlinear integration of these cues to result in a multi-

plexed representation of auditory scenes across various granularities in time and frequency. By

using an unsupervised learning approach, the network is not being optimized for a specific

application; rather, it is reflecting the inherent variety of local and global dynamics present in

natural sounds. Possibly, an even deeper neural architecture extending beyond just a few layers

could extend the rich feature analysis and fill in the spectrum from local to global hence adding

a more refined mapping along with the nonlinear integration naturally offered by the RBM

architecture. (ii) Grouping acoustic features is effectively an outlook across all active nodes

that allows to piece together the pieces of each auditory object. This process effectively plays 2

key roles: a grouping role by putting together pieces of a sound object (effectively integrating

together pitch, timbre, rhythm and possibly space information that reflect a common object);

and an elimination role by suppressing channels that are irrelevant to the emergence of the

foreground object, hence enhancing the signal-to-noise ratio in the network. Temporal coher-

ence is one such fusion mechanism that has been garnering stronger neural and perceptual evi-

dence [39, 65, 125, 126]. The current work employs Hebbian learning, a biological simple

mechanism that affords such fusion over the rightly chosen time-scales. (iii) Auditory scene

segregation is a balancing act of the proper feature analysis along with mechanisms for fusion

that give rise of auditory object representations. While both stages are necessary, neither one is

sufficient. The proposed model offers a unified platform that integrates together these different

mechanisms and strategies. It also bridges the existing physiological theories of scene organiza-

tion with perceptual accounts of auditory scene analysis.

Materials and methods

Network architecture

The proposed model is structured along 4 key stages: initial data pre-processing by transform-

ing the acoustic signal to a time-frequency representation, a local analysis over short time-

scales, a global analysis over an array of longer time-scales, then a fusion stage using temporal

coherence. A final readout of the network activity is implemented to extract information from

specific streaming experiments to probe segregation of individual streams in the input scene.

Details of each component of the model are outlined next:

The acoustic signal is first analyzed through a model of peripheral processing in the mam-

malian auditory system, following the model by Yang et al. [66]. Briefly, it transforms the

acoustic stimulus sampled at 8KHz into a joint time-frequency representation referred to as
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auditory spectrogram. The stage starts with a bank of 128 asymmetric constant-Q filters

equally-spaced on a logarithmic axis over 5.3 octaves spanning the range 180 Hz to 4000 Hz

(QERB� 4) [137]. By its very nature, the peripheral model uses a non-parametric set of

cochlear filters that are fixed over a span of 5.3 octaves (see [66] for details). In the current

model, we cap our sampling rate to 8KHz in order to provide ample coverage over lower fre-

quency regions. After cochlear filtering, the outputs undergo spectral sharpening via first

order derivative along frequency, followed by half-wave rectification then short term integra-

tion with e−t/τ where τ = 10 ms. This filterbank analysis results in a time-frequency auditory

spectrogram represented by S(t, f). Three consecutive frames are then grouped together to

form a one dimensional vector x such that x 2 Rn and n = 384. This process is repeated for all

the audio samples in the dataset to form a set of N sampled patches given by X = x1, x2, . . ., xN.

This set of time-frequency patches (X) constitutes the input to second component of the

network.

Simultaneous layer. The simultaneous layer L1 is structured as a Sparse Restricted Boltz-

mann machines (RBM), which is chosen to discover features from an unlabeled set in an unsu-

pervised fashion [67, 138]. Sparse RBMs are undirected graphical models with K binary

hidden variables. The energy function of a RBM is defined as:

Eðx; hÞ ¼
1

2

X

k

ðxk � AkÞ
2
�
X

l

Blhl �
X

k;l

xkhlwkl ð1Þ

where, xk and hl denote the states of kth visible unit and lth hidden unit, while wkl represents the

strength of connection between them and A (and B) are the visible (and hidden) biases, respec-

tively. The joint energy distribution of (x, h) is defined as:

Pðx; hÞ ¼
1

Z
expf� Eðx; hÞg ð2Þ

Z ¼
X

x;h

expf� Eðx; hÞg ð3Þ

where, Z is a normalizing partition function which is obtained by summing the energy func-

tion E(x, h) over all possible combinations of visible and hidden units.

