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Abstract

Our ability to parse our acoustic environment relies on the brain’s capacity to extract statisti-

cal regularities from surrounding sounds. Previous work in regularity extraction has predom-

inantly focused on the brain’s sensitivity to predictable patterns in sound sequences.

However, natural sound environments are rarely completely predictable, often containing

some level of randomness, yet the brain is able to effectively interpret its surroundings by

extracting useful information from stochastic sounds. It has been previously shown that the

brain is sensitive to the marginal lower-order statistics of sound sequences (i.e., mean and

variance). In this work, we investigate the brain’s sensitivity to higher-order statistics

describing temporal dependencies between sound events through a series of change detec-

tion experiments, where listeners are asked to detect changes in randomness in the pitch of

tone sequences. Behavioral data indicate listeners collect statistical estimates to process

incoming sounds, and a perceptual model based on Bayesian inference shows a capacity in

the brain to track higher-order statistics. Further analysis of individual subjects’ behavior

indicates an important role of perceptual constraints in listeners’ ability to track these sen-

sory statistics with high fidelity. In addition, the inference model facilitates analysis of neural

electroencephalography (EEG) responses, anchoring the analysis relative to the statistics

of each stochastic stimulus. This reveals both a deviance response and a change-related

disruption in phase of the stimulus-locked response that follow the higher-order statistics.

These results shed light on the brain’s ability to process stochastic sound sequences.

Author summary

To understand our auditory surroundings, the brain extracts invariant representations

from sounds over time that are robust to the randomness inherent in real-world sound

sources, while staying flexible to adapt to a dynamic environment. The computational

mechanisms used to achieve this in auditory perception are not well understood. Typi-

cally, this ability is investigated using predictable patterns in a sequence of sounds, asking:

“How does the brain detect the pattern embedded in this sequence?”, which does not gen-

eralize well to natural listening. Here, we examine processing of stochastic sounds that

contain uncertainty in their interpretation, asking: “How does the brain detect the statisti-

cal structure instantiated by this sequence?”. We present human experimental evidence
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employing a perceptual model for predictive processing to show that the brain collects

higher-order statistics about the temporal dependencies between sounds. In addition, the

model reveals correlates between task performance and individual differences in percep-

tion, as well as deviance effects in the neural response that would be otherwise hidden

with conventional, stimulus-driven analyses. This model guides our interpretation of both

behavioral and neural responses in the presence of stimulus uncertainty, allowing for the

study of perception of more natural stimuli in the laboratory.

Introduction

To understand soundscapes, the brain parses incoming sounds into distinct sources and tracks

these sources through time. This process relies on the brain’s ability to sequentially collect

information from sounds as they evolve over time, building representations of the underlying

sources that are invariant to the randomness present in real-world sounds, while being flexible

to adapt to changes in the acoustic scene. Extracting these representations from ongoing

sounds is automatic and effortless for the average listener, but the underlying computations in

the brain are largely unknown. To better understand how the brain processes real-world

sounds, we investigate how the brain builds invariant representations from sounds containing

randomness.

Invariant representations of sound sources are referred to in the literature as regularities,

where regularity extraction is the brain’s ability to access these representations for use in audi-

tory scene analysis [1, 2]. We differentiate between two types of regularities: deterministic regu-
larities that describe a repeating or predictable pattern, and stochastic regularities that contain

some randomness and are not fully predictable. Deterministic regularities can be as simple as a

repeating tone or sequence, or they can be quite complex, for example: two interleaved deter-

ministic patterns [3], an abstract pattern within a single acoustic feature (“falling pitch within

tone-pairs” [4]) or one spanning multiple features (“the higher the pitch, the louder the inten-

sity” [5]). The signature trait of deterministic regularities is the absence of ambiguity: a new

sound can immediately be interpreted as a continuation of or a deviation from the regularity

with certainty.
Stochastic regularities, on the other hand, are characterized by the lack of certainty, as their

inherent randomness leaves room for multiple possible interpretations of a sequence of

sounds. A new sound belongs to a stochastic regularity probabilistically according to how well

it fits relative to other possible interpretations. For example, consider a sequence of tones with

frequencies drawn from an arbitrary distribution, such as in [6]. Each tone could be drawn

from the same distribution as the preceding tones or it could be drawn from a new distribu-

tion. Given a new tone, deciding between these two alternatives (i.e., “same or different?”) can-

not be done with certainty, but rather proportionally to how likely the new tone is given its

preceding context. Implicit in this example is that the brain is able to extract meaningful con-

textual information from previously heard sounds to characterize the stochastic regularity, and

represent this abstracted information for interpreting new sounds.

One possible mechanism for how the brain represents stochastic regularities is through sta-

tistical estimates, which entails extracting representative parameters from observed sensory

cues [7]. The nature and extent of statistics collected by the brain remains unknown. Previous

studies have focused on the marginal statistics of tones within a sequence, showing that the

brain is sensitive to changes in mean and variance [8, 9]. We refer to these as lower-order statis-
tics, describing sounds independent of their context. In the present work, we investigate
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whether the brain collects higher-order statistics about the dependencies between sounds over

time; namely, we examine how the brain gathers information about the temporal covariance

structure in a stochastic sequence of sounds. We use melody stimuli with pitches based on ran-

dom fractals, which exhibit long-range dependencies and cannot be described solely by lower-

order statistics. We specifically use random fractals because of their ecological relevance: previ-

ous work has demonstrated the presence of random fractals in music [10], speech [11], and

natural sounds [12] and shown the brain is sensitive to the amount of randomness, or entropy,

in random fractal melodies [13, 14].

Change detection experiments are well-suited for investigating regularity extraction, where

the task is to detect deviation from an established regularity in a sequence of sounds. A detec-

tion can be reported behaviorally or recorded in the brain’s response (e.g., the mismatch nega-

tivity, MMN). A correct detection indicates the brain is sensitive to the tested regularity, for a

change response is necessarily preceded by knowledge of what is being changed. Change detec-

tion experiments in the auditory domain using electroencephalography (EEG) and magneto-

encephalography (MEG) have shown the brain is sensitive to a wide range of deterministic

regularities [15–17]. Stochastic regularities, however, have mostly been studied using discrimi-

nation experiments, where the task is to differentiate between different regularities, with both

behavioral [12] and brain imaging results [8, 13, 14, 18, 19] showing the brain is sensitive to

various stochastic regularities. Compared to discrimination, the change detection paradigm

more closely mirrors how the brain processes sounds in the real world, where boundaries

between sound sources are not known a priori, but must be inferred from changes in ongoing

sound.

The mechanisms needed for change detection may differ depending on the type of regular-

ity. With deterministic regularities, the brain can explicitly test whether each incoming sound

deviates from the extracted pattern or not with near certainty. Deviation from a stochastic reg-

ularity, on the other hand, emerges gradually as evidence is accumulated over time, causing a

delay in the perceived moment of change proportional to the amount of evidence needed to

detect the change. This uncertainty unavoidably introduces variability in perception across tri-

als and across subjects, which is particularly problematic for time-locked analyses such as in

EEG, where low SNR necessitates many repetitions and precise temporal alignment across tri-

als and subjects to get meaningful results. To account for this variability and facilitate the

study of stochastic regularities in change detection, we need a suitable perceptual model of the

mechanisms for extracting and using regularities in a changing scene to guide our analysis.

