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Abstract

The processing characteristics of neurons in the central auditory system are directly shaped by and reflect the statistics of
natural acoustic environments, but the principles that govern the relationship between natural sound ensembles and
observed responses in neurophysiological studies remain unclear. In particular, accumulating evidence suggests the
presence of a code based on sustained neural firing rates, where central auditory neurons exhibit strong, persistent
responses to their preferred stimuli. Such a strategy can indicate the presence of ongoing sounds, is involved in parsing
complex auditory scenes, and may play a role in matching neural dynamics to varying time scales in acoustic signals. In this
paper, we describe a computational framework for exploring the influence of a code based on sustained firing rates on the
shape of the spectro-temporal receptive field (STRF), a linear kernel that maps a spectro-temporal acoustic stimulus to the
instantaneous firing rate of a central auditory neuron. We demonstrate the emergence of richly structured STRFs that
capture the structure of natural sounds over a wide range of timescales, and show how the emergent ensembles resemble
those commonly reported in physiological studies. Furthermore, we compare ensembles that optimize a sustained firing
code with one that optimizes a sparse code, another widely considered coding strategy, and suggest how the resulting
population responses are not mutually exclusive. Finally, we demonstrate how the emergent ensembles contour the high-
energy spectro-temporal modulations of natural sounds, forming a discriminative representation that captures the full
range of modulation statistics that characterize natural sound ensembles. These findings have direct implications for our
understanding of how sensory systems encode the informative components of natural stimuli and potentially facilitate
multi-sensory integration.
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Introduction

It is widely believed that sensory representations are optimized

to process the stimuli to which they are exposed in natural

environments [1]. Of particular interest is understanding the

computational principles that underlie the generation of observed

neural firing patterns. A popular hypothesis explored in recent

years assumes that neural populations optimize a sparse code. This

means that at any given time, only a small subset of a neural

population fires to encode a given stimulus [2]. Such a

representation is attractive for reasons of coding efficiency (see,

e.g., [3]) and conservation of physiological resources [4]. The

sparse coding hypothesis has enjoyed particular success in studies

of vision (e.g., [5,6]), and has also been supported more recently by

both neurophysiological [7,8] and computational studies [9–11] of

the auditory system.

However, it has also been observed that some central auditory

neurons, when driven by their preferred stimuli, exhibit sustained

firing rates. Measuring from auditory thalamus and primary

auditory cortex, Wang et al. observed that sustained responses were

not simply phase-locked to the fast dynamics of the stimulus,

suggesting that this rate-based code represented a meaningful,

non-isomorphic transformation of the stimulus [12,13]. Indeed,

such a code is particularly important for audition since it directly

addresses the issue of how to indicate the continued presence of a

sound in a complex acoustic environment. Results from Petkov et

al. have also illustrated how sustained responses play a role in

auditory scene analysis, forming part of the neural basis for the

perceptual restoration of foreground sounds against a cluttered

background [14]. Moreover, Wang has argued that a rate-based

representation is critical for matching fast temporal modulations

present in natural sounds to slower rates found in higher cortical

areas [15]. Slower dynamics in acoustic signals are believed to be

the main carrier of information in speech and music [16]; are

commensurate with temporal dynamics of stream formation and

auditory grouping [17]; and may play an important role in multi-

modal sensory integration [15]. Related computational studies in

vision have suggested how this principle may underlie the shapes
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of simple and complex cell receptive fields in primary visual cortex

[18,19]. Importantly, a sustained firing rate, i.e., one that is

persistent and therefore slowly changing over time, is related to

slow feature analysis, a well-known method for extracting

invariances from sensory signals [20] (see Discussion). To the best

of our knowledge, however, there are no computational studies

that explicitly consider the implications of a sustained firing-based

code in central auditory areas.

At first glance, the two coding schemes are seemingly at odds:

on the one hand a sparse code seeks to minimize the activity of a

neural population whereas a sustained firing-based code requires

that neural responses persist over time but still form an efficient

representation of the stimulus. However, it appears that central

auditory responses can strike a balance between the two strategies,

with a large, transient population response at the onset of a sound,

and a sparse subset of preferentially driven neurons exhibiting a

strong, sustained response throughout the sound’s duration

[15,21]. This picture suggests a mechanism for detecting and

tracking target sounds in noisy acoustic environments and for

generating a persistent signal that facilitates a stable perceptual

representation. From a computational perspective, a better

understanding of these mechanisms can inform models of auditory

scene analysis as well as signal processing schemes for hearing

prosthetics and automated sound processing systems.

A general computational approach for exploring the effects of

particular coding strategies in sensory systems is based on

optimizing a statistical objective criterion that quantifies the

principle governing the transformation between stimulus and

internal representation. Upon convergence, one then compares

the emergent representation to known properties of the sensory

system being studied [1]. Here, we apply this framework to explore

how optimizing a sustained firing criterion influences the shapes of

model auditory spectro-temporal receptive fields (STRFs) when

processing natural sounds, and we compare the emergent

ensembles to those obtained by optimizing a sparse coding

objective. STRFs describe the linear mapping between a spectro-

temporal stimulus and an instantaneous firing rate [22], and have

proven useful not only for describing basic processing aspects of

auditory neurons [23,24], but also for shedding light on the nature

of task-driven plasticity [25]. Figure 1 illustrates how a spectro-

temporal stimulus is mapped to a set of instantaneous neural firing

rates, whose ensemble response according to a desired coding

strategy directly shapes the mapping.

In this paper, we show how this framework allows us to not only

explore how the timescales of natural sounds are captured by and

reflected in an emergent sensory representation, but reveal key

similarities between choice of a sustained versus sparse code.

Moreover, we demonstrate how a sustained firing-based code

suggests a mechanism for an emergent discriminative representa-

tion for ensembles of natural stimuli.

Results

We defined a sustained neural response as one where firing rate

energy changes relatively slowly and is consequently highly correlated

over time. In particular, we were interested in the characteristics of

ensembles of model STRFs H~½h1 h2 hK � that promoted sustained

responses over a specified time interval ½t{DT ,t�. Denoting the

response of the k0th neuron as rk(t)~hT
k s(t), where hk is the STRF

and s(t) is a spectro-temporal stimulus, we quantified this principle

using the following objective function:

Jsus(H) : ~
XK

k~1

ð
DT

athr2
k(t)r2

k(t{t)itdt, ð1Þ

where h:it denotes time average. Observe that Jsus(H) represents

the sum of correlations between signal energies of the k0th neuron

over a time interval defined by DT across an ensemble of K
neurons. If a neuron yielded a sustained response, then each of the

rk(t) would vary smoothly over the specified interval and we expect

Jsus(H) to be large. Moreover, choice of the correlation interval DT
allowed us to directly explore the effect of different timescales on the

ensembles H that maximized Eq. 1. Finally, the weights at were

chosen to be linearly decaying for t~0 to DT , reflecting the

intuition that recent activity of a neuron likely has more influence on

the current output than the past. Note that these weights could be

adapted to specifically model, for example, positive- or negative-

monotonic sustained responses observed in physiological studies

[13]. Full details of the optimization procedure can be found in

Methods.

Alternatively, we explored an objective function that promoted

sparsity. A natural way to induce sparsity in a population code is

by enforcing a population response whose firing rate distribution is

highly peaked near zero (representing frequent weak responses), but

has long tails (representing infrequent large responses), i.e., a

distribution with high kurtosis [26]. We quantified the sparsity of a

population code using sample kurtosis:

Jsp(H)~
m4(t)

½s2(t)�2

* +
t

ð2Þ

where m4(t)~
1

K

X
k

(rk(t){�rr(t))4 is the fourth central moment

at time t, s2(t)~
1

K

X
k

(rk(t){�rr(t))2 is the population variance

at time t, and �rr(t) is the population mean at time t.