Given observed data, the states of hidden units are conditionally independent. Their activa-

tion probabilities are,

PðhjjxÞ ¼
1

1þ expf� xTwlg
ð4Þ

where wl denotes the lth column of W and represents connection weights between the lth hid-

den unit and all visible units. We incorporate sparsity into the hidden layer representation to

ensure that hidden activations are more selective to specific characteristics of the training data.

A sparsity penalty is imposed on the activation of hidden units such that the probability of a

hidden unit being active, denoted by q should be as close as possible to a specified “sparsity tar-

get”, given by p. The penalty term is chosen to be the cross entropy between the desired and

actual distributions given by: p log q + (1 − p) log(1 − q) [68]. The measure imposes a ‘sparsity-

cost’ that allows to adjust both the bias and weights of each hidden unit in the network.

Given an input signal, a hidden unit is said to be representing a particular data sample when

it is activated. The objective of generative training of RBMs is to maximize the marginal distri-

bution of visible units P(x) which is typically done using Contrastive Divergence (CD) [69,

139]. This algorithm updates the feature of the k-th hidden unit seeing the training data xl
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such that:

Dwk ¼ Pðhk ¼ 1jxðlÞÞ � xðlÞ � Pðhk ¼ 1jxðlÞ� Þ � xðlÞ� ð5Þ

where x(l)− is sampled from P(x|hl). The algorithm learns the distribution of hidden activations

hk such that x(l)− -when sampled from the hidden activations- come close to the real distribu-

tion of visible units x. As hidden activations hk keep on learning the representation of visible

units x, the update rule Δwk keeps decreasing. The learning process only stops when the recon-

struction is close to perfect i.e. (x(l) − x(l)−) approaches 0.

The model used here employs 400 hidden units in the simultaneous layer L1. Once trained,

the weights W yield unique spectro-temporal basis functions. We then transform the weights

W into two-dimensional functions Fðt; f Þ where t denotes a patch of 30 ms and f corresponds

to the frequency axis of auditory spectrogram. These 2D filters are then applied in a convolu-

tional fashion onto the time-frequency patch S(t, f) to obtain the filter response r̂kðtÞ given by:

r̂kðtÞ ¼
X

f

Z

Slðt; f ÞFðt � t; f Þdt ð6Þ

These responses fr̂kðtÞg then undergo an adaptation process that allows to strengthen the con-

trast between foreground and background units. This mechanism follows a classic closed-loop

synaptic adaptation proposed by Tsodyks et al. [140] given by:

daðtÞ
dt
¼

1 � aðtÞ
ta

� aaðtÞr̂kðtÞ ð7Þ

rkðtÞ ¼ aðtÞr̂kðtÞ ð8Þ

with time constant τa = 300 ms and synaptic utilization parameter α = 1e−5. This operation

yields output responses {rk(t)} that are then processed through the next layer in the hierarchy.

A range of other adaptation parameters τa and α (around the chosen values) were explored

with qualitatively similar results.

Sequential layer. The next layer L2 is structured as an array of conditional RBMs (cRBM)

[71]. cRBMs are non-linear generative models for time series data that employ undirected

models with visible units {xk} connected to a layer of binary latent variables {hk}. In the

present model, the visible units {xk} are represented by a Gaussian distribution fitted over L1

responses. At each time step t, the model maintains a history of the last τ time steps and stores

the visible variables corresponding to these time steps in a history vector referred to as xτ. Each

visible input {xk} and hidden unit {hk} at a particular time step t receives directed connections

from the history vector xτ so as to capture long term temporal dependencies across visible

units. This dynamical model is defined by a joint distribution:

PðxðtÞ; hðtÞjxtÞ ¼ expf� EðxðtÞ; hðtÞjxtÞg=ZðxtÞ ð9Þ

where x(t) is a Gaussian fitted representation of L1 filter responses over time, h(t) is a collec-

tion of binary hidden units such that h(t) 2 (0, 1), xτ contains the history of past τ filter

responses, and Z is the partition function as explained in the previous section. The energy

function E is given by:

EðxðtÞ; hðtÞjxtÞ ¼
1

2

X

k

ðxkðtÞ � âkðtÞÞ
2
�
X

l

hlðtÞb̂lðtÞ �
X

k;l

WklxkðtÞhlðtÞ ð10Þ

where W captures the connections between input and hidden variables. The dynamical terms
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âkðtÞ and b̂lðtÞ are linear functions of previous τ filter responses xτ, given by:

âkðtÞ ¼ Ak þ
X

m

CkmxmKðtÞ

 !

b̂lðtÞ ¼ Bl þ
X

m

DlmhmKðtÞ

 !

ð11Þ

where A and B are static biases and C and D are autoregressive model parameters. The

dynamic biases â and b̂ integrate the input over past τ time steps and apply them as a bias to

the visible unit xk(t) and hidden unit hl(t) at current time step t. The parameter set Θ = {W, Aτ,

Bτ, Cτ, Dτ} of cRBM networks are learned using contrastive divergence (CD) similar to layer

L1 [69, 139].

Layer L2 is structured as an array of cRBM networks spanning various time histories. In the

current model, we define networks with time constants τ ranging between 30–600 ms. For

each time constant, a matching number of instances of layer L1 responses are grouped and

analyzed in parallel. The same training data (as outlined later) is used to train the RBM in layer

L1 as well as the cRBM in L2, though training occurs individually for each layer. Here, we

employ 300 nodes for each layer of each cRBM network.

Temporal coherence layer. The activations from layer L2 are further processed using a

Hebbian network, which implement a Storkey learning rule [74], written as:

vijðtÞ ¼ vijðt � 1Þ þ riðtÞrjðtÞ ð12Þ

where vij(t) is a coherence synaptic connection weight between two neurons ith and jth in L2 at

time t, ri(t) and rj(t) are the responses of ith and jth L2 neurons respectively and vij(t − 1) is the

connection weight between the same two neurons at time t − 1. The equation above shows that

if both ri(t) and rj(t) are ‘coherent’, the synaptic connection between them becomes stronger

whereas the synaptic connections gets weaker for anti-correlated responses. Given that this

stage occurs after the sequential integration layer, the coherence is indeed assessed over time

histories used in each cRBM network in L2. This stage effectively applies a time-dependent

Hebbian weight to the output of the model resulting in R̂t ¼ RtVt.

Model dataset. An ensemble of natural sounds comprising of speech and natural sounds

are assembled together into a single dataset. It includes speech segments from the TIMIT

database [141] that include both male and female speakers, as well as various accents and

styles and approximately amounts to 4 hours of data. It also comprises the BBC sound effects

database [142] which contains environmental sounds like ambient and outdoor noises (e.g.

street, office, warfare and transportation) as well as animal vocalizations (e.g. barking dogs,

bleating goats, and chattering monkeys). The BBC database has total of 2400 recordings,

amounting to 68 hours of data. All signals are analyzed over 3-sec segments. Speech utter-

ances are approximately 3 seconds in length, while animal vocalizations and ambient sounds

are broken into 3 seconds, and windowed using a raised cosine window to avoid transient

effects. All segments are down sampled to 8 kHz and standardized to be zero-mean and unit

variance.