While there have been several theoretical accounts of regularity extraction in the brain [2,

20–23], there are very few mathematical implementations of these concepts into concrete

models for tracking regularities in sound inputs. One popular model is the CHAINS model,

which examines pattern discovery and competition between alternate partitions of a sequence

into concurrent, interleaved patterns [24]. This model has been very insightful in shedding

light on principles of bistable perception in stream segregation; yet, its limitation to determin-

istic patterns impedes its applicability to stochastic regularities in the signal. Another model,

IDyOM, initially formulated for application to music perception, uses information-theoretic

principles to model auditory expectation, collecting occurrences of previously seen events to

build predictions, similar to the n-grams used in language models for speech recognition or

text processing [25]. While the IDyOM model is able to capture the statistical structure of both

stochastic and deterministic regularities, it is formulated to operate only on a discrete, unor-

dered, small set of possible events, and therefore does not generalize well to sounds that vary

on a continuum like pitch or loudness.

In this work, we employ a Bayesian framework to model the tracking of sensory statistics by

the auditory system [26]. One of the advantages of Bayesian theory is that it is agnostic to
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priors and underlying distributions, optimally integrating priors and sensory evidence in the

inference process. In particular, this framework makes minimal assumptions on the stationar-

ity of the observed sequence and offers an ideal scheme for tracking statistics and detecting

change in underlying probability distributions. Bayesian frameworks have been widely used in

various incarnations to model data ranging from financial markets to human behavior in read-

ing-inference, change detection, and reinforcement learning tasks [26–31]. In the present

application, this mathematical platform allows us to directly probe the degree of optimality in

brain processes observed and test alternative hypotheses for the computations involved.

Here, we adapt this Bayesian framework for perceptual processing to investigate the extent

to which auditory statistical information is represented in memory. We introduce perceptual

parameters to the model that represent resource limitations (i.e., finite working memory and

observation noise) and provide constraints on performance that are valuable to interpret sub-

optimal detection performance and variability across listener behaviors. By fitting the model

to human behavior from a series of change detection experiments, we can explore questions

regarding auditory stochastic regularity extraction: Which statistics are sufficient to explain

human behavior? How do the perceptual parameters of the model account for differences in

behavior across subjects? Finally, we use the model to guide analysis of EEG data, revealing

effects that would be otherwise hidden using conventional EEG analyses.

Results are presented in three parts: the first section presents psychophysics results from a

series of change detection experiments, the second section introduces the model and presents

results from fitting the model to human behavior, and the third section presents neural results

obtained by using the model to guide EEG analysis. We believe this model opens up new ave-

nues into investigating how the brain collects information from stochastic sounds that are

more relevant to everyday perception.

Results

Psychophysics

A series of experiments probed listener’s ability to detect changes in fractal melodies. Stimuli

were constructed from melodies at four levels of randomness or entropy in pitch (both terms

used interchangeably). Melody entropy is parameterized by β, where β = 0 corresponds to the

highest entropy (white noise), and entropy decreases as β increases (see Fig 1a for examples of

fractal melodies at different levels of β). Lower-order statistics (mean and variance) were nor-

malized across the melody. Half-way through the melody, only the higher-order statistics

Fig 1. Examples of random fractal melodies. Schematic spectrograms shown with frequency and time along the vertical and

horizontal axes, respectively (see S1–S6 Audio. for accompanying audio). a) Melodies at four levels of entropy, parameterized by

β. Higher β corresponds with lower entropy, and vice versa. b) Change stimuli for each change direction; INCR and DECR

stimuli always end and begin, respectively, with the highest level of entropy (β = 0 or white noise).

https://doi.org/10.1371/journal.pcbi.1006162.g001
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change (see Fig 1b for examples of change stimuli). The task in all experiments was the same:

detect a change in entropy of the melody.

Experiment 1. We tested how well listeners could detect changes in the entropy of tone

sequences and whether the direction of change affected detection performance; see Fig 1b for

example stimuli. Listeners (N = 10) heard stimuli with three degrees of change in entropy

(between β = 0 and β = 1.5, 2, 2.5) in both directions (INCR and DECR), with control stimuli

containing no change (with β = 0, 1.5, 2, 2.5). Each melody trial contained 60 tones presented

isochronously over 10.5 seconds (175 ms inter-onset interval); there were 150 trials in total,

with 15 trials per condition. After each melody trial, listeners responded whether they heard a

change and received immediate feedback.

Detection performance as measured by d0 is shown in Fig 2a; d0 comprises both hits and

false-alarms (FAs), with higher d0 corresponding to better detection performance and d0 = 0

corresponding to chance performance. Repeated-measures ANOVAs were used in all analyses

to account for between-subject variability. An ANOVA with 2 within-subjects factors (3

change degree x 2 direction) showed a strong effect of degree (F(2, 18) = 31.5, p< 0.0001), no

significant effect of direction, and a significant interaction (F(2, 18) = 9.4, p< 0.01). We inves-

tigated this interaction further by applying ANOVAs separately to hit- and FA-rates (see S1

Fig). The hit-ANOVA showed a strong effect of degree (F(2, 18) = 21.9, p< 0.0001) but no

effect of direction or interaction, while the FA-ANOVA showed an effect of entropy level (F(3,

27) = 4.7, p< 0.01), with FAs increasing with entropy (Note the increase in degrees-of-free-

dom is due to the 4 levels of β for control stimuli). The significant interaction between degree

and direction seen in d0 above is therefore only due to the effect of entropy on FAs: all DECR

stimuli begin with the same high level of entropy (β = 0), thus increasing FAs and decreasing

d0 for DECR compared to INCR stimuli.

It is surprising that there is no effect of change direction on hit-rates. If listeners are relying

solely on lower-order statistics, INCR changes should be easier to detect than DECR changes

by listening for outliers. We look closely at this effect in a follow-up experiment (Experiment

1b) to contrast response time (RT) to INCR versus DECR changes.

Experiment 1b. In this experiment, listeners (N = 21) responded as soon as they heard a

change during melody presentation; otherwise, the stimuli and procedure were the same as in

Fig 2. Psychophysics results from Experiments 1 and 2. Average change detection performance (d0) across subjects is

shown by stimulus condition. Error bars indicate 95% bootstrap confidence interval across subjects. a) In Experiment

1 (N = 10), melody entropy changed with different degrees (Δβ, abscissa) and in both INCR and DECR direction

(color). Detection performance increased with Δβ but did not differ by direction, although there was a weak

interaction between Δβ and direction due to FAs only (see S1 Fig). b) In Experiment 2 (N = 10), an additional factor of

melody length was introduced (color). Detection performance increased with both Δβ and melody length.

https://doi.org/10.1371/journal.pcbi.1006162.g002
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Experiment 1. To confirm that the difference in task itself had no effect on detection perfor-

mance, two-sample t-tests of d0 for each condition showed no difference across the two experi-

ments (p> 0.05 for all tests, using Bonferroni correction for multiple comparisons). In

addition, ANOVAs applied to hit- and FA-rates as in Experiment 1 showed the same signifi-

cant effects.

A repeated-measures ANOVA applied to the RT data averaged within conditions for

change-trials (3 change degree x 2 direction) showed a significant main effect of change degree

(F(2, 40) = 14.3, p< 0.0001) but no main effect of direction and no significant interaction.

This confirms the result from Experiment 1, with no effect of change direction on detection

performance.

Experiment 2. Next, we tested the effect of sequence length on change detection perfor-

mance. In addition to the same change degree and direction manipulations from Experiment

1, listeners (N = 10) heard melodies with different lengths (20, 40, and 60 tones), with the

change always occurring at the midpoint of the melody. As there was no effect of change direc-

tion on performance seen in Experiments 1 and 1b, we pooled results across INCR and DECR

trials. As in Experiment 1, listeners responded whether they heard a change after the melody

presentation and received immediate feedback.

