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Abstract

The mechanism by which a complex auditory scene is parsed into coherent objects depends on poorly understood
interactions between task-driven and stimulus-driven attentional processes. We illuminate these interactions in a
simultaneous behavioral–neurophysiological study in which we manipulate participants’ attention to different features of
an auditory scene (with a regular target embedded in an irregular background). Our experimental results reveal that
attention to the target, rather than to the background, correlates with a sustained (steady-state) increase in the measured
neural target representation over the entire stimulus sequence, beyond auditory attention’s well-known transient effects on
onset responses. This enhancement, in both power and phase coherence, occurs exclusively at the frequency of the target
rhythm, and is only revealed when contrasting two attentional states that direct participants’ focus to different features of
the acoustic stimulus. The enhancement originates in auditory cortex and covaries with both behavioral task and the
bottom-up saliency of the target. Furthermore, the target’s perceptual detectability improves over time, correlating
strongly, within participants, with the target representation’s neural buildup. These results have substantial implications for
models of foreground/background organization, supporting a role of neuronal temporal synchrony in mediating auditory
object formation.
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Introduction

Attention is the cognitive process underlying our ability to focus

on specific components of the environment while ignoring others.

By its very definition, attention plays a key role in defining what

foreground is, i.e., an object of attention, and differentiating it

from task-irrelevant clutter, or background [1–5]. In the visual

modality, studies have shown that figure/ground segmentation is

mediated by a competition for neural resources between objects in

the scene [2,6,7]. This competition is biased in favor of different

objects via top-down attention as well as behavioral and contextual

effects that work to complement or counteract automatic bottom-

up processes. An intricate neural circuitry has been postulated to

take place in this process spanning primary visual, extrastriate,

temporal, and frontal cortical areas [7–19].

In the auditory modality, however, there have been a limited

number of studies that attempted to explore the neural

underpinnings of attention in the context of auditory stream

segregation, and the mechanisms governing the extraction of

target sounds from a background of distracters [20–28]. It is

largely unknown how top-down (e.g., task-driven or context-

dependent) and bottom-up (e.g., acoustic saliency or ‘‘pop-out’’)

attentional processes interact to parse a complex auditory scene

[29,30].

In a simultaneous behavioral and neurophysiological study

using magnetoencephalography (MEG), we illuminate this inter-

action using stimuli shown in Figure 1A, consisting of a repeating

target note in the midst of random interferers (‘‘maskers’’). This

design generalizes paradigms commonly used in informational

masking experiments, [31], which explore how listeners’ ability to

perceive an otherwise salient auditory element is strongly affected

by the presence of competing elements. For these stimuli, the

ability to segregate the target note depends on various acoustic

parameters, including the width of the spectral protection region

(the spectral separation between target and masker frequencies).

We adapt classic informational masking stimuli to the purposes of

this study by randomly desynchronizing all background maskers

throughout the duration of the trial, making the target note the
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only regular frequency channel in the sequence (with repetition

rhythm of 4 Hz). The informational masking paradigm has been

shown to invoke similar mechanisms to those at play in classic

stream segregation experiments [32,33], both in the systematic

dependence of performance on the size of masker–target spectral

separation, as well as the improvement of performance over time

over the course of few seconds.

While maintaining the same physical stimulus, we contrasted

the performance of human listeners in two complementary tasks:

(1) a ‘‘target task’’ in which participants are asked to detect a

frequency-shifted (DF) deviant in the repeating target signal; and

(2) a ‘‘masker task’’ in which participants are asked to detect a

sudden temporal elongation (DT) of the masker notes. Crucially,

attention is required to perform either task, but the participants’

attention must be focused on different sound components of the

acoustic stimulus in each case. Additionally, all the stimuli are

diotic (identical in both ears), averting any confounding effects of

spatial attention.

Results

The effect of spectral protection region width on the

performance of both tasks is illustrated in Figure 1B. In the left

panel, it can be seen that the detectability of the target becomes

easier with increasing protection region (significantly positive

slope; bootstrap across participants, p,1024), a result that is in line

with previous hypotheses of streaming that correlate the ease of

target detection with the frequency selectivity of neurons in the

central auditory system [34–38].