For both Jsus(H) and Jsp(H), the basic problem was to find an

ensemble of STRFs that maximized the respective objective function

subject to constraints that (1) bounded the amplitude of the filter

responses and (2) minimized redundancy among the learned

Author Summary

We explore a fundamental question with regard to the
representation of sound in the auditory system, namely:
what are the coding strategies that underlie observed
neurophysiological responses in central auditory areas?
There has been debate in recent years as to whether
neural ensembles explicitly minimize their propensity to
fire (the so-called sparse coding hypothesis) or whether
neurons exhibit strong, sustained firing rates when
processing their preferred stimuli. Using computational
modeling, we directly confront issues raised in this debate,
and our results suggest that not only does a sustained
firing strategy yield a sparse representation of sound, but
the principle yields emergent neural ensembles that
capture the rich structural variations present in natural
stimuli. In particular, spectro-temporal receptive fields
(STRFs) have been widely used to characterize the
processing mechanisms of central auditory neurons and
have revealed much about the nature of sound processing
in central auditory areas. In our paper, we demonstrate
how neurons that maximize a sustained firing objective
yield STRFs akin to those commonly measured in
physiological studies, capturing a wide range of aspects
of natural sounds over a variety of timescales, suggesting
that such a coding strategy underlies observed neural
responses.

Sustained Firing and the Representation of Sound
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ensemble. This was achieved by enforcing the responses have unit

variance and be mutually uncorrelated, i.e., hrj(t)rk(t)it~djk

where djk is the Kroenecker delta function (see Methods); we refer

to these as response constraints. These constraints ensured that the

responses had a bounded magnitude and that the STRFs did not

all converge to the same solution.

Emergence of richly structured STRFs
We optimized both the sustained objective Jsus(H) and sparsity

objective Jsp(H) using an ensemble of natural stimuli comprising

speech, animal vocalizations, and ambient outdoor sounds. Each

ensemble of K~400 filters was initialized at random using zero-

mean, unit variance Gaussian noise, and each STRF covered from

0–250 ms in time and 62.5–4000 Hz along the tonotopic axis.

For the sustained objective, we considered a wide range of

correlation intervals from very brief (DT~10 ms) to very long

(DT~2000 ms). Examples of emergent STRFs for DT~125 ms
are shown in Figure 2A. For the spectro-temporal patches shown,

red and blue colors indicate that the presence of energy in a

particular spectro-temporal region yields excitatory and inhibitory

responses, respectively. We observe a variety of STRFs that are

highly localized, sensitive to narrowband spectral and temporal

events, oriented, and some that are seemingly noise-like and not

convergent to any particularly interesting shape. Importantly, such

observations about these basic STRF classes align with those made

in a number of previous physiological studies (see, e.g., [23,24,27]).

Moreover, coverage of the STRFs appears to span the full time-

frequency space. These results suggest that the sustained firing

objective may underlie part of the coding strategy used by central

auditory neurons.

Shown in Figure 2B are examples of emergent STRFs obtained

by optimizing the sparsity objective. Indeed, this particular

objective yields STRFs that are highly localized and sparsely

distributed, with sensitivity to bandlimited spectral and temporal

events. While both objective criteria yield noisy STRFs, it is clear

that the sparse ensemble is much more noisy, with a less extensive

coverage of the basic sound classes as observed with the sustained

ensemble.

Ensemble diversity varies smoothly with DT
Since the information-bearing components of natural sounds

vary concurrently across multiple timescales, it was expected that

the structure of STRFs learned under the sustained objective

would vary with the correlation interval DT . Indeed, inspection of

the sustained ensembles for a range of DT suggested the presence

of a number of latent classes whose membership varied smoothly

from short to long correlation intervals. To quantify variations in

population diversity over ecologically relevant timescales, we

performed unsupervised clustering of the emergent STRFs and

studied how class membership changed with objective function

and correlation interval.

We pooled STRFs from the sparse ensemble and from the

sustained ensembles for DT~10, 25, 50, 125, 250, 500, 1000, and

2000 ms, yielding a total of 3600 STRFs. We then applied

normalized spectral clustering to discover latent classes among the

pooled STRFs. In general, spectral clustering algorithms require

an affinity matrix that specifies pairwise similarities between the

objects being clustered. Viewing this affinity matrix as an

undirected graph, spectral clustering finds a partition of the graph

into groups whose elements have common similarity with one

another. A natural measure of similarity between STRFs can be

derived from the two-dimensional cross-correlation between pairs

of spectro-temporal patches. Such a measure is similar to that

considered by Woolley et al. [28] and is desirable since it does not

depend on subjective choice of spectro-temporal features to use for

clustering. In this work, we defined the measure of similarity

between pairs of STRFs as the absolute value of the maximum value

of the two-dimensional cross-correlation matrix; we used absolute

value since we wished to group similar STRFs regardless of

whether they were excitatory or inhibitory. Furthermore, as the

STRFs tended to be distributed with a variety of phases in the

input space, we considered cross-correlations for arbitrary time-

frequency shifts (see Methods for details).

Results obtained using normalized spectral clustering of the

emergent ensembles into nine classes are shown in Figure 3. In the

center panel of the figure, a stacked bar chart illustrates the the

percentage of STRFs at a particular DT assigned to one of nine

Figure 1. Schematic of the proposed framework. Panel (A) shows an example of an auditory spectrogram for the speech utterance ‘‘serve on
frankfurter buns…’’ whereas panel (B) illustrates how spectro-temporal patches are mapped to an ensemble of instantaneous neural firing rates.
doi:10.1371/journal.pcbi.1002982.g001

Sustained Firing and the Representation of Sound
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classes. Different segment colors correspond to each of the nine

classes, and segment width is proportional to the number of

STRFs assigned to that class. Surrounding the bar chart are

examples from six classes that best illustrate how diversity varies

with DT , namely noisy, localized, spectral, complex, temporal, and

directional classes. These labels are qualitative descriptors of each

class and not quantitative assessments of the time-frequency

characteristics of each category.

Inspection of the cluster groupings reveal rich structural

variations over a wide range of correlation intervals. In particular,

the STRFs labeled according to the noisy class are found to

dominate the sparse ensemble, with a large presence in the

sustained ensemble for DT~10 ms. Membership in this class

drops for DT between 10 and 125 ms, and begins to increase at

125 ms. We also observe that short correlation intervals (DT~10,

25, and 50 ms) have a large concentration of localized STRFs, with

membership dropping with increasing DT . While the temporal class

holds relatively steady across the sustained ensembles, we find that

membership in the directional, complex, and spectral classes varied

smoothly across DT . In general, we find that ensemble diversity is

maximized for DT~125 ms (max. entropy of 3.08 bits), but the

overall trends suggest rich ensemble structure between 10 and

250 ms, which is notably in the range of the timescales of natural

sounds [29,30]. This is further supported by the increasing

presence of noisy STRFs for large correlation intervals (DT~1000

and 2000 ms).

In addition to studying structural variations in the shapes of the

emergent STRFs, it is also of interest to examine the structure of

the STRF outputs in response to natural sounds. In particular, we

sought to address the extent to which enforcing sustained

responses does indeed yield responses that persist over time. We

defined the k0th neuron to be significantly ‘‘active’’ when its firing

rate rk(t) exceeded +1 standard deviation over time. While this is

not meant to be a precise measure of a neuron’s activation (since,

for instance, the firing rate is not used to modulate a Poisson spike

generation process), such a measure nevertheless quantifies and

characterizes a strong versus weak ensemble response to natural

stimuli.