Detection performance as measured by d0 is shown in Fig 2b. A repeated-measures

ANOVA with 2 factors (3 change degree and 3 melody length) showed significant main effects

of both change degree (F(2, 18) = 23.9, p< 0.0001) and melody length (F(2, 18) = 17.7,

p< 0.0001), with a weak interaction (F(4, 36) = 2.8, p< 0.05). Post-hoc tests indicated the

weak interaction was due to chance performance in the most difficult conditions: Δβ = 1.5

with lengths of 20 and 40 tones. In separate ANOVAs for hit- and FA-rates (see S2 Fig), hit-

rates showed both main effects of change degree (F(2, 18) = 10.2, p< 0.01) and length (F(2,

18) = 29.6, p< 0.0001) with no significant interaction, while the FA-rates only showed a signif-

icant effect of entropy level (F(2, 18) = 14.6, p< 0.001) and no effect of length or interaction.

Model

To model brain processes involved in extracting information from stochastic sequences, we

adapted a Bayesian sequential prediction model [26], incorporating perceptually plausible con-

straints to the model’s resources. Fig 3 shows a schematic of the model and its outputs.

The input to the model is a sequence of observations {xt}; in our case, the observations are

the pitches from the melody stimulus. The model sequentially builds a predictive distribution

of the next observation at time t + 1 given the previous observations: P(xt+1|x1:t). Observations

are assumed to be distributed according to some probability distribution with unknown

parameters θ. At unknown changepoint times, the parameters θ change, and all following

observations are drawn from this new distribution, independent of observations before the

change. Observations between changepoints drawn from the same distribution form a run,

and the time between changepoints is referred to as the run-length. If the most recent change-

point (or equivalently, the current run-length) were known, the independence of observations

across changepoints could be used to simplify the prediction equation: given the current run-

length rt, P(xt+1|rt, x1:t) = P(xt+1|rt, xt − rt+1:t).

Because changepoints must rather be inferred from the observations, the model maintains

multiple hypotheses across all possible run-lengths and integrates them to predict the next

observation:

Pðxtþ1jx1:tÞ ¼
X

rt

Pðxtþ1jrt; xt� rtþ1:tÞPðrtjx1:tÞ
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In the sum, the prediction given run-length rt (the first term) is weighted by the model belief

that the current run-length is rt (the second term). With each incoming observation, these

run-length beliefs are incrementally updated and a new belief is added with length zero and

weight π, the change-prior, re-weighting the predictions in the sum. The change-prior is a

parameter of the model that represents the prior belief that a change will occur at any time

before evidence for a change is observed (see S1 Text). Maintaining multiple run-length

hypotheses is a key aspect of the model. Rather than making a hard decision about when a

changepoint occurs and “resetting” the statistics, the model uses the observations as evidence

to weight different interpretations of the sequence.

In the present application of the model, the generating distribution is assumed to be a D-

dimensional multivariate Gaussian with unknown mean and covariance structure, where the

dimensionality D specifies the amount of temporal dependence in the model. As new observa-

tions come in, the model incrementally collects sufficient statistics whose form depends on D
(see Methods). Here, we ask whether human behavior from Experiments 1–2 can be captured

by a model that collects marginal lower-order statistics (D = 1, i.e., mean and variance) or if

higher-order statistics (D = 2, i.e., mean, variance, and covariance) are needed; we refer to

these two versions of the model as the LOS model andHOSmodel, respectively.

Perceptual parameters. As described thus far, the model can maintain an infinite number

of hypotheses, predicting the next observation in a Bayes-optimal manner [26]. To introduce

more perceptual plausibility, we imposed two constraints on the model. First, a memory

parameter (m) represents finite working memory capacity, limiting how many past observa-

tions can be used to build predictions and update run-length beliefs. Second, an observation

noise parameter (n) sets a lower bound on prediction uncertainty by adding a constant vari-

ance to the predictive distributions (see Methods for details).

Model output. Fig 3b shows the outputs of the model for an example sequence of observa-

tions (top-foreground). The predictive distribution (top-background) integrates predictions

Fig 3. Schematic of perceptual model and model outputs. a) At time t, the model contains multiple parameter estimates, ŷ
ð:Þ
t , collected over run-

lengths from 0 up to the memory constraintm. Each estimate yields a prediction for the next observation, with increased uncertainty due to observation

noise n. Upon observing xt+1, the model updates the run-length beliefs using the predictive probability for each hypothesis. Note that the prediction for

lengthm is used to update all beliefs with length greater than or equal tom, thus limiting the number of past observations used in the update. A new

belief with length 0 is added with probability π, the change-prior. Finally, parameter estimates are updated with xt+1; these are in turn used to predict the

next observation. b) Outputs from the model for an example change stimulus (top, foreground). At each time, the predictive distribution (top,

background) combines predictions across run-length hypotheses weighted by their beliefs, thus “integrating out” run-length. Surprisal (middle)

measures how well each new observation fits the prediction. The change probability (bottom) is the probability at least one changepoint has occurred, as

inferred using the run-length beliefs. The model detects a change if the change probability exceeds the threshold τ. Model parameters (m, n, π, τ) are in

red.

https://doi.org/10.1371/journal.pcbi.1006162.g003
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across all hypotheses and provides a single posterior prediction given previous observations.

After a new observation is “observed”, the surprisal (Fig 3b: middle) measures how well the

observation was predicted by the model:

St ¼ � log Pðxt ¼ Xtjx1:t� 1Þ

where St is the surprisal for Xt, the new observation at time t, and P(xt = Xt|x1:t−1) is the

predictive probability of observing Xt. Note surprisal is inversely related to the predictive prob-

ability—an observation with low probability has high surprisal, and vice versa.

We also derive a change probability—the probability a change has occured—from the run-

length beliefs, P(rt|x1:t). The probability that a change has not occurred before time t is equal to

the belief that the current run-length is equal to the length of the entire observed sequence

(i.e., P(rt = t|x1:t)); the probability that at least one change has occurred is then the converse of

this, or the sum of beliefs in run-lengths less than the length of the observed sequence:

PðChangejx1:tÞ ¼ 1 � Pðrt ¼ tjx1:tÞ ¼
X

r0<t

Pðrt ¼ r
0jx1:tÞ

An example of how this change probability unfolds is shown in Fig 3b (bottom). Importantly,

the model is causal, so the predictive distribution, surprisal, and change probability only

depend on the preceding observations and are updated sequentially with each new observation.

Finally, to collect responses from the model that are comparable to those collected from

human listeners in Experiments 1–2, we use a simple decision rule. At the end of the melody

(i.e., post-trial), the model makes a change decision by comparing the final change probability

to a decision threshold:

Change decision ¼

(Yes ; PðChangejx1:TÞ � t

No; PðChangejx1:TÞ < t

where T is the full melody length and the threshold τ is an additional parameter of the model.

We then define the model changepoint as the earliest time at which the change probability

exceeds this threshold:

Model changepoint ¼ arg min
t
fPðChangejx1:tÞ � tg

Perceptual parameters and model behavior. We first examined the model detection per-

formance for different sets of model parameters: memory (m), observation noise (n), change-

prior (π), and threshold (τ). Using a parameter sweep, we collected model change decision

responses to the same stimuli used in Experiments 1–2 and measured model performance for

each operating point in the sweep.