In contrast, the same manipulations of protection region do not

substantively affect masker task performance (right panel) (not

significantly different from zero; bootstrap across participants,

p.0.3). The masker task, designed to divert attentional resources

away from the target, involves a more diffuse attention to the

spectrally broad and distributed masker configuration; and

compared to the target task, reflects a different top-down bias in

the way the same stimulus is parsed. The behavioral performance

was unchanged whether tested under purely psychoacoustic or

neural recording conditions (no significant difference; unpaired t-

test; target task: t = 20.75, p = 0.46; masker task: t = 0.09, p = 0.93).

For the neural recordings, we used the stimuli with the eight-

semitones spectral protection region because they roughly

matched the behavioral performance across tasks (d-prime for

both is approximately equal to three). The target task is not at

ceiling with the chosen protection region, hence still engaging

participants’ selective attentional processes.

Depending on listeners’ attentional focus, the percept of an

auditory target in a complex scene is differentially mirrored by the

responses of neurons in auditory cortex. Using the high temporal

resolution of MEG, we measure the neural responses to this

stimulus paradigm in 14 human participants. Figure 2A reveals

that, during the performance of the target task, the target rhythm

emerges as a strong 4-Hz component in the neural signal of an

individual participant. In contrast, during the masker task, the

cortical response entrained at 4 Hz is noticeably suppressed in

comparison (Figure 2A, right panel). This differential activation is

strong evidence of the modulatory effect of task-dependent

attention on the neural representation of a single acoustic stimulus,

much like visual attention [39,40]. Additionally, this attentional

effect on the neural signal is not just momentary but is sustained

over the duration of the trial (steady state).

This attentional effect is confirmed in the population of 14

participants (Figure 2B), with an average normalized neural

response of 20.9 in the target task and 8.3 in the masker task: a

gain of more than two and a half for neural phase-locked,

sustained activity when participants’ attention is directed towards

the repeating note (individually, 11 out of 14 participants showed a

significant increase: paired t-test, p,1024). Direct correlation

between the target task neural response and target task behavior is

not observed, but as shown below, changes in a participant’s target

neural response are significantly correlated with changes in the

participant’s behavioral responses.

The MEG magnetic field distributions of the target rhythm

response component, examples of which are shown in the inset of

the graphs in Figure 2A, reveal the stereotypical pattern for neural

activity originating separately in left and right auditory cortex. The

neural sources of all the target rhythm response components with a

sufficiently high signal-to-noise ratio originate in auditory cortex

[41]. The neural source’s mean displacement from the source of

the auditory M100 response [42] was significantly different (two-

tailed t-test; t = 2.9, p = 0.017) by 13.864.9 mm in the anterior

direction, for the left auditory cortex only (no significant

differences were found in the right hemisphere due to higher

variability there). The displacement was not statistically significant

in the remaining directions (3.263.5 mm lateral; 11.366.4 mm

superior); the goodness of fit for these sources was 0.5160.05

(artificially reduced in accordance with [43]). Assuming an M100

origin of planum temporale, an area of associative auditory cortex,

this is consistent with an origin for the neural response to the target

rhythm in Heschl’s gyrus, the site of core auditory cortex including

primary auditory cortex, and a region known to phase-lock well to

4-Hz rhythms [44].

The neural response change at the target rate of 4 Hz is highly

significant (bootstrap across participants, p,1024) (Figure 3A). In

contrast, there is no significant change in normalized neural

response at other frequencies, whether at frequencies nearby (one

frequency bin on either side of 4 Hz) or distant (alpha, theta, and

low gamma band frequencies sampled with approximately 5-Hz

spacing up to 55 Hz). This demonstrates that this feature-selective

Author Summary

Attention is the cognitive process underlying our ability to
focus on specific aspects of our environment while
ignoring others. By its very definition, attention plays a
key role in differentiating foreground (the object of
attention) from unattended clutter, or background. We
investigate the neural basis of this phenomenon by
engaging listeners to attend to different components of
a complex acoustic scene. We present a spectrally and
dynamically rich, but highly controlled, stimulus while
participants perform two complementary tasks: to attend
either to a repeating target note in the midst of random
interferers (‘‘maskers’’), or to the background maskers
themselves. Simultaneously, the participants’ neural re-
sponses are recorded using the technique of magnetoen-
cephalography (MEG). We hold all physical parameters of
the stimulus fixed across the two tasks while manipulating
one free parameter: the attentional state of listeners. The
experimental findings reveal that auditory attention
strongly modulates the sustained neural representation
of the target signals in the direction of boosting
foreground perception, much like known effects of visual
attention. This enhancement originates in auditory cortex,
and occurs exclusively at the frequency of the target
rhythm. The results show a strong interaction between the
neural representation of the attended target with the
behavioral task demands, the bottom-up saliency of the
target, and its perceptual detectability over time.