Shown in Figure 4A are the distribution of activation times for

individual neurons for ensembles of DT~10 and 125 ms in

response to a held-out set of natural stimuli. The neurons are

shown sorted according to decreasing median activation time, and

the interquartile ranges of activation time are indicated by the

shaded regions. We observed that the most diversity in median

activation times across ensembles occurred in approximately the

top 10% of the most persistent neurons. To summarize these

observations, we considered the distribution of median activation

times of the top 10% of neurons with most persistent responses

Figure 2. Examples of emergent STRFs. Shown are STRFs learned by optimizing (A) the sustained objective function Jsus(H) for DT~125 ms
and (B) the sparsity objective function Jsp(H). The examples shown here were drawn at random from ensembles of 400 neurons. The sustained STRFs
are shown in order of decreasing contribution to the overall objective function whereas the sparse STRFs are shown randomly ordered. Each spectro-
temporal patch spans 0–250 ms in time and 62.5–4000 Hz in frequency. For these examples the dynamic range of the STRFs was compressed using a
sinh(:) nonlinearity.
doi:10.1371/journal.pcbi.1002982.g002

Sustained Firing and the Representation of Sound
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(i.e., the top 40 neurons); these distributions are illustrated as

boxplots in Figure 4B.

As noted previously with the clustering results, shorter DT
values favor mostly localized and noisy STRFs and consequently it

was expected that activations would be brief. Interestingly,

however, we observe that with increasing DT , median activations

peak between 50 and 500 ms and fall off for large DT despite the

STRFs being optimized to promote sustained responses over long

intervals. This overall trend aligns with the previous clustering

results that demonstrate how population diversity is maximized

over intervals corresponding to timescales that predominate

natural stimuli. The STRFs corresponding to the top 10% most

persistent responses for DT~125 ms are shown in Supplementary

Figure 1, and we find that they generally have a spectral tuning,

but are fairly narrowband and localized.

Additionally, we considered the responses of the top 40 most

persistent responses obtained using the sparsity objective function;

the distribution of median activations is in the first column of

Figure 4B. We find that the sparse ensemble yields responses most

similar to those for short DT .

Comparison of emergent sustained ensembles to
physiology

How do the emergent STRFs learned under the sustained firing

objective compare to those observed in physiological studies?

Broadly speaking, we find that the emergent STRFs share many of

Figure 3. Spectral clustering results. Shown are nine clusters obtained by pooling STRFs from the sparse as well as sustained ensembles for
DT~10, 25, 50, 125, 250, 500, 1000, and 2500 ms. Shown in the center is a stacked bar chart where segment color corresponds to class label and
segment width is proportional to the number of STRFs assigned to a particular class in a given ensemble. The surrounding panels show examples of
STRFs drawn from six illustrative classes, namely, noisy, localized, spectral, complex, temporal, and directional.
doi:10.1371/journal.pcbi.1002982.g003

Sustained Firing and the Representation of Sound
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the trends with biological receptive fields typically observed in

animal models. We explored this issue by comparing our model

ensembles with a set of 1586 STRFs recorded from awake, non-

behaving ferret primary auditory cortex using TORC [31] and

speech stimuli [27,32] (see Methods for more details). Where

applicable, we also compared our results with reported results

from anesthetized ferrets by Depireux et al. [23] and cats by Miller

et al. [24] in the literature.

Illustrative examples of the types of STRFs found in the neural

data are shown in Figure 5. In particular, we find neural STRFs

that are qualitatively similar those found in the localized, complex,

noisy, and directional clusters shown earlier in Figure 3. Because the

temporal and spectral sampling rates used in our model are higher

than those used in the physiological data, we did not find good

matches with the temporal and spectral classes.

To visualize the overlap between the spectro-temporal modu-

lation coverage of the neural and model STRFs, we used the

ensemble modulation transfer function (eMTF). The eMTF is

derived by averaging the magnitude of the 2D Fourier Transform

of each neuron in a given ensemble, and jointly characterizes

modulations in time (rate, in Hz) and in frequency (scale, in cyc/

oct). We first applied normalized spectral clustering to the neural

STRFs to obtain nine clusters. Next, we computed the eMTF for

each cluster, extracted isoline contours at the 65% level, and

overlaid these curves on the eMTF of the model STRFs for

DT~125 ms. These results are shown in Figure 6 and illustrate

the overlap between the model and neural data, particularly at the

‘‘edges’’ of the neural STRF modulations. While the overlap is not

complete, it is clear that the modulation spectra of each ensemble

are not disjoint. Moreover, the model eMTF suggests a general

Figure 4. Analysis of the temporal activations of emergent ensembles. Panel (A) shows the median activation time of individual neurons
(solid lines, sorted in decreasing order) for DT~10 and 125 ms, respectively, for STRFs that optimize the sustained objective function. The shaded
region illustrates the corresponding interquartile range. Panel (B) shows the distributions (as boxplots) of median activation times of the top 10%
‘‘most persistent’’ neurons for sparse and sustained ensembles for increasing DT .
doi:10.1371/journal.pcbi.1002982.g004

Sustained Firing and the Representation of Sound
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ensemble sensitivity to relatively fast modulations; this point is

explored further in a later section (‘‘Emergent STRFs capture

spectro-temporal modulation statistics of stimulus’’).

To better characterize the relationship between the neural and

model data, we employed a statistical comparison of the

distribution of the two datasets. If the models truly generated

STRFs similar to those in physiological studies, then one might

expect a nearest-neighbor (NN) similarity distribution akin to one

derived from the neural ensemble we considered. We computed

the symmetric KL-divergence between each of the model and

within-physiology NN similarity distributions (shown in Supple-

mental Figure 2). We found that the sustained-response (presented

here) and sustained-shape (presented later in this paper) distribu-

tions had KL divergences of 0.80 and 0.85, respectively, whereas

the sparse distribution had a KL distance of 1.05. KL typically

measures the expected number of bits required to code samples

from one distribution using codes from the other. While these

numbers are difficult to assess in absolute terms, they give a sense

of how the different model optimizations and constraints compare

to each other. These numbers reveal that the sustained ensembles

are similarly comparable to the physiology, whereas the sparse

ensemble has a somewhat worse match. Of course, caution must

be taken with these numbers because the set of neural STRFs we

analyzed represent only a subset of mappings that likely exist in

central auditory areas.

Next, we measured a variety of parameters from the neural and

model STRFs (for DT~125 ms) that more fully characterized the

extent of spectro-temporal coverage and modulation sensitivity of

the ensembles (see Methods), the results of which are summarized

in Figure 7.

Based on the distribution of directionality indices, shown in

panel (A), we observe that the model STRFs are largely symmetric,

with the majority of neurons having no preference for upward or

downward moving input stimuli (mean&0). As indicated by the

Figure 5. Comparison of emergent STRFs learned according to the sustained objective function with examples estimated from
ferret auditory cortex.
doi:10.1371/journal.pcbi.1002982.g005

Figure 6. Cluster analysis of neural STRFs. Illustration of the overlap between the eMTFs of neural STRF clusters and that of the response-
constrained sustained objective model STRFs; class 9 comprised mostly noisy STRFs with an exceedingly broad eMTF and its contour is omitted here
for clarity. The white contour corresponds to the model eMTF at the 65% level.
doi:10.1371/journal.pcbi.1002982.g006

Sustained Firing and the Representation of Sound
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tails of this distribution, however, a subset of neurons have a strong

directional preference. This agrees with the neural STRFs, and

similar observations have been made in MGB and primary

auditory cortex of cats by Miller et al., as well as in measurements

by Depireux et al. from primary auditory cortex of ferrets.

Furthermore, panel (B) illustrates that a large number of model

STRFs are fairly separable, with a peak in the separability index

(SPI) distribution around 0.10 and an average value of 0.26. This

trend aligns with values reported in the literature by Depireux et al.

in measurements from ferret auditory cortex (mean of approx.

0.25). However, it is worth noting that this low level of separability

is not uniformly reported across physiological studies of receptive

field of mammalian auditory cortex. For instance, the physiolog-

ical data analyzed in the current study (examples of which are

shown in Figure 5) do yield a higher average SPI (mean = 0.37).