Model characterization

Ripple stimuli. The modulation transfer function (MTF) for each layer is characterized

using ripple stimuli [143]. They are broadband noises consisting of 280 tones, equally spaced

along the logarithmic frequency axis, over a range of 5 octaves. The spectral envelope of these

stimuli forms sinusoids whose amplitude is modulated by an amount ΔA that ranges from 0 to

100%. This construction forms a drifting sinusoidally shaped spectrum along the frequency
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axis. The envelope of a ripple stimulus is given by:

Sðt; f Þ ¼ Lð1þ DAsinð2pðot þ Of Þ þ �ÞÞ ð13Þ

where L denotes the overall level of the stimulus, t is time, and f is the tonotopic axis, defined

as f ¼ log2f=f0, with f0 being the lower edge of the spectrum and f the linear frequency index.

ω is the ripple velocity (in Hz), O is the ripple density (in cyc/oct), and ϕ is phase of the ripple.

Measurement of modulation transfer function (MTF). The MTF for each layer is mea-

sured using individual ripples at rate-scale (ω, O) combinations over a range of O = [0.25, 16]

(cyc/oct), and ω = [−50, 50] (Hz), with negative rates denoting upward moving ripples. The

MTF calculation procedure is as follows: For each combination of (ω0, O0), we generate a rip-

ple stimulus with contrast ΔA = 100% and a corresponding ripple with contrast ΔA = 0% that

provides a base level or noise floor to the model’s response. The response of units in L1 and L2

to each ripple pair is then obtained (note that responses obtained from the layer L1 are used as

input for layer L2). Then, an estimate of modulation-synchronized activity M at exactly ω0 is

obtained from each response then converted to a normalized tuning estimate, given by:

10log10

jjM100%ðo0Þjj
2

jjM0%ðo0Þjj
2

ð14Þ

Agglomerative clustering. We employ a hierarchical clustering to explore emergent

groupings in the structure of filters in layers L1 and L2. The procedure follows classic cluster-

ing techniques used in data mining to partition a dataset into subsets that share some similarity

[144]. We build a hierarchy from individual L1 and L2 filters by employing pair-wise Euclid-

ean distance between rate-scale tuning of the filters. The agglomerative clustering approach

gradually merges individual clusters together based on a distance measure (e.g. Euclidean dis-

tance). The number of clusters employed here is heuristically determined based on visual

inspection of emerging groups. The two clusters of particular interest in control experiments

are harmonicity and onset groups, which occupy a region centered around [1-2] cyc/oct and

fast temporal modulations, respectively. We visual inspect the time-frequency profiles of each

group to confirm its consistency. We also confirm that neurons grouped in the group labeled

onsets (O) are indeed transient filters with an onset response (rather than offset). No apparent

offset detectors emerged in the trained filters.

Stimuli for stream segregation experiments

We test the model on stream segregation paradigms spanning tones, complexes and speech; as

detailed next.

Two tone sequences. The two-tone stimuli consist of a sequence of repeating pure tones.

The tone sequences replicate the stimulus structure used in [86] and consist of 100 ms tones,

half of which are fixed at 1000 Hz, referred to as “A” tones. The other half, denoted as “B”

tones, have a frequency 1, 3, 6, 9, or 15 semitones below 1000 Hz, i.e. at 943.9, 840.9, 707.1,

594.6 or 420 Hz. The A and B tones are separated by a silent gaps of 100 ms and are presented

either alternately or synchronously. Each stimulus consists of a total of 24 tones, twelve A

tones and twelve B tones. The total duration of sequence is 2.3 seconds for the synchronous

case and 2.4 seconds for the alternating case.

Buildup effect on stream segregation. In order to probe streaming buildup, we use tone

triplet sequences, ABA, following the stimulus paradigm used in [90]. Tone A is randomly

selected from a set of 3 different frequencies (500 Hz, 1000 Hz and 2000 Hz) across different

experiments and the other tone B is placed at 1, 3, 6 or 9 semitones above A in each of the

A Gestalt inference model for auditory scene segregation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006711 January 22, 2019 23 / 33

https://doi.org/10.1371/journal.pcbi.1006711


experiments. Tones are 125 ms in length with no silence between triplets, though there is a

silent gap of 125 ms between consecutive triplets. The buildup effect is demonstrated by vary-

ing the duration of entire stimuli sequence from 1 second to 10 seconds. The results are aver-

aged across all the experiments and compared against the psychophysical results reported in

[90].