Attention in Auditory Scenes Analysis
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sustained attention modulates the cortical representation of the

specific feature, but not general intrinsic rhythms, whether in the

same band or other bands.

Changes in response phase coherence across channels were also

assessed at the same frequencies (Figure 3B, sample participant in

Figure 3C). This analysis focuses on the distant channel pairs with

enhanced phase coherence at each specific frequency. Only the

phase coherence at the target rate shows a significant enhancement

(bootstrap across participants, p = 0.002), further demonstrating that

change from one form of attention to another does not modulate

general intrinsic rhythms. This 30% enhancement is distributed

across channel pairs, revealing increased phase coherence both

within and across hemispheres.

We also observe a task-dependent hemispheric asymmetry in

the representation of the neural response at the target rate. During

the target task, the left hemisphere showed a greater normalized

neural response than the right hemisphere (bootstrap across

participants, p = 0.001); during the masker task, the right

Figure 1. Stimulus description and behavioral performance. (A) Cartoon spectrogram of a typical stimulus. The stimulus consists of a
repeating target note embedded in random interferers. A spectral protection region surrounds the target frequency with a spectral width of twice
the minimal distance between the target note and nearest masker component (orange band). In the target task, participants were instructed to
detect a frequency-shifted (DF) deviant in the repeating target notes. In the masker task, participants were instructed to detect a sudden temporal
elongation (DT) of the masker notes. (B) Behavioral performance results for target and masker tasks, as measured by d-prime as a function of spectral
protection region width. Orange (respectively, light-blue) lines show the mean performance in task detection in the target task (respectively, masker
task) in the psychoacoustical study. Red (respectively, dark-blue) points show the mean performance in task detection in the target task (respectively,
masker task) in the MEG study (eight-semitone condition only). Error bars represent standard error.
doi:10.1371/journal.pbio.1000129.g001

Attention in Auditory Scenes Analysis
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hemisphere showed a greater normalized neural response than the

left hemisphere (bootstrap across participants, p = 0.04) (Figure 3D).

Together with the behavioral demands of the task, the bottom-

up saliency of a target note contributes to both the neural response

and participant performance. A close examination of the physical

parameters of the stimulus reveals that the frequency of the target

note affects the audibility of the repeating rhythm, with higher-

frequency targets popping out more prominently than their lower-

frequency counterparts. This variation in the pop-out sensation

may be explained by the contours of constant loudness of human

hearing showing an approximately 5-dB increase over the target

note range 250–500 Hz [45], because our stimuli were normalized

according to their spectral power, not loudness. We exploit this

physical sensitivity of the auditory system and determine the effect

of this target pop-out on the neural and behavioral performances

in both target and masker tasks. Figure 4A (orange line) confirms

that behavioral performance in the target task is easier for higher-

frequency targets (.350 Hz) than for lower frequencies (t-test;

t = 23.3, p = 0.002). Correlated with this trend is an increased

neural response to the target for higher frequencies compared to

lower frequencies (red line) (increase not statistically significant

alone). Conversely, the masker task shows a trend of being

Figure 2. Neural responses. (A) Power spectral density of MEG responses for a single participant (participant 14 in Figure 2B below) in target (left)
and masker (right) tasks, averaged over 20 channels. Insets: the MEG magnetic field distributions of the target rhythm response component. Red and
green contours represent the target magnetic field strength projected onto a line with constant phase. (B) Normalized neural response to the target
rhythm by participant (individual bars) and task (red for target task, blue for masker task). The normalized neural response is computed as the ratio of
the neural response power at the target rate (4 Hz) to the average power of the background neural activity (from 3–5 Hz; see Materials and Methods).
Bar height is the mean of the 20 best channels; error bars represent standard error. Light-pink background (respectively, light-blue) is the mean over
participants for the target task (respectively, masker task).
doi:10.1371/journal.pbio.1000129.g002
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oppositely affected by the physical saliency of the target note despite