The temporal modulation statistics of the model STRFs, as

quantified by best rate (BR), also align generally with results

reported from mammalian thalamus and cortex. In panel (C) we

observe a broad, bandpass distribution of best rates, with an

average of 23.9 Hz. Reported physiological results from Miller et

al. show similarly broad ranges of temporal tuning with

preferences around 16 Hz and 30 Hz range for cortex and

thalamus, respectively. The neural STRFs we analyzed show a

somewhat slower tuning, with an average BR of 9.5 Hz.

Furthermore, in panel (D), we computed the normalized average

rate profile from the model STRFs. We observe a peak at 7.8 Hz,

with an upper 6-dB cutoff of 34.4 Hz. Here we find a close overlap

with the rate profile computed from the neural STRFs as well as

with average profile results as reported by Miller et al. (peak at

12.8 Hz; upper 6-dB cutoff at 37.4 Hz).

The spectral modulation statistics of the model STRFs, as

quantified by best scale, are generally faster than those reported

from studies of thalamic and cortical nuclei. The distribution of

best scales shown in panel (E) is bandpass with a wide range of

slow to fast spectral coverage, with an average tuning of 1.40 cyc/

oct. The neural STRFs, in contrast, are tuned to much slower

scales (mean = 0.47 cyc/oct). Similarly, results from Miller et al. in

MGB indicate a generally slower tuning (0.58 cyc/oct), whereas

measurements from cortical neurons, while having a similarly wide

range of tunings as with the model, indicate a slower average value

of 0.46 cyc/oct and an upper cutoff of approx. 2 cyc/oct.

Finally, the ensemble average scale profile, shown in panel (F), is

bandpass and exhibits a peak at 0.7 cyc/oct with an upper 6-dB

cutoff of 2.9 cyc/oct. The neural STRFs, however, are much slower

with peak at 0.2 cyc/oct and an upper cutoff of 1.9 cyc/oct. This is

similar to observations from MGB by Miller et al., where they

reported that the ensemble average scale profile is generally low-pass,

with average scale profile peaks and upper 6-dB cutoffs at 0 cyc/oct

and 1.3 cyc/oct, respectively, with similar observations in cortex.

In summary, while we cannot map the emergent STRFs to any

exact synapse, they nevertheless reflect the general processing

characteristics of various stations along in the central auditory

pathway. There is good alignment with the neural STRFs and

reported results in mammalian MGB and primary auditory cortex

with respect to directional sensitivity and spectro-temporal

separability. The temporal modulation statistics of the emergent

sustained STRFs appear to be most similar to those measured

from thalamus and cortex. Furthermore, the model STRFs are

generally faster with regard to spectral modulations than those

measured from thalamus and cortex.

Figure 7. Ensemble analysis of STRFs learned under the sustained objective function for DT~125 ms. In panels (A), (B), (C) and (E), the
histograms show the distribution of model parameters whereas the thin green lines show the distribution of the physiological data. The black and
green dashed vertical lines show population means for the model and neural data, respectively. In panels (D) and (F), the black and green lines
correspond to the model and neural STRFs, respectively, with the dashed lines indicating 6-dB upper cutoff frequencies. Refer to the text for more
details.
doi:10.1371/journal.pcbi.1002982.g007
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Emergence of a sparse population code
To explore the relationship between STRFs optimized to

promote sustained responses and those that explicitly maximize

population sparsity, we compared the average responses of the

sustained ensemble for DT~125 ms with the sparse ensemble.

Specifically, we used the converged STRFs to analyze a held-out

set of natural stimuli, computed a histogram of the population

responses at each time, and computed the average histogram

across the entire test input (see Methods). Since the sparse

ensemble was optimized to yield a highly kurtotic firing rate

distribution, it was of interest to examine the shape of the

distribution when promoting sustained responses.

Results comparing the average histograms of sustained versus

sparse responses is shown in Figure 8, with log-probabilities shown

on the vertical axis to emphasize differences between the tails of

the distributions. The main observation is that both the sustained

and sparse ensembles have distributions that have long tails and

are are highly peaked around a firing rate of zero. For reference,

we show the average histograms obtained by filtering the stimulus

through the first 400 principal components of the stimulus (see

Supplemental Figure 3) as well as through a set of 400 random

STRFs; a zero-mean, unit variance Gaussian distribution is also

shown. Therefore, despite promoting temporally persistent

responses, the sustained responses yield a population response

that is not altogether different from an ensemble that explicitly

maximizes kurtosis. Interestingly, this observation was also made

by Berkes and Wiscott in the context of complex cell processing in

primary visual cortex (see Sec. 6 of [33]).

Emergent STRFs capture spectro-temporal modulation
statistics of stimulus

Finally, we sought to explore the consequences of relaxing the

constraint that the responses be mutually uncorrelated. Rather

than directly constrain the responses, we considered constraints to

the shapes of the model STRFs. This was achieved by solving

arg max
H

Jsus(H) subject to HT H~I ,

i.e., we require the STRFs to form an orthonormal basis. So long

as the stimuli are bounded, this set of constraints meets our

requirements that (1) the output of the STRFs be bounded and (2)

we minimize redundancy in the learned ensemble. As before, the

optimization is described in the Methods. We consider an

ensemble size of K~400 STRFs initialized at random. Examples

of shape-constrained STRFs that optimize the sustained objective

function for DT~125 ms are shown in Figure 9. Again, we

observe STRFs that are bandpass, localized, oriented, and

sensitive to a variety of spectral and temporal input. However,

there was an apparent difference between the speed of the spectro-

temporal modulations and those from STRFs learned subject to

the response constraints.

It is well known that natural sound ensembles are composed

largely of slow spectro-temporal modulations [29,30,34]. Howev-

er, the emergent STRFs learned subject to response constraints

appear to be tuned to relatively fast spectral and temporal

modulations, whereas the STRFs learned subject to shape

constraints appear to have a broader tuning. To further examine

how both sets of constraints jointly capture and are related to the

spectro-temporal modulations observed in stimulus, we compared

the average 2D modulation profile of the stimulus to the eMTFs

derived from both sets of constraints.

An interesting view of how the emergent STRFs capture the

spectro-temporal modulations of the stimulus is illustrated in Figure 10

for DT~125 ms. Shown is the average 2D modulation profile of the

stimulus overlaid with a single isoline contour (at the 65% level) of the

eMTFs learned subject to response (thick red lines) and shape

constraints (thick black lines). We also show the constellation of BR

versus BS for each ensemble (indicated by ‘|’ and ‘D’ for response

and shape constraints, respectively). As implied by the contours, the

response constraints yield STRFs that follow the spectro-temporal

Figure 8. Average population response histograms for STRFs learned under the sustained and sparse objectives subject to
response constraints.
doi:10.1371/journal.pcbi.1002982.g008
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‘‘edge’’ of the stimulus, while the shape constraints explicitly capture

most of the ‘‘slowness’’ of the stimulus. As mentioned previously, the

response constraints effectively force the temporal response of the

sustained ensemble to be sparse, which consequently results in highly

selective STRFs that tend to be tuned to fast modulations.

Nevertheless, they implicitly capture the spectro-temporal extent of

the stimulus. Moreover, since the shape constraints effectively force

the STRFs to form a basis that spans the input space, this results in

neurons that explicitly capture the slow modulations of the stimulus.

Similar observations were made across the range of DT , and for each

case it was clear that the spectro-temporal modulations of the stimulus

are fully captured by the combination of both sets of constraints.