Fig 4 shows model performance for Experiment 1. Performance is displayed in Receiver

Operating Characteristic space (ROC-space); ROC-space is a method for visualizing the trade-

off between Hit- and FA-rates in system performance at multiple operating points (i.e., param-

eter sets); the upper-left corner is perfect performance (Hit = 1, FA = 0), and the diagonal is

chance performance (Hit = FA). Fig 4a displays the coverage of model performance in ROC-

space for the LOS and HOS model (in blue and red, respectively); for example, at every red-

colored coordinate in ROC-space, there is a set of parameters {m, n, τ, π} in the HOS model

with that performance (i.e., Hit- and FA-rate). In this manner, we can compare the range of

performance between the two models across the entire parameter sweep. Individual human
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performance from Experiments 1 and 1b (with the same stimuli, N = 31) and equal-d0 curves

are overlaid in the same space for comparison. Results from Experiment 2 were similar.

There is a clear contrast in the range of performance in ROC-space between LOS and HOS

models, with the HOS model having both wider coverage and higher ceiling performance

overall compared to the LOS model. While the LOS model only overlaps with poorer perform-

ing subjects (d0 < 1.5), the HOS model overlaps with all human performance points. Addition-

ally, human performance never exceeds the range of the HOS model, indicating that with

unconstrained resources (i.e., infinite memory and zero observation noise) the HOS model

can act as an “ideal observer”, providing an upper bound for human performance.

Fig 4b shows the d0 surface for the LOS model (top) and HOS model (bottom) as a function

of the two perceptual parameters, allowing us to assess which parameters are responsible for

the performance variability seen in Fig 4a for each model. With the LOS model, the memory

m is largely responsible for performance variability, with only a narrow band aroundm = 10

where the LOS model performs well above chance (d0 = 0). The HOS model performance, on

the other hand, varies jointly with both memorym and observation noise n, with the best per-

formance around {n = 0,m = 30}.

Fitting the model to subject behavior. We fit the model parameters to each subject from

Experiments 1–2. There was very high between-subject variability in performance (e.g., see

human performance plotted in ROC-space in Fig 4a), so we examined how the parameters

from the fitted model explain this variance. Model performance was measured for each set of

parameters in the parameter sweep, and the best set of parameters was selected for each subject

using minimum Euclidean distance between model and subject performance. Performance

was measured using hit- and FA-rate within each change direction, which provided a more

stringent criterion for distinguishing between parameters with equal overall hit- and FA-rates.

Fig 5 shows results from fitting the model to subjects from Experiments 1–2 (N = 41). In

Fig 5a, subject d0 is plotted against model d0 for both LOS and HOS models. Using a linear

regression with zero-intercept, the HOS model provided a better fit to subject behavior

Fig 4. Range of model behavior in Experiment 1. Model detection performance measured at different operating

points in a parameter sweep. a) Comparison of detection performance for LOS and HOS models displayed in ROC-

space across the parameter sweep, with model type denoted by color. Each blue (red) coordinate indicates existence

of a parameter set for the LOS (HOS) model yielding that performance. Individual human performance from

Experiments 1 and 1b is overlaid, along with equal-d0 curves. b) d0 surface as a function of memory (m) and

observation noise (n) parameters for LOS model (top) and HOS model (bottom). π and τ were held constant at 0.01

and 0.5, respectively.

https://doi.org/10.1371/journal.pcbi.1006162.g004
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(r2 = 0.85, p< 0.0001) compared to the LOS model (r2 = 0.23, p< 0.0001), which cannot

match the better-performing subjects.

Fig 5b shows the fitted perceptual parameters (m and n) plotted against subject d0 for the

LOS and HOS models. With the LOS model (left), neither perceptual parameter has a signifi-

cant linear relationship with subject d0 (m: r2 = 0.009, F(1, 39) = 0.359, p> 0.05; n: r2 = 0.05,

F(1, 39) = 2.03, p> 0.05). With the HOS model (right), bothmemory and observation noise

exhibit significant linear relationships with subject d0 (m: r2 = 0.423, F(1, 39) = 28.6,

p< 0.0001; n: r2 = 0.352, F(1, 39) = 21.1, p< 0.0001), with higher memory and lower observa-

tion noise corresponding with better subject performance. Similar analysis with the other

model parameters (π and τ) showed no correlation with subject d0 for either model.

To determine whether both perceptual parameters are needed to fit the HOS model to sub-

ject behavior, we tested a reduced model with only one of the perceptual parameters free. The

memory-only HOS model, holding observation noise at n = 0, provided a poorer fit compared

to the full HOS model shown in Fig 5a (r2 = 0.60, p< 0.001), as did the observation noise-only

HOS model, holding memory at the maximum stimulus lengthm = 60 (r2 = −0.29, p< 0.001).

Both memory and observation noise are needed as constraints to the model to fit the full range

of human behavior.

Additionally, we compared the model changepoints to the RTs collected in Experiment 1b.

Using a linear regression, the HOS model showed a significant linear relationship between

model changepoint and subject RTs (r2 = 0.05, F(1, 1512) = 86.9, p< 0.0001), while the LOS

model showed no significant relationship. Importantly, the model was fitted using the Yes/No

response only and not the RTs themselves.

Electroencephalography

Next, we examined neural underpinnings of higher-order stochastic regularities in the brain.

In an experiment structured similarly to Experiments 1 and 2 above, listeners were asked to

detect changes in stochastic melodies while EEG was simultaneously recorded from central

and frontal locations on the scalp. Stimuli were generated at two levels of entropy (i.e., one

change degree) with both INCR and DECR change direction.

Fig 5. Model fit to subject behavior from Experiments 1–2. a) Subject d0 plotted against fitted model d0 for both LOS

and HOS models, denoted by color. Legend shows r2-value from zero-intercept linear regression. b) Fitted perceptual

parameters plotted against subject d0 form (top) and n (bottom), with LOS model on the left and HOS model on the

right. r2 and p-values shown for standard linear regression.

https://doi.org/10.1371/journal.pcbi.1006162.g005
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Deviance response according to melody entropy. We first examined effects of melody

entropy on ERPs to individual tones. Magnitude of frequency deviation (ΔF) is known to affect

ERP morphology [32], so to determine any additional effect of entropy on the ERP, we com-

puted average ERPs for both small and large ΔF (ΔF = 1 and 4 s.t. or semitones from the previ-

ous tone) at each entropy level (LOW and HIGH). Large ΔF tones are more rare in LOW

entropy melodies compared to HIGH entropy melodies, so we might expect a deviance

response that reflects this difference in relative occurrence (as seen in [32]). ΔF = 1 was chosen

because it is the most frequent in both entropy levels, and ΔF = 4 was chosen to maximize fre-

quency deviation magnitude while ensuring an adequate number of trials in the LOW entropy

condition. We note that this analysis is more closely aligned with lower-order statistics, where

deviance is always proportional to ΔF.

Fig 6a (top) shows grand-average ERPs for the four conditions averaged across frontal elec-

trodes, which exhibited the strongest effect (described below). There is a divergence around

150-280 ms post-onset, where the ERP to large ΔF in LOW entropy (purple-dotted line)

increases relative to the corresponding ERPs with the same ΔF (gray-dotted line) or the same

entropy context (purple-solid line). Fig 6a (bottom) shows the mean amplitude in two time

windows: ① 90–150ms and ② 170–260ms, corresponding roughly to N1/MMN and P2 time

ranges [32]. A repeated-measures ANOVA with 2 factors (entropy and ΔF) applied to the later

window showed a main effect of entropy (F(1, 7) = 7.49, p< 0.05) and a trend due to ΔF (F(1,

7) = 4.57, p< 0.07) with no interaction effect. Considering large-ΔF amplitudes only, a post-

hoc paired t-test showed a significant difference between LOW and HIGH entropy contexts

(p< 0.05). We performed the same t-test for each electrode; Fig 6a (bottom, far right) shows

the p-values by electrode plotted on the scalp, with significant differences at frontal electrodes

only. Similar analysis on the earlier window ① showed no effects of frequency deviation or

entropy context.