Amplitude-modulated noise sequences. The stimulus paradigm used for the amplitude-

modulated (AM) noise sequences closely follows the structure used in [92]. The noise sequence

consists of repeating sinusoidally amplitude-modulated bursts of broadband noise, in a repeat-

ing ABA pattern, where A and B correspond to noise bursts having different modulation rates.

The modulation depth is maintained at 100% throughout the experiment. Each burst is of 100

ms in duration with no silent gap in between, however there is a silent gap of 20 ms between

each of the triplets. The modulation rate of A noise is kept constant at 100 Hz throughout all

experiments whereas the modulation rate of B noise is varied from 100 Hz to 800 Hz across

different sequences. The modulation rates of B noise are spanned such that they are 0, 0.3, 0.5,

0.7, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.5 or 3 octaves above fixed modulation rate of A noise in each

sequence. The duration of all sequences is kept constant at 6.4 s.

Tone complexes with harmonicity and onset variations. For this experiment, we use the

same stimuli sequence as used in [93]. The stimulus consists of 8 target tones denoted by A.

Tone A is kept at a constant frequency of 1000 Hz throughout the sequence. Target tones are

accompanied by background tones, where each of background tones are 100 ms in duration.

The background tone are presented either synchronously with 100 ms targets (referred to as

sync), or 40 ms before each 60 ms target (referred to as async). The offsets of the target and

background tones are synchronous in all cases. In synchronous condition, we present different

patterns of target and background tones along the tonotopic frequency axis, namely harmonic,

shifted and mistuned condition. In “harmonic condition” (H), the background and target

tones are placed harmonically in the frequency axis, where each of the tones are harmonics of

fundamental frequency f0 set to be 1000/N and N is randomly set to 3, 4, 5, or 6, with equal

probability. All harmonics with frequencies lower than 2000 Hz are included in the stimulus.

According to conditions being tested, N is set to be constant for every burst in the sequence

denoted by “multiple bursts same” (MBS), or is varied randomly across bursts within trial

denoted by “multiple bursts different” (MBD), with the constraint that two consecutive N can-

not be the same. In “shifted” condition, the bursts are constructed by shifting all the harmonics

by 25% of the f0 in either direction except the target tone. In “mistuned” condition, the stimu-

lus is generated by shifting only the target tone by 4% relative to its reference H position. In

asynchronous condition, we present the target and background at specific harmonics just like

the ‘H’ condition; however in this case, there is an onset difference of 40 ms between the target

and background tones.

Speech intelligibility. This experiment replicates the paradigm used in [95, 96]. Speech

sentences from multiple speakers are taken from CRM corpus [94] that contains an utterance

like “Ready Baron [call sign] go to blue [color] eight [number] now”. The dataset includes four

colors (blue, red, green, white) and eight numbers (1-8) in different combinations yielding 256

different sentences recorded for eight different talkers. The task is to identify the target color

or number in the sentence under different SNR conditions for various noise types ranging

from -18 dB to 18 dB in 3 dB steps. In order to maintain consistency with the perceptual exper-

iments, we use speech modulated noise, babble noise, cafe noise and two-talker interferer from

the actual corpus. In case of speech modulated noise, the noise signal is spectrally shaped (with

a 512 point FIR filter) to match the average spectrum of 2048 sentences in the CRM corpus.

The babble and cafe noise is taken from BBC sound database [142] whereas two talker
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interferer is taken from CRM corpus in such a way that the color and number in interferer sen-

tences are different from target color or number.