Discussion

In this paper, we considered a framework for studying how

choice of a sustained firing versus sparse coding objective affects

the shapes of model spectro-temporal receptive fields in central

auditory areas. The sparse coding objective considered here,

namely that of maximizing population kurtosis, yields STRFs that

are mostly noisy. Those that do converge are generally highly

localized. In contrast, enforcing the sustained firing objective

subject to the same response constraints yields richly structured

ensembles of STRFs whose population diversity varies smoothly

with the correlation interval DT . Of course, the observed

Figure 9. Examples of STRFs learned under the sustained objective function (DT~125 ms) subject to orthonormality constraints on
the shapes of the filters. The examples shown here were drawn at random from an ensemble of 400 neurons, and the STRFs are shown in order of
decreasing contribution to the overall objective function. Each spectro-temporal patch spans 0–250 ms in time and 62.5–4000 Hz in frequency. For
these examples the dynamic range of the STRFs was compressed using a sinh(:) nonlinearity.
doi:10.1371/journal.pcbi.1002982.g009

Figure 10. Spectro-temporal modulations in the stimulus are fully captured by STRFs that promote sustained responses subject to
response and shape constraints. Here, the average MTF of the stimulus is overlaid with contours (at the 65% level) of the ensemble MTFs for
both constraints for DT~125 ms. For each ensemble we also show the constellations for best rate vs. best scale (marked by ‘|’ and ‘D’ for response
and shape constraints, respectively). For the response constraints, we show the contour line and BR/BS constellations for STRFs that contribute to
99% of the objective function.
doi:10.1371/journal.pcbi.1002982.g010
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structural variations are necessarily biased due to construction of

the stimulus. Nevertheless, this diversity, as revealed by the results

of the unsupervised clustering, paired with the responses of the

most persistent STRFs, supports the notion that sustained neural

firings are preferred in the range of timescales predominant in

natural sounds. While we do not necessarily attribute the emergent

sustained STRFs to any particular synapse in the auditory

pathway, we instead note that the observed filters exhibit general

similarities to physiological observations made in auditory

thalamus and cortex.

We also observed that enforcing the sustained firing objective

with response constraints yields an ensemble firing rate distribu-

tion that is similar, on average, to one where population sparsity

was explicitly enforced. This supports the proposal that the two

coding objectives are not necessarily at odds, and that in some

sense a sustained firing objective yields ‘‘sparsity for free.’’ Of

course, the sustained firing and sparse coding objectives could be

quantified in many different ways (see, e.g., Hashimoto [35] and

Carlson et al. [11]), but the present study is a promising step in

understanding their relationship in the central auditory system

from a computational perspective.

Finally, to explore the consequences of relaxing the constraint

that the responses be mutually uncorrelated, we explored an

alternative set of orthonormality constraints on the sustained firing

objective. While still minimizing a notion of redundancy, we

observed that the emergent ensembles are generally slower,

potentially better capturing the slow spectro-temporal modulations

known to be present in natural sounds. This experiment further

demonstrated the utility of the considered framework for directly

addressing questions about coding schemes and various sets of

constraints in representing sound in central auditory areas.

Emergence of a discriminative spectro-temporal
representation for natural sounds

The combination of shape and response constraints on the

sustained objective function yield STRF ensembles that appear to

jointly capture the full range of spectro-temporal modulations in

the stimulus. However, the distinct differences in MTF coverage

illustrate the tradeoff between redundancy and efficiency in

sensory representations. In particular, the shape constraints yield

STRFs that are somewhat akin to the first few principal

components of the stimulus (see Supplemental Figure 3). This is

not surprising given that the objective function defines a notion of

variance of linear projections, the component vectors of which are

constrained to form an orthonormal basis. However, since the

responses are not strictly enforced to be uncorrelated, orthonorm-

ality imposed on the filter shapes does not necessarily reduce

redundancy in the resulting neural responses.

In contrast, the response constraints yield STRFs that are highly

selective to the input and are thus comparatively ‘‘fast’’ in the

modulation domain. This representation can be thought of as

more efficient since at any given time only a few neurons have a

large response. However, while the shapes of individual STRFs fail

to explicitly capture the slow spectro-temporal modulations

predominant in natural sounds, it instead appears that the

ensemble MTF of the response-constrained STRFs collectively

forms a contour around the high-energy modulations of the

stimulus that implicitly capture its spectro-temporal extent.

Is this contouring of the average modulation spectrum of

natural sounds something performed by the auditory system? The

neural STRFs we considered certainly had an eMTF that reflects a

tuning to slower modulations near the MTF origin. However,

there is some evidence that the auditory system uses an ‘‘edge’’-

sensitive, discriminative modulation profile for analyzing sound.

Woolley et al. [36], in an avian study, showed that the eMTF of

neurons from Field L (the avian A1 analog) has a bandpass

temporal modulation profile (at low scales) that facilitates a

discriminative tuning of temporal modulations among classes of

natural sounds. Nagel and Doupe [37] have also shown examples

of avian Field L STRFs that orient themselves near the spectro-

temporal ‘‘edge’’ of the stimulus space. Moreover, Rodriguez et al.

[38], in a study of mammalian IC neurons, showed that neural

bandwidths can scale to better capture fast, but less frequently

occurring, modulations. In light of these observations, the

modulation profiles observed from the sustained STRFs for both

response and shape constraints are consistent with the notion that

the auditory system makes an explicit effort to capture all

modulations present in natural sounds: fast, feature-selective, and

consequently discriminative modulations, as well as frequently

occurring slow modulations.

A neural code for sensory processing
The notion that sustained neural firings form part of the neural

representation of sensory systems is not limited exclusively to the

auditory modality. In fact, the sustained firing objective considered

in this paper is related to a broad class of sensory coding strategies

referred to collectively under the temporal slowness hypothesis. This

concept proposes that the responses of sensory neurons reflect the

time-course of the information-bearing components of the

stimulus—which are often much slower with respect to the fast

variations observed in the stimulus—and may therefore reflect

invariant aspects of the sensory objects in the environment.

Examples of early neural network models exploring slowness as a

learning principle were considered by Földiák [39], Mitchison

[40], and Becker [41]. More recently, a number of computational

studies, particularly in vision, have established slowness as a

general sensory coding strategy and have revealed relationships

with a number of general machine learning techniques. Here we

outline the connections between the sustained firing criterion

considered in this study and previous work.

Our definition of the sustained firing objective, Jsus, was

adapted from a notion of temporal stability proposed by Hurri and

Hyvärinen termed temporal response strength correlation (TRSC) [18].

This study considered modeling of simple cells in primary visual

cortex, and their objective function was defined as

JTRSC~
XK

k~1

hr2
k(t)r2

k(t{t)it ð3Þ

for a single fixed t. By maximizing JTRSC subject to the

decorrelation constraints hrj(t)rk(t)it~djk, they showed the

emergence of spatial receptive fields similar to those observed in

simple cells in primary visual cortex. It is clear that the objective

functions Jsus and JTRSC are equivalent for a single time step, but

the main difference between the two is that we sought to enforce

temporal stability over a time interval ½t{DT ,t�, rather than

between two distinct times t and (t{t). Interestingly, optimization

of the TRSC objective was shown by Hyvärinen to yield a solution

to the blind source separation problem [42], suggesting perhaps

that in the auditory domain, such a criterion may underlie

separation of overlapping acoustic sources.

The sustained firing objective is also related to a well-known

model of temporal slowness known as slow feature analysis (SFA)

[20]. The computational goal of SFA is to find a mapping of an

input that extracts the slow, and presumably more invariant,

information in the stimulus. Briefly, for an input x(t), linear SFA

finds mappings yk(t)~hT
k x(t) that minimize
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JSFA : ~h(yk(t){yk(t{1))2it ð4Þ

subject to hyk(t)it~0, hy2
k(t)it~1, and hyj(t)yk(t)it~0V jvk.

Note that the input x(t) is not necessarily the raw stimulus but

could represent a non-linear expansion of the input, akin to

applying a kernel function in a support vector machine [43].

Therefore, SFA finds a mapping of the input that varies little over

time and whose outputs are bounded and mutually uncorrelated.