An MMN response is notably absent from the ERPs in Fig 6a, even though large frequency

deviations are rare in LOW entropy melodies. Assuming an MMN response in the brain to

regularity deviations, this indicates a discrepancy between the “regularity” as defined in this

analysis and the regularity collected by the brain: the MMN response is not well-differentiated

by frequency deviation alone, and therefore it does not show up in this analysis. To see an

MMN response, we need the proper definition of regularity in our analysis.

Deviance response according to model surprisal. The model outputs surprisal as a con-

tinuous measure of regularity violation, where the regularity is defined by the statistics

Fig 6. Contextual effects on tone ERP. a) Grand-average ERPs (top) for large and small ΔF in LOW and HIGH entropy melodies show a positivity for

large ΔF in LOW entropy context around 200ms after tone onset. Mean amplitudes are shown for ① and ② time windows (bottom). Scalp map (right)

shows frontal distribution of t-test p-values for large ΔF deflection between entropy contexts. b) Using model surprisal, regression-ERP analysis teases

out distinct components depending on the set of statistics used in the model: a positivity 150-230ms after onset with LOS surprisal (similar to a) above)

and a MMN-like negativity 100-200ms after onset with HOS surprisal. Error bars show 95% bootstrap confidence interval across subjects.

https://doi.org/10.1371/journal.pcbi.1006162.g006
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collected by the model. We used a linear regression analysis to find contributors to the tone-

elicited ERPs attributable to surprisal from the LOS and HOS models fit to individual subject

behavior [33, 34]. The resulting regression ERPs (or rERPs) give a fitted regression to single-

trial ERPs at each time-point for each measure of surprisal, and their interpretation is straight-

forward: the surprisal rERP shows the change in the baseline ERP for a unit increase in sur-

prisal (see Methods).

Fig 6b shows the surprisal rERP for the LOS model (top) and HOS model (bottom). The

rERPs show two distinct contributors to the ERP differing both in polarity and latency, with

the LOS-rERP containing a positive deflection around 150–250ms post-onset and the HOS-

rERP containing a negative deflection around 100–200ms.

To test the significance of these rERP deflections, we applied a linear mixed effects (LME)

model to single trial amplitudes in the same two windows as the analysis above: 90-150ms and

170-260ms after tone onset, roughly corresponding to N1/MMN and P2 time windows. LME

models are well-suited for testing single-trial effects with unbalanced designs [35], which is

the case with surprisal (by definition, there are fewer surprising events than unsurprising

events). In the later time window, the LME model showed a significant effect of LOS-surprisal

(p< 0.01) on mean amplitude and no effect from HOS-surprisal. The same model applied to

mean amplitude in the earlier time window showed the opposite: no significant effect from

LOS-surprisal and a significant effect from HOS-surprisal (p< 0.001). This analysis shows

deviance responses in the tone-ERP that differ depending on the statistics, or regularities, col-

lected by the model, and an MMN-like response only to tones surprising according to the

higher-order statistics of the preceding melody.

Disruption in phase-locking at model changepoint. We examined neural phase-locking

to tone onsets before and after changepoints obtained from the LOS and HOS models. Phase-

locking at the tone presentation rate (6.25 Hz) was measured from EEG data averaged across

all 32 electrodes using the phase-locking value (PLV). PLV provides a measure of the phase

agreement of the stimulus-locked response across trials, independent of power [36]. The dif-

ference in PLV before and after the changepoint (ΔPLV) measures the disruption in phase-

locking at that time (see Fig 7a for illustration of ΔPLV calculation).

ΔPLV was measured at four sets of changepoints: the LOS and HOS model-changepoints,

the nominal changepoint, and a control condition. The nominal changepoint (i.e., the mid-

point) is the time where the generating distributions before and after have the greatest con-

trast. As a control for this analysis, HOS-changepoints were randomly assigned to control

trials to ensure that any difference in PLV was due to the neural response recorded during

change trials, and not simply due to the position of the changepoints.

Fig 7b shows the bootstrap distributions of the mean ΔPLV for each set of changepoints

(lines). A paired t-test shows a significant decrease in PLV at the HOS-changepoints

(p< 0.001), while there was no significant difference for the other changepoints. We also

tested the ΔPLV measured at the changepoints against the variation in phase-locking present

throughout the melody by estimating a null distribution, sampling null-changepoints at ran-

dom positions in the melody and calculating ΔPLV. There was again a significant difference

for the HOS-changepoints only (p< 0.001). These results together indicate there is a disrup-

tion in phase-locking that is specifically related to the changepoints obtained from the fitted

HOS model.

Discussion

How the brain extracts information from stochastic sound sources for auditory scene analysis

is not well understood. We investigated stochastic regularity processing using change detection
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experiments, where listeners detected changes in the entropy of pitches in melodies. Results

from Experiments 1–2 confirmed results from previous work showing that listeners represent

information about stochastic sounds through statistical estimates [6, 8]. Listeners’ detection

performance scaled with change degree (Experiments 1, 1b) and with the length of the

sequence (Experiment 2), consistent with the use of a sufficient statistic to detect changes: a

larger change in the statistic and a larger pool of sensory evidence both improved detection

performance.

What statistics are collected by the brain?

We introduced a perceptual model for stochastic regularity extraction and applied this model

to the same change detection experiments as our human listeners. We used different sets of

statistics in the model to determine which best replicate human behavior: a lower-order statis-

tics (LOS) model that collects the marginal mean and variance of tone pitches or a higher-

order statistics (HOS) model that additionally collects the covariance between successive tone

pitches. Comparing the performance range for LOS and HOS models to human performance,

we showed that higher-order statistics are necessary to capture all human behaviors, while

lower-order statistics are insufficient to capture the full range of subject behaviors. This dispar-

ity strongly suggests the brain is collecting and using higher-order statistics about the temporal

Fig 7. Phase-locking analysis at model changepoints. ΔPLV is used to measure disruptions in phase-locking of EEG to

the tone presentation rate (6.25 Hz) at the time when the model detects a change in the stimulus (i.e., at the changepoint).

a) Illustration of ΔPLV calculation. PLV measures phase agreement across trials independent of power; an example PLV
calculation (right) shows the phase of individual EEG trials (in grey)—PLV is the magnitude of the mean of these

normalized phasors (in black). ΔPLV is then the difference in PLV within a 7-tone (1-sec) window before and after the

changepoint (left, shown at the HOS changepoint in the melody). For each subject, ΔPLV was calculated for three sets of

changepoints: the changepoints output from the LOS and HOS models, and the nominal changepoint (i.e., midpoint)

used to generate the stimuli. Additionally, as a control, the same HOS changepoints were applied to responses to no-

change stimuli. b) Empirical distributions of ΔPLV at the LOS-, HOS-, Nominal-, and Control-changepoints (line)

calculated by bootstrap sampling across subjects, along with the null distribution (solid gray) calculated by performing

the same analysis with random sampling of the changepoint position. This null distribution estimates variability in ΔPLV
present throughout the melody. Significant change from zero and from the null distribution is seen in the HOS-

changepoint only.

https://doi.org/10.1371/journal.pcbi.1006162.g007
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dependencies between incoming sounds. Furthermore, the model revealed effects in EEG that

are only discernible using higher-order statistics: ERP evidence showed an MMN response

elicited by tones that are surprising according to the higher-order statistics of the preceding

melody, and cortical phase-locking was disrupted at the changepoints specified by the HOS

model.