Readout of model segregation results

For all non-speech simulations, the final readout compares the model response to a given stim-

ulus and to a slight variation of that stimulus in order to probe whether their respective outputs

exhibit noticeable differences, which would indicate a segregated or grouped percept. Ulti-

mately, the model readout quantifies the response difference between these signals (as a rela-

tive measure) as we sweep through the input parameters. This approach is consistent with

classic techniques used to objectively probe stream segregation in human listeners (see [86] for

more discussion). In the present study, a threshold is chosen empirically to quantify the differ-

ence between the stimulus and its variant in order to label it as 1 stream (small enough differ-

ence) or 2 streams (large enough difference). In all cases, we confirm that the results are

qualitatively similar when we vary the choice of thresholds within a reasonable range. Details

of this comparison procedure are outlined below. The procedure for segregation of speech sig-

nals is different, as specified in the speech intelligibility section.

Two tone sequences. In order to determine whether the tones in the ABA tone sequence are

grouped into a single stream or multiple streams, we alter the last burst of the A tone by 4% of

its actual frequency in either direction (upward or downward) in one sequence (represented

by A’) and keep the A tone the same in another sequence. We pass both sequences through the

model and compute the Euclidean distance between final responses obtained for the sequence

with change and sequence with no change. As the separation between A and B tones increases,

we notice that this Euclidean distance increases. We determine an empirically chosen thresh-

old over this distance measure to indicate whether tones A and B are grouped into a single

stream or form segregated streams. A d’ measure is then used to quantify correct (hit rate) and

false detection (false alarm) of A for both alternating and synchronous sequence; which is

computed as:

d0 ¼ zðHÞ � zðFÞ ð15Þ

where z() represents the z-score. The d’ score determines the strength of auditory streaming,

in line with the approach used in the psychophysical results reported in [86].

Buildup effect on stream segregation. The analysis of buildup also alters the the final burst of

the sequence as either tone A or A’ as explained earlier. If the network can report any differ-

ence between A and A’ based on a thresholded Euclidean distance, we consider A as a single

stream, otherwise both A and B are grouped into single stream. Here, we used the percentage

of correct detection of tone A as metric to determine streaming, consistent with results

reported in [90].

Amplitude-modulated noise sequences. In the noise sequences, the final burst is comprised

of either noise A having the modulation rate of 100 Hz or noise A’ with slight alteration of 10%

to actual modulation rate. The results are then reported in terms of percentage of correct

detection of noise A following a similar thresholded Euclidean measure approach.

Tone complexes with harmonicity and onset variations. Just like previous experiments, the

final burst of the sequence in each trial comprise of either target tone A or an alteration of 4%

to the actual frequency of A in random direction represented by A’. A d’ analysis based on cor-

rect (hit rate) and false detection (false alarm) of A for all possible combinations is reported

following the procedure described earlier.

Speech intelligibility. The model’s performance is assessed based on a simplified speech

identification task that only employs a readout of the encoding of the target speech segments

A Gestalt inference model for auditory scene segregation

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006711 January 22, 2019 25 / 33

https://doi.org/10.1371/journal.pcbi.1006711


in the model. First, we divide all utterances belonging to a particular target (either number or

color) into training and test sets. Each of the utterances is passed through the entire network

to obtain an output response. Frames belonging to the target token are collected together and

their corresponding output responses are averaged out to get a single mean response for each

utterance. We collect all such responses across the entire training set and build GMM models

[145] for each target. The test utterance is then passed trough the network to obtain the corre-

sponding output response and averaged across the frames corresponding to the target token

similar to training paradigm. This average response is then analyzed through each of the

GMM models to obtain the log likelihood score relative to each target P(target|θ) where θ rep-

resents the GMM parameters for each target class. Based on a predetermined threshold defined

empirically, a decision is made as to whether the system identifies the correct target token or

not. We repeat the experiments for all the colors and numbers in the CRM corpus and report

the accuracy of the system in terms of percentage correct identification of color, number and

both color and number.
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