In the visual domain, Berkes and Wiskott found that SFA could

explain a variety of complex cell phenomena in primary visual

cortex such as the emergence of Gabor-like receptive fields, phase

invariance, various forms of inhibition, and directional sensitivity

[33]. Similar to our study, they also found the emergence of a

sparse population code based on SFA. More importantly,

however, they established a link between SFA at the level of

complex cells and JTRSC , which in turn links to the sustained firing

objective Jsus explored in our study. Specifically, they showed that

when a complex cell output is expressed as a quadratic form

y(t)~
X

k
r2

k(t) [35,44], the SFA objective could be written as

JSFA~
XK

k~1

hr2
k(t)r2

k(t{1)itz
X
j=k

hr2
j (t)r2

k(t{1)it ð5Þ

which is equivalent to maximizing JTRSC (and thus Jsus for a single

time-step) plus cross-correlation terms. As noted by Berkes and

Wiskott, this relationship suggests that sustained firing rates at the

level of simple cells are modulated as part of a hierarchical cortical

processing scheme in primary visual cortex. Given the increasing

understanding of such hierarchical circuits in the auditory system

[45], the possibility that sustained firing rates are varied as part of

a higher-order processing strategy in primary auditory areas is an

exciting prospect worth further exploration.

Other important relationships exist between SFA and a number

of general machine learning principles. Blaschke et al. [46]

established a relationship between SFA and independent compo-

nent analysis, a widely used method for blind source separation

(see, e.g., [47]). Klampfl and Maass [48] showed that under certain

slowness assumptions about the underlying class labels in observed

data, SFA finds a discriminative projection of the input similar to

Fisher’s linear discriminant. Furthermore, SFA has links to

methods for nonlinear dimensionality reduction: Creutzig and

Sprekeler [49] described the link between SFA and the informa-

tion bottleneck whereas Sprekeler [50] showed a connection

between SFA and Laplacian eigenmaps.

In summary, the temporal slowness hypothesis forms a sound

basis for learning a representation from data with rich temporal

structure. Slowness as a learning principle has also been shown to

explain the emergence of simple and complex cell properties in

primary visual cortex. As described above, the sustained firing

principle considered in this paper has fundamental links to SFA,

which in turn is related to a number of general machine learning

strategies. To the best of our knowledge, ours is the first thorough

study that establishes a link between the temporal slowness

hypothesis and an emergent spectro-temporal representation of

sound in central auditory areas.

Implications for automated sound processing systems
The ensemble modulation coverage results are particularly

interesting since it is widely thought that ‘‘slow’’ spectro-temporal

modulations carry much of the message-bearing information for

human speech perception. Furthermore, it is known in the speech

processing community that features that capture slow temporal

[51] and joint spectro-temporal modulations [52,53] are important

for noise-robust automatic speech recognition. The observed

contouring effect resulting from the sustained firing criterion may

thus reflect a mechanism to detect the spectro-temporal ‘‘edges’’ of

the message-bearing components of the stimulus, and possibly

contribute to a noise-robust representation of sound. We have

recently considered this principle and have demonstrated that 2D

bandpass filters derived from eMTF contours learned from a

speech-only stimulus yield state-of-the-art noise-robust acoustic

features for automatic speech recognition [54]. Moreover, it is

possible that the contour level may be chosen adaptively as a

function of ambient signal-to-noise ratio to better capture

variations in the high-energy modulations of the stimulus. Also,

since the emergent STRFs capture general spectro-temporal

patterns that characterize the stimulus, it is possible that ensembles

of STRFs could be learned in various speech-plus-noise scenarios

to perhaps better characterize noise-corrupted acoustic environ-

ments. Such hypotheses can be readily verified experimentally and

may have practical impact to automated sound processing systems

in noisy acoustic environments.

Concluding remarks
Finally, the framework considered in this paper can be extended

in a number of ways. For instance, to address the linearity

limitation of the STRF, it is worthwhile to consider a model based

on a linear-nonlinear cascade [55]. As mentioned earlier, the

auditory pathway is necessarily hierarchical, and warrants

consideration of hierarchical computational models. Indeed,

recent physiological evidence also indicates that the representation

becomes increasingly complex and nonlinear as one moves from

away thalamo-recipient layers in primary auditory cortex (for a

review, see [45]). Finally, a recent computational study in vision by

Cadieu and Olshausen [56] proposes a hierarchical generative

model that explicitly unifies notions of sparse coding and temporal

stability. In particular, a two-layer network learns a sparse input

representation whose activations vary smoothly over time, whereas

a second layer modulates the plasticity of the first layer, resulting in

a smooth time-varying basis for image sequences. One can

imagine that such a framework could be extended to spectro-

temporal acoustic stimuli.

Methods

Stimulus description and preparation
An ensemble of natural sounds comprising segments of speech,

animal vocalizations, and ambient outdoor noises was assembled

for use as stimuli. Two sets were generated, one for training and

one for evaluating the response characteristics of the STRFs.

Phonetically balanced sentences read by male and female speakers

were used [57]. Examples of animal vocalizations included barking

dogs, bleating goats, and chattering monkeys [58]. The ambient

sounds included, for example, babbling creeks and blowing wind,

and other outdoor noises. The speech utterances were approxi-

mately three seconds each and comprised 50% of the stimulus.

The animal vocalizations and ambient sounds formed the

remaining 50% of the stimulus (25% each), were broken into

three-second segments, and were windowed using a raised cosine

window to avoid transient effects. Finally, segments from each

class were downsampled to 8 kHz, standardized to be zero-mean

and unit variance, and randomly concatenated to yield a

waveform approximately three minutes in overall length, i.e.,

*90 seconds of speech, *45 seconds of animal vocalizations, and

*45 seconds of ambient outdoor noises.
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We used a computational model of peripheral processing to

account for the transformation of a monaural acoustic stimulus to a

joint time-frequency representation in the auditory midbrain; this

representation is referred to as an auditory spectrogram [59,60]. The

auditory spectrogram represents the time-varying spectral energy

distribution on the (logarithmic) tonotopic axis, and accounts for the

physiology of inner hair cell transduction and filtering on the

auditory nerve, enhanced frequency selectivity in the cochlear

nucleus via a lateral inhibitory network, and the loss of phase locking

to stimuli observed in midbrain nuclei. The specific model details

have been presented previously and as such we forego a detailed

description here, except to note that we sampled the log-frequency

axis over six octaves with ten equally spaced channels per octave,

with a short-term integration interval of 5 ms, i.e., we obtained a 60

channel spectral vector every 5 ms. An example auditory spectro-

gram is shown for a segment of speech in Figure 1A.

Spectro-temporal receptive fields
To quantify the relationship between a spectro-temporal

stimulus and its corresponding response in central auditory areas,

we used the spectro-temporal receptive field. Such a functional

characterization of a neuron is useful for identifying the

components of the stimulus to which it is most sensitive. An

STRF models the linear transformation of a time-varying spectro-

temporal input to an instantaneous firing rate, i.e.,

r(t)~

ð ð
h(t,f )s(t{t,f )dtdf zr0, ð6Þ

where h(t,f ) is an LTI filter that defines the STRF, s(t,f ) is a

spectro-temporal stimulus, and r0 is the average firing rate.

Without loss of generality, we assume r0~0. Observe that the

mapping represents convolution in time and integration across all

frequencies, and we can interpret the STRF as a matched filter

that acts on the input auditory spectrogram.