Interestingly, both LOS and HOS models were able to replicate behavior from poorer per-

forming subjects (d0 < 1.5), but the LOS model is unable to mirror behaviors with high hit-

rates without also increasing the FA-rate (Fig 4a). Intuition states that marginal statistics

within the local context (i.e., short memory or smallm) might be effective for detecting

changes in local variance in the fractal sequences; this notion is supported by the model, where

m = 10 tones yields the best LOS model performance (Fig 4b). Yet this local LOS model, with

limited sampling in the statistics collected, is unable to match the performance exhibited by

better performing subjects. In other words: if listeners (or the LOS model) rely solely onmar-
ginal statistics, then their ability to accurately flag changes in random fractal structure is highly

constrained. Furthermore, relying on low-order statistics should elicit an effect of the direction

of change (from low to high entropy or vice versa) on the hit-rates. Behavioral data shows no

such effect of change direction on behavioral hit-rates (Experiments 1 and 1b), which further

corroborates that listeners cannot be solely relying on lower-order statistics.

While these results strongly argue for the brain’s ability to track higher-order statistics in

sound sequences, they do not disagree with previous work demonstrating sensitivity to lower-

order statistics [8, 9]. Rather, by designing a task in which higher-order statistics are beneficial,

we show that listeners are additionally sensitive to the temporal covariance structure of sto-

chastic sequences. We also do not argue that the statistics collected by the brain are limited to

these, but could include longer-range covariances. We performed the same analysis using a

D = 3 model that collects covariance between non-adjacent sounds, but it did not provide any

improvement over the D = 2 (HOS) model. This merely means that for our stimuli, there was

no additional information to aid in change detection beyond the adjacent covariances. Addi-

tional experiments with stimuli that specifically control for this are needed to determine the

extent of the temporal range of statistics collected by the brain.

Individual differences revealed by stochastic processing

By their very nature, the stimuli used here exhibit a high degree of irregularity and randomness

across individual instances of sequences. For the listener, deciding where the actual change in

regularity occurs in a particular stimulus is a noisy process that arises with some level of uncer-

tainty. Perceptually, most trials do not contain an obvious “aha moment” when change is

detected; rather, the accumulation of evidence for statistical change emerges as a gradual pro-

cess. Similarly from a data analysis point of view, determining the exact point of time when the

statistical structure undergoes a notable change is a nontrivial problem, given that the percep-

tion of statistical change is not binary but continuous and varies both between trials and
between listeners. As such, the study of stochastic processing hinges on the use of a model that

is well-matched to the computations occurring in the brain, combining the right granularity of

statistics with the right scheme for cue integration and decision making. And with the intro-

duction of perceptual parameters to the model, we gain flexibility in the behaviors that can be

reproduced by the model with clear interpretation as to the computational constraints leading

to these behaviors.

Taking a close look at individual differences through the lens of the model, we were able to

inspect underlying roots of this variability. Rather than simply a difference in decision thresh-

old (i.e., “trigger-happiness”), we argue the variability across listeners was due to individual
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differences in the limitations of the perceptual system. We incorporated these limitations into

the model via perceptual parameters. The memory parameter represents differences in work-

ing memory capacity [37, 38], and the observation noise parameter represents individual dif-

ferences in pitch perception fidelity [39]. We should note that these parameters may also be

capturing other factors that affect listener performance like task engagement, neural noise, or

task understanding, which could be contributing noise to these results.

By fitting the model to individual listeners through their behavior, we showed correlates

between human performance and the perceptual parameters of the model, and we found

that neither perceptual parameter alone was adequate to fit all subjects. Rather than a nui-

sance, we see the inter-subject variability in these results as a consequence of individual dif-

ferences in the perceptual system that are amplified by the uncertainty present in stochastic

processing.

Neural response depends on statistical context

We found effects of the statistical context on the neural response. First, examining ERP

responses to individual tones, we found an enhanced P2 response to large frequency deviations

in low-entropy melodies compared to high-entropy melodies and a frontal distribution of this

difference consistent with sources in the auditory cortex. This result corresponds with previous

work where large frequency deviations that were less likely given the previous context showed

an enhanced P2 amplitude [32]. Similarly, we interpret this result reflecting a release from

adaptation, where the low-entropy melody has a narrow local frequency range. Importantly,

we do not see an MMN effect, arguably because frequency deviation alone is too crude to pro-

vide an adequate definition of “deviant” with our stochastic stimuli: large frequency deviations

do not always violate the regularities in our stimuli, which may explain the lack of an observ-

able MMN in the average differential response.

Using the fitted model, we were able to tease out distinct surprisal effects on the tone ERP

that differ both in statistics and in temporal integration window: the LOS surprisal measured

how well each tone was predicted by the lower-order statistics of the local context, while the

HOS surprisal measured how well each tone was predicted by the higher-order statistics of the

longer context, as fit by the model to individual behavior. Because LOS and HOS surprisal are

partially (and unavoidably) correlated, both LOS and HOS surprisal were included in a single

regression in order to find components in the ERP that correlate with each independent of the
other [34].

We found an enhanced P2 amplitude with increasing LOS surprisal that is similar in ampli-

tude and latency to the P2 difference discussed above; indeed, LOS surprisal provides a similar

definition of regularity to the ERP analysis based on melody entropy above, for large frequency

deviations are always “deviants” according to the lower-order statistics. We again attribute this

increased P2 to a release from adaptation. Consequently, we can then attribute the MMN

response to HOS surprisal as a deviance response according to higher-order statistics indepen-
dent from lower-order adaptation effects.

There has been much discussion on whether the MMN response is truly a deviance

response or merely due to adaptation [40, 41]. Many experiments suffer from confounding fre-

quency deviance with regularity deviance, making it difficult to definitively attribute MMN to

one or the other. With our stochastic stimuli differing in higher-order statistics, we were able

to disentangle the two interpretations. We again stress that this result is not in conflict with

previous results showing effects of lower-order statistics on the MMN [8, 42], because deviants

in these studies could also be considered deviants according to their higher-order statistics

(i.e., the HOS model reduces to the LOS model when the covariance between sounds is zero).
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Finally, we found a disruption in the brain’s phase-locked response to tone onsets that coin-

cides with HOS model changepoints, where the model detects a change in the higher-order

statistics of each stimulus. Contrasting various controls using different estimates of when the

change point occurs, we observed a notable phase disruption with changes in higher-order sta-

tistics only. The change in phase synchrony across trials could be due to the combined modu-

lation of multiple ERPs to tones following the changepoint, or it could reflect a change in the

oscillatory activity of the brain, which has been shown to correspond with both changes in pre-

dictive processing and attentional effects [43, 44]. Further experimentation is needed to deter-

mine the source of this disruption. Importantly, this analysis takes into account the stochastic

nature of the stimuli by interpreting the statistical structure of each stimulus through the

model, rather than with the changepoint used to generate the stimuli (i.e., the “nominal”

changepoint).

A model for Bayesian predictive processing in the brain

The model presented here fits in nicely with existing theoretical formulations for predictive

processing and object formation in perception [2, 45], as well as Bayesian descriptions of the

perceiving brain [46–48]. Importantly, the model does not assume stationarity in the sound

environment, and it can adapt to changes in regularity at any time. To achieve this, the model

hypothesizes two mechanisms in the brain: first, the brain builds representations by collecting

statistical estimates from sounds over time; second, the brain maintains multiple hypotheses

for how to interpret the previously heard sound sequence. These hypotheses are represented

explicitly in the model by statistical estimates collected over different time-windows, each of

which gives a prediction for future sounds. Prediction errors are then used to update the beliefs

in each hypothesis, weighting hypotheses proportional to the amount of evidence relative to

alternative hypotheses. This competition between concurrent hypotheses is crucial for robust

interpretation in the presence of uncertainty. As new sounds deviate from the prediction of

the current best hypothesis, beliefs shift to a new dominant hypothesis (and set of statistical

estimates) that better explains the previous sounds; the beliefs therefore reflect the dynamics of

a changing environment.

While in this work we used the model to investigate processing of regularities in pitch, we

believe the same machinery can be applied to other auditory dimensions (e.g., loudness, tim-

bre, spatial location) and extended to other sufficient statistics to test different representations

of regularities in sound. Additionally, the model is not limited to detecting changes, as was

demonstrated here using a simple decision rule. Rather, it is a perceptual model of stochastic

predictive processing that can operate in the presence of changes, as the brain does while per-

ceiving real-world, dynamic sound environments.

Methods

Experiment 1

Stimuli. Stimuli were pure-tone melodies with tone frequencies determined by random

fractals. Random fractals are stochastic processes with spectrum inversely proportional to fre-

quency and with spectral slope β (1/f β). β parameterizes the entropy of the random fractal: as

β decreases entropy increases, with β = 0 yielding a white-noise spectrum and the highest

entropy. Four levels of entropy were used to create the stimuli, corresponding to β = 0, 1.5, 2,

2.5. Random fractals were generated by repeatedly applying the inverse Fourier transform to

the 1/f β spectrum with random phase, yielding many unique instances. These random fractals

were standardized to remove any differences in mean and variance, then quantized and

mapped to 35 frequencies in a quasi-semitone scale (15 frequencies/octave) centered on 330
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Hz (range: 150–724 Hz). Melodies were synthesized using pure tones with 150ms duration

and 10ms ramped onset and offset (squared cosine). Inter-onset interval between tones was

175ms.

All melody stimuli in Experiment 1 had a length of 60 tones. Stimuli with changes in

entropy (“change trials”) were composed of two equal-length melodies with different entropy,

one with the highest entropy (β = 0) and one with a lower entropy, resulting in three degrees

of change (Δβ = 1.5, 2, 2.5). Both increasing- and decreasing-entropy trials (referred to as

INCR and DECR, respectively) were included, resulting in six change conditions, as well as

control trials with constant entropy at each entropy levels. There were 150 trials in total, with

15 trials per condition.

Participants. Ten participants (9 Female) were recruited from an undergraduate popula-

tion (mean age: 18.7 years). All participants reported no history of hearing loss or neurological

problems. Participants gave informed consent prior to the experiment and were paid for their

participation. All procedures were approved by the Johns Hopkins Institutional Review Board

(IRB).

Procedure. Stimuli were presented in randomized order in 3 blocks with self-paced

breaks between blocks. During each trial, listeners were instructed to listen for a change in the

melody; after the melody finished, participants responded via keyboard whether or not they

heard a change. Feedback was given after each response in order to guard against task misun-

derstanding and ensure listeners had as much information as possible to perform the task well.

Listeners were not given explicit instructions about what they were listening for, but rather

learned the task implicitly over the course of a training block prior to testing. Incorrect

responses in the training block caused the same stimulus to be replayed with feedback (includ-

ing an indication of when the change occurs, in the case of missed detections). Participants

advanced to testing after completing at least 15 trials and correctly answering 5 consecutive tri-

als (all participants completed training in under 30 trials).

Stimuli were synthesized offline as 16-bit, 44.1 kHz wav-files and presented via over-ear

headphones (Sennheiser HD 595) at a comfortable listening level using PsychToolbox (psy-

chtoolbox.org) and custom scripts in MATLAB (The Mathworks). Participants were seated in

an anechoic booth in front of the presentation computer. The experiment duration was

approximately 50 minutes.

Experiment 1b

Stimuli. Stimuli were the same as in Experiment 1.

Participants. 21 participants (14 Female) were recruited from an undergraduate popula-

tion (mean age: 20.1 years). All participants reported no history of hearing loss or neurological

problems. Participants gave informed consent prior to the experiment and were paid for their

participation. All procedures were approved by the Johns Hopkins IRB.

Procedure. This experiment had the same procedure as Experiment 1, with the exception

of how responses were collected. In this experiment, listeners responded in the middle of the

melody trial as soon as a change was heard by pressing the space-bar. If the space-bar was not

pressed before the end of the melody presentation, this was recorded as a negative response.

Responses before the nominal changepoint of change trials (i.e., the midpoint) were consid-

ered false-alarms.

Experiment 2

Stimuli. Stimuli in this experiment were similar to those in Experiment 1 with an addi-

tional manipulation of melody length. Along with the same change degree and direction
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conditions, there were three length conditions (20, 40, and 60 tones) with the change always

occuring in the midpoint of the melody. For each of the 18 change conditions (3 Δβ x 2 direc-

tion x 3 length) and each of the 12 control conditions (4 β x 3 length), there were 8 trials, for a

total of 240 trials.

Participants. Ten participants (6 Female) were recruited from an undergraduate popula-

tion (mean age: 18.7 years). All participants reported no history of hearing loss or neurological

problems. Participants gave informed consent prior to the experiment and were paid for their

participation. All procedures were approved by the Johns Hopkins University IRB.

Procedure. Procedure was the same as in Experiment 1, including training and testing

phases.

EEG experiment

Stimuli. In this experiment, stimuli were based on an alternative parameterization

of entropy using first-order Markov chains, which provided greater control over the distri-

butions used to generate the melodies. Specifically, this allowed us to exclude tone repeti-

tions from the melody stimuli to prevent any correlates in EEG due simply to repetition.

Because none of the analyses or results are predicated on properties exclusive to random

fractals, and both types of stochastic stimuli are perceptually similar, we treat both stimuli

identically.

Melody stimuli were composed of 50 pure-tones with pitches sampled from 11 frequencies

on a semitone scale (range: 247–440 Hz). For each melody, the first tone frequency was sam-

pled uniformly from all 11 frequencies. Subsequent tone frequencies were drawn from a prob-

ability distribution based on a modified logistic curve centered on the previous observation

with entropy parameterized by the logistic slope k,

Pkðxtjxt� 1Þ ¼

0; xt ¼ xt� 1

A
1þ e� kjxt � xt� 1 j

; otherwise

8
><

>:

where xt and xt−1 are the current and former tone frequencies (in semitones) and A is a nor-

malization constant. As k increases, this distribution becomes more biased towards smaller fre-

quency steps and lower entropy, and it has maximum entropy at k = 0, a uniform distribution

across the 10 frequencies (excluding the previous frequency). High-entropy sequences and

low-entropy sequences were generated with k = 0 and k = 0.7, respectively. For change trials, k
transitioned smoothly between the two extremes in the middle 10 tones of the melody (tones

21–30) to avoid obvious outliers from an abrupt change in the distribution.

There were 150 melody trials in this experiment: 50 trials for each change direction (INCR

and DECR), and 25 control trials per entropy level (LOW and HIGH). Tones were 125 ms in

duration and presented with inter-onset interval of 160 ms.

Participants. 14 participants were recruited for this experiment, however six were

excluded from EEG analysis because they had behavioral performance near chance (d0 < 0.5).

Out of the remaining eight subjects, six were female, and the mean age was 20 years.

Procedure. The procedure in this experiment was similar to that in Experiments 1 and 2.