For discrete-time signals and filters, and assuming that h(t,f )
has a finite impulse response, we can express Eq. 6 compactly in

vector notation as

r(t)~hT s(t), ð7Þ

where s(t),h[Rd are column vectors denoting the stimulus and

filter, respectively [61]. Furthermore, to express the response

r(t)~½r1(t)r2(t) � � � rK (t)�T[RK of an ensemble of K neurons, we

concatenate the STRFs into a matrix H : ~½h1 h2 � � � hK �[Rd|K

and write

r(t)~HT s(t): ð8Þ

From the stimulus auditory spectrogram, we extracted 250 ms

spectro-temporal segments once every 5 ms. Each segment was

stacked columnwise into a vector s(t)[Rd where d~3000 (i.e., 50

vectors/segment |60 channels). A total of *30 k spectro-

temporal vectors were extracted from the stimulus. We subtracted

the local mean from each segment and scaled each vector to be

unit norm [18], and note that this pre-processing was also applied

to the test stimulus used for evaluating the STRF response

characteristics. Finally, each spectro-temporal input patch was

processed by the ensemble of STRFs to yield a population

response r(t). Figure 1B illustrates the procedure for obtaining

stimulus vectors s(t) and response vector r(t).

Optimization
To constrain the responses of the STRFs to have unit variance

and be mutually uncorrelated, we first note that the individual

constraints can be written as

hrj(t)rk(t)it~hT
j hs(t)sT (t)ithk~hT

j Cshk~djk,

which can then be compactly expressed as an ensemble constraint

HT CsH~I , ð9Þ

where Cs : ~hs(t)sT (t)it[Rd|d denotes the sample covariance

matrix and I[RK|K is the identity matrix. Since Cs is real-

symmetric, it is unitarily diagonalizable as Cs~ELET , where

E[Rd|d is a matrix of (columnwise) eigenvectors with correspond-

ing eigenvalues along the diagonal of L~diag(l1, � � � ,ld )[Rd|d .

Substituting this decomposition into Eq. 9, we obtained

HT CsH~HT (ELET )H

~HT EL1=2L1=2ET H

~UT U ,

where U : ~L1=2ET H[Rd|K . By recasting the constraints, we can

rewrite the original matrix of STRFs as H~EL{1=2U and

consequently

r(t)~HT s(t)~UTL{1=2ET s(t)~UT z(t),

where z(t) : ~L{1=2ET s(t) corresponds to a whitening of the input

acoustic data, i.e., z(t) has a spherical covariance matrix. For

computational efficiency, we reduced the dimensionality of the

input using a subset of the principal components of the stimulus, i.e.,

z(t)&L{1=2
m ET

ms(t),

where Lm and Em, mvd, are the matrices of eigenvalues and

eigenvectors, respectively, that captured 95% of the variance of the

input. In this work, we found m~468. Therefore, the core problem

we wished to solve is:

arg max
U

J(U) subject to UT U~I , ð10Þ

where J(:) corresponded to either the sustained firing or sparse

coding objective function.

To optimize this nonlinear program, we used the gradient

projection method due to Rosen, the basic idea of which is as follows

[62,63]. Let U(n) denote the n0th update to the matrix of (rotated

and scaled) STRFs U , let aw0 be a learning rate, and let m[N be

an integer used to adjust the learning rate. Assume U(n) is a matrix

with orthonormal columns that is a feasible solution to the problem

in Eq. 10. We updated U via gradient ascent as follows:

U(nz1)~P U(n)z
a

2m
: LJ(U(n))

LU

� �
, ð11Þ

where P : Rd|K?Rd|K is a projection of the gradient update so

that U(nz1) satisfies the orthonormality constraint required in

Eq. 10. If the update was such that J(U(nz1))vJ(U(n)), we set
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m/mz1 and recomputed the projected gradient update, repeating

until J(U) was non-decreasing. Finally, learning ceased when the

relative change between J(U(n)) and J(U(nz1)) fell below a

threshold g or a maximum number of iterations were reached; in

our experiments, we stopped learning for gv0:1% or a maximum

number of 30 iterations. Upon convergence, the desired STRFs

were obtained using H~EL{1=2U . Note that for the case of the

sustained firing objective, Jsus was formed from the sum of K
independent terms, allowing us to directly sort the emergent STRFs

according to their contribution to the overall objective function;

such a sorting was not possible for the sparsity objective.

Of course, the above procedure required a suitable projection

P(:), and one was derived as follows [64]. In general, for a matrix

A[Rm|n, we wish to find a matrix V[Rm|n with orthonormal

columns that minimizes

DDA{V DD2F subject to VT V~I :

Introducing a symmetric matrix of Lagrange multipliers L[Rn|n,

and recalling that DDADD2F ~Tr(AAT ),
we sought to find a stationary point of the Lagrangian

l(V ,L)~Tr (A{V )(A{V )T
� �

zTr L(VT V{I)
� �

:

Computing the (elementwise) partial derivative of l(V ,L) w.r.t. V
and setting it to 0 we obtained [65]

A~V (IzL):

Observing that

AT A~(IzL)VT V (IzL)~(IzL)2,

we have that

(IzL)~(AT A)1=2:

Assuming A had full column rank, then an optimal orthogonal

matrix that minimized DDA{V DD2F that can be used for the

projection in Eq. 11 was found as

P(A)~V~A(AT A){1=2: ð12Þ

Finally, to optimize a given objective function subject to the

STRFs being orthonormal, i.e., hjhk~djk, we solve

arg max
H

J(H) subject to HT H~I :

Here we can again use Rosen’s projected gradient method in Eq.

11 along with the projection defined in Eq. 12, but the only

difference from before is that it does not require pre-whitening of the

stimulus.

Characterizing individual STRFs
We first characterized the emergent STRFs based on param-

eters that described their individual spectro-temporal and modu-

lation tuning.

Separability index. We used a measure of separability to

quantify how well an STRF h(t,f ) could be decomposed into a

product of purely temporal and spectral functions, i.e., as

h(t,f )~hT (t):hS(f ) [23]. Generally speaking, by treating an

STRF as a matrix T[Rm|n, separability can be assessed by

considering the singular value decomposition of T :

T~USVT~
Xr

i~1

siuiv
T
i ,

where U[Rm|m and V[Rn|n are unitary, S[Rm|n is a matrix

such that the singular values si§0 lie along the ‘‘diagonal’’, and

r~rank(T). The separability index SPI was defined as

SPI~1{
s2

1Xr

i~1
s2

i

:

If T is nearly rank-1, we expect s1 to dominate and consequently

SPI is small, indicating that T&s1u1vT
1 , i.e., that the STRF is

approximately separable as a product of only two functions. It

was often the case that STRFs with a simpler structure, e.g.,

localized or purely spectral, had small values of SPI . More

complex STRFs, particularly those that were noisy, had larger

values SPI since they were poorly approximated by a low-rank

decomposition.

Modulation transfer function. To characterize spectro-

temporal modulation tuning in the Fourier domain, we computed

the modulation transfer function (MTF) of an STRF, illustrated in

Figure 11B [24]. The MTF was obtained by computing the

magnitude of the 2D Fourier transform of a thresholded STRF;

here we set all values of the STRF that did not exceed +1
standard deviation to zero. The MTF summarizes the joint

sensitivity of an STRF to temporal modulations (rate, in Hz) and

spectral modulations (scale, in cyc/oct).

Best spectral and temporal modulation rates. We

selected the peak of the MTF to estimate best rate (BR) and best

scale (BS). We expected that BR and BS would summarize an

STRF’s preference for fast or slow temporal and spectral

modulations.

Average rate and scale profiles. By folding the MTF along

the v~0Hz axis, we summarized the temporal and spectral

modulation sensitivity of the STRF by summing along each axis,

yielding rate and scale profiles; these are illustrated in Figure 11C.

These profiles can also be averaged across an ensemble of neurons

to yield a population rate or scale profile.

Directionality index. To characterize whether a neuron

preferred upward vs. downward stimuli, we computed a direc-

tionality index by considering the relative difference in spectro-

temporal modulation energy in the first and second quadrants in

the Fourier domain. This was quantified as [23]

DIR~
E1{E2

E1zE2
,

where E1 and E2 denote the energy in the first and second

quadrant, respectively. By convention, DIRw0 indicates a

preference for downward moving spectro-temporal patches whereas

DIRv0 indicates a preference for upward moving spectro-

temporal patches.