Subjects were seated in an anechoic chamber with stimuli presented via in-ear earphones (Ety-

motic ER-2) at a comfortable listening level. Before each melody trial, a cross appeared in the

center of the screen, and subjects were instructed to fixate on the cross to reduce eye move-

ment artifacts. After the trial, subjects responded whether or not they heard a change via a

response box.
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Data recording and pre-processing. EEG was recorded using a BioSemi ActiveTwo sys-

tem (Biosemi) with 32 electrodes placed in central and frontal locations on the scalp selected

to maximize signal-to-noise ratio for neural signals originating in auditory centers of the brain

[49, 50]. Six additional electrodes were placed on left and right mastoids, the nose, and along-

side the eyes for re-referencing and blink artifact removal. Data was recorded at a sampling

rate of 4096 Hz.

For each subject, EEG data were preprocessed with custom scripts in MATLAB using

the FieldTrip toolbox (www.fieldtriptoolbox.org) and NoiseTools [51]. Continuous EEG

was re-referenced to the left mastoid, filtered to 1–100 Hz (two-pass Butterworth, 3rd-order

for high-pass and 6th-order for low-pass), and re-sampled to 256 Hz. The data was then

cleaned in two stages using Independent Component Analysis (ICA) and Denoising

Source Separation (DSS). First, continuous EEG data was epoched to 1 second segments;

segments with amplitude range exceeding 3 s.d. from the mean by channel were excluded

before applying ICA to identify components attributable to eye motion artifacts. These arti-

fact components were removed from the continuous EEG data, and the ICA-cleaned data

was epoched to melody trials. DSS was then used to enhance stimulus-locked activity; the

top 5 DSS components that were most repeatable across melody trials were kept and pro-

jected back to sensor space, thus removing EEG signal not related to auditory stimulation

[51].

Data analysis. We used regression to investigate effects of model surprisal on ERP

responses based on the framework described in [33, 34]. For each subject, EEG data was fur-

ther low-pass filtered at 30Hz (6th-order Butterworth) and epoched by tone with the 50-ms

window preceding tone onset used for baseline subtraction. Outlier tone trials with amplitude

exceeding 3 s.d. from the mean were excluded from the analysis.

We fit the following regression model to single-trial ERPs:

yiðtÞ ¼ b0ðtÞ þ SLbLðtÞ þ SHbHðtÞ þ �iðtÞ

where surprisal from the LOS model (SL) and the HOS model (SH) serve as predictors in the

regression for the ith single-trial ERP (yi). The regression contains an intercept term β0, which

captures the baseline ERP response, and slope terms βL and βH, which capture the differential

response due to a unit change in SL and SH, respectively. Finally, �i is the residual error for the

i-th trial. Note that these terms are indexed by time, so the regression finds the linear relation-

ship between regressors (SL and SH) and the single-trial ERPs at each time point, yielding a

regression-ERP, or rERP [34]. The regression was applied separately for each subject to EEG

data averaged across all 32 electrodes.

We used phase-locking value (PLV) to measure neural phase-locking to tones. PLV is a

measure of phase agreement across trials independent of signal power:

PLV ¼
1

n

�
�
�
�

Xn

i¼1

�i=j�ij

�
�
�
�

where the ϕi’s are complex phasors extracted from the Fourier transform at the frequency of

interest (6.25Hz, the tone presentation rate) for the ith trial, and n is the number of trials. PLV

was calculated separately for 1120ms (7-tone) epochs before and after the changepoints, and

the difference, ΔPLV = PLVafter − PLVbefore, was used to measure the change in phase-locking

at the changepoints. Only change trials correctly detected by both listener and model were

included in this analysis.

For statistical testing, ΔPLV was compared to 0 (t-test) and to a null distribution (random

permutation test) estimated by calculating ΔPLV from randomly sampled changepoints across
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the melody. The null distribution ensures any observed change in PLV at the changepoints is

not simply due to the random variability in phase-locking present across the melody trial.

Model

The perceptual model is an extension of the Bayesian Online Changepoint Detection model

described in [26], which was designed to predict incoming observations sequentially given pre-

vious observations in the presence of unknown changepoints. Model code is available at

https://engineering.jhu.edu/lcap/.

Because the model assumes observations are generated from a D-dimensional Gaussian dis-

tribution, there exists a closed-form solution for the predictive distribution that depends only

on the sufficient statistics ŷ
ðrtÞ
t ¼ fm̂

ðrtÞ
t ; Ŝ

ðrtÞ
t g, i.e., the D-dimensional sample mean and sample

covariance at time t collected over the previous rt observations [52]. We modify these sufficient

statistics with perceptual parameters to add perceptually plausible constraints to the model.

Observation noise (n) adds a constant variance to the predictive distribution, and the memory

parameter (m) puts a limit on the number of past observations used in the prediction, effec-

tively “forgetting” observations outside of this window. We then have a modified expression

for the sufficient statistics for run-length rt at time t that incorporates the two perceptual

parameters:

ŷ
ðrtÞ
t ¼

fm̂
ðrtÞ
t ; ~S

ðrtÞ
t g; rt < m

fm̂
ðmÞ
t ; ~S

ðmÞ
t g; rt � m

8
<

:

where ~S
ðrtÞ
t ¼ Ŝ

ðrtÞ
t þ n2ID is the sample covariance with added observation noise n, and ID is

the D-dimensional identity matrix.
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S2 Audio. Example melody with medium-high entropy, (β = 1.5).
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S3 Audio. Example melody with medium-low entropy (β = 2).
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S6 Audio. Example DECR stimulus with decreasing entropy (β = 0! 2).

(WAV)

S1 Fig. Hit and False Alarm (FA) rates for Experiment 1. The difference in performance

across change direction (INCR, DECR) as measured by d0 is due to increased FAs with increas-

ing entropy. There was no effect of direction on hit rates alone.

(TIFF)
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S2 Fig. Hit and False Alarm (FA) rates for Experiment 2. Hit rates show a strong effect of

both change degree and melody length, while FAs only show an effect of entropy.
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S1 Text. Model update equations. Brief description of update equations for recursive estima-

tion of run-length beliefs, with full treatment appearing in [26].

(PDF)
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17. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of cen-

tral auditory processing: A review. Clinical Neurophysiology. 2007; 118(12):2544–2590. https://doi.org/

10.1016/j.clinph.2007.04.026 PMID: 17931964

18. Furl N, Kumar S, Alter K, Durrant S, Shawe-Taylor J, Griffiths TD. Neural prediction of higher-order

auditory sequence statistics. NeuroImage. 2011; 54(3):2267–2277. https://doi.org/10.1016/j.

neuroimage.2010.10.038 PMID: 20970510

19. Skoe E, Krizman J, Spitzer E, Kraus N. Prior Experience Biases Subcortical Sensitivity to Sound Pat-

terns. Journal of Cognitive Neuroscience. 2015; 27(1):124–140. https://doi.org/10.1162/jocn_a_00691

PMID: 25061926

20. Friston K, Kilner J, Harrison L. A free energy principle for the brain. Journal of Physiology Paris. 2006;

100(1-3):70–87. https://doi.org/10.1016/j.jphysparis.2006.10.001

21. Bizley JK, Cohen YE. The what, where and how of auditory-object perception. Nature Reviews Neuro-

science. 2013; 14(10):693–707. https://doi.org/10.1038/nrn3565 PMID: 24052177

22. DiCarlo JJ, Zoccolan D, Rust NC. How does the brain solve visual object recognition? Neuron. 2012;

73(3):415–434. https://doi.org/10.1016/j.neuron.2012.01.010 PMID: 22325196
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