Compactness. To quantify a notion of compactness for an

STRF, we used the isoperimetric quotient, which considers the ratio of

the area of an ellipsoid to its perimeter, i.e.,

COMP~
4p:area

perimeter2
:
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The area and perimeter were computed from the 10-dB excitatory

ellipse which was derived by (1) performing a least-squares fit of a

single Gaussian envelope to a thresholded STRF, (2) finding the

isoline corresponding to a drop of 10-dB from the maximum of the

envelope, and (3) projecting this ellipse onto the spectro-temporal

plane. The compactness measure describes the degree to which

the coverage of an STRF is spherical (COMP~1) versus

elongated (COMPv1), and was used for characterizing localized

vs. non-localized STRFs for the purpose of grouping STRF

clusters (described below).

Characterizing STRF ensembles
Next, we considered measures that characterized a variety of

ensemble-based spectro-temporal and modulation properties.

Figure 11. Extracting basic spectro-temporal parameters for an individual STRF. Panel (A) shows a typical STRF, with solid contour lines
indicating those regions that exceed + one standard deviation. The dashed red line shows the projected 10-dB ellipse from which we estimated
spectral bandwidth. As indicated, the STRF is rather elongated with no strong directional preference, and the pattern is highly separable. Panel (B)
shows the MTF computed from the magnitude of the 2D Fourier Transform of the STRF in (A); from here we estimate BR and BS. Panel (C) shows the
normalized temporal and spectral modulation profiles obtained from the MTF.
doi:10.1371/journal.pcbi.1002982.g011
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Ensemble modulation transfer function. By averaging the

MTF obtained from each STRF, we obtained an ensemble MTF

(eMTF) that characterized the average spectro-temporal modula-

tion sensitivity of a given ensemble [24]. This representation was

used to relate the average modulation tuning of an ensemble to the

modulations present in the stimulus.

Median activation of most persistent neurons. In addi-

tion to analyzing the shapes of the emergent STRFs, we explored

the ensemble firing rate characteristics of the emergent neurons.

Using a held-out set of natural stimuli, we measured the activation

of a neuron as the length of time a response was maintained above

+1 standard deviation (over time) for that particular neuron. We

sorted each STRF according to its median activation time, and

considered the median responses of the top 10% ‘‘most persistent’’

neurons for a given ensemble (as these subsets appeared to vary

most across DT ). The distributions of these activations were then

used to study the extent to which enforcing a sustained response

was reflected in a neuron’s output.

Average population response histogram. In order to

compare distributions of population responses across ensembles,

we computed averaged response histograms as follows. Upon

convergence of a given ensemble, we filtered a held-out set of

natural sound stimuli through the emergent STRFs to obtain a

population response. At each time t, we computed a histogram of

the population response, and computed the average histogram

across the duration of the stimulus. These averaged histograms

could then be used to compare the average population response

characteristics across ensembles.

When comparing the receptive field ensembles from the sparse

and sustained sets, we only included the responses of highly

structured, non-noisy STRFs as determined by the clustering

results outlined next. This step was necessary to keep the

comparison between objective functions fair since the sparse

ensemble was dominated by noisy STRFs. This inclusion criterion

resulted in 115 and 347 neurons for the sparse and sustained

ensembles, respectively.

For comparison, we also calculated the response histograms for

stimuli filtered through the first 400 principal components of the

stimulus (Supplemental Figure 3) as well as through a set of 400

random STRFs. Recall that the magnitudes of the emergent

STRFs were constrained so that that their responses had unit

variance over time. Accordingly, we normalized the responses of

the principal components and random STRFs to also have unit

variance to make a fair comparison.

Average stimulus 2D modulation profile
To summarize the spectro-temporal modulations present in the

natural sound stimulus, we averaged the magnitude of the 2D

Fourier transform of 250 ms patches (non-overlapping) of the

auditory spectrogram.

Grouping canonical classes of STRFs
The optimization procedure resulted in a set of richly structured

patterns that suggested the presence of a number of latent classes

whose membership varied with both choice of objective function

and correlation interval DT . To quantify these variations, we

applied the normalized spectral clustering algorithm of Ng et al.

[66].

We defined the similarity smn between a given pair of STRFs

hm(t,f ) and hn(t,f ) by computing the normalized 2D cross-

correlation matrix for arbitrary shifts in time and frequency and

selecting the maximum of the absolute value of this matrix, i.e.,

smn~ max
i,j

Dcij(m,n)D,

where

cij(m,n)~

P
t

P
f hm(i,j)hn(tzi,f zj)

jjhm(t,f )jjF :jjhn(t,f )jjF
:

Importantly, the absolute value of the cross correlation was used

here since we wished to group STRFs regardless of whether they

were excitatory or inhibitory. Next, we pooled all STRFs we

sought to cluster and constructed a pairwise similarity matrix

S~½smn�[RN|N . Viewing S as a fully connected graph with

edge weights specified by smn, spectral clustering finds a

partitioning of the graph into k groups such that edges between

groups have low similarity whereas edges within a group have

high similarity.

Defining the degree matrix D~diag(d1,d2, � � � ,dN ) where

dm~
X

n
smn and unnormalized graph Laplacian L~D{S, the

normalized spectral clustering algorithm is as follows:

1. Compute the normalized Laplacian Lsym~D{1=2LD{1=2.

2. Compute the first k eigenvectors fv1 v2 � � � vkg corresponding

to the largest k eigenvalues of Lsym.

3. Let V~½v1 v2 � � � vk�[RN|k and form a matrix W from V by

normalizing each row to have unit Euclidean norm.

4. Denoting wn[Rk as the n’th row of W , cluster the set of points

fwng using the k-means algorithm to obtain clusters

C1,C2, � � � ,Ck.

We clustered the STRFs initially into 12 groups. While this

number was necessarily an arbitrary choice, it was found to

sufficiently capture variations in population diversity with DT .

However, we found that (i) three of the resulting clusters could be

reasonably labeled as noisy, whereas (ii) two of the resulting clusters

could be reliably labeled as localized; merely reducing the number

of initial classes did not merge the clusters, but instead blurred

distinctions among the other major categories we sought to study.

We interpreted noisy patterns as those with no obvious spectro-

temporal structure and not indicative of any subset of the stimulus.

Merging of the initial 12 classes was achieved by computing the

average SPI of STRFs from the initial class labels and ranking the

classes in descending order. Indeed, the three noisy classes had the

highest average SPI and consequently resulted in a group with

average SPI greater than 0.5. Similarly, the localized STRFs were

typically highly spherical and sorting the initial clusters by COMP
resulted in the two localized classes to be ranked highest.

Consequently, we grouped these two clusters that had an average

COMP of greater than 0.69. This resulted in a final cluster count

of nine classes.

Analysis of Neural STRFs
We obtained ensembles of neural STRFs estimated using

TORC [31] and speech stimuli [27,32]. There were 2145 TORC

and 793 speech STRFs, and each STRF was pre-processed to

cover 110 ms in time (sampling rate = 100 Hz) and span 5 octaves

in frequency (sampling rate = 5 cyc/oct). For the spectral cluster-

ing analysis, we subsampled the TORC set by randomly selecting

793 STRFs and combined them with the speech STRFs, yielding

a total of 1586 STRFs in the neural data set. In this way, the

neural data analysis was not biased towards one stimulus type or

the other.
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Supporting Information

Figure S1 STRFs corresponding to the top 10% ‘‘most
persistent’’ responses for DT~125 ms.

(TIF)

Figure S2 Distributions of nearest-neighbor similari-
ties for the model ensembles (response- and shape-
constrained sustained objective vs. the sparse objective)
and the neural ensemble.
(TIF)

Figure S3 Top 100 principal components of the natural
stimulus ensemble.
(TIF)
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