its irrelevance for task performance (approaching significance; t-test,

t = 1.8, p = 0.08). On the one hand, the neural power is increased for

high-frequency targets reflecting their increased audibility (dark-blue

line) (though not statistically significant alone). On the other hand, as

the target becomes more prominent, the participants’ performance

of the background task deteriorates, indicating a distraction effect

caused by the presence of the repeating note (light-blue line).

Additionally, phase coherence is significantly enhanced for high-

frequency targets over low-frequency targets only during the target

task (bootstrap across participants, p,1023) (Figure 4C). This result

confirms that the physical parameters and acoustic saliency of a

signal can interfere with the intended attentional spotlight of listeners

and effectively deteriorate task performance [46,47], both neurally

and behaviorally.

In order to establish the correspondence within participants

between the neural and behavioral responses under both task

conditions in a parametric way, we quantified the slope (converted

into an angle) relating the normalized neural signal with the

listener’s d-prime performance on a per-participant basis. The

average slope angle for the target task is 55.1u, i.e., a positive slope,

demonstrating the positive correlation between the two measures.

Bootstrap analysis confirms this; Figure 4B, left panel, illustrates

both the bootstrap mean of 55.3u (green line) and the 5th to 95th

percentile confidence limits (gray background), all with positive

slopes. Analysis of the masker task also demonstrates the

anticorrelation trend between the neural and behavioral data,

with an average slope angle of 236.3u shown in yellow. The

bootstrap analysis also confirms this; Figure 4B (right panel) shows

that the 5th to 95th confidence intervals (gray background) yield a

robust negative slope with a bootstrap mean of 237.6u (green line).

The perceptual detectability of the regular target rhythm

improves over time, following a pattern that is highly correlated

with the neural buildup of the signal representation. Consistent

with previous findings of buildup of auditory stream segregation

[24,35,48,49], participants’ performance during the target task

improves significantly over several seconds as shown in Figure 5A

(solid orange line) (bootstrap across participants, p,10–4). This

Figure 3. Power and phase enhancement during target task. (A)
Normalized neural response of target task relative to masker task shows
differential enhancement exclusively at 4 Hz (the frequency of the
target rhythm). Each data point represents the difference between
normalized neural response of target relative to masker task; error bars
represent standard error The asterisk at 4 Hz shows that only that
particular frequency yields a statistically significant enhancement. (B)
Phase coherence between distant MEG channels of target relative to
masker task. The difference between the number of long-range channel
pairs with robust increased coherence in target task, and channel pairs
with decreased coherence, is normalized over the total number of long-
range channel pairs. The phase enhancement is significant (shown with
asterisk) only at 4 Hz. (C) Channel pairs with robust coherence
difference at target rate for single participant, overlaid on the contour
map of normalized neural response at target rate. Each channel pair
with enhancement coherence is connected by a red line, whereas pairs
with decreased coherence are connected by a blue line. Coherence is
only analyzed for the 20 channels with the best normalized response to
target rhythm. (D) Neural responses to target across hemispheres. The
20 channels with the strongest normalized neural response at target
rate were chosen from the left and right hemispheres, respectively, to
represent the overall neural activity of each hemisphere. Neural
responses were averaged across the 20 channels, and 14 participants
were compared across hemispheres and tasks. The left hemisphere
shows stronger differential activation at target rate in target task,
whereas the right hemisphere shows stronger activation in masker task
(asterisks indicate that the differences are significant).
doi:10.1371/journal.pbio.1000129.g003
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similarity suggests that target detection is mediated by top-down

mechanisms analogous to those employed in auditory streaming

and object formation [50]. These streaming buildup effects tend to

operate over the course of a few seconds, and cannot be explained

by attentional buildup dynamics reported to be much faster or

much slower in time [51,52]. Moreover, the neural response to the

target rhythm also displays a statistically significant buildup

(Figure 5A, dashed red line) (bootstrap across participants,

p = 0.02) closely aligned with the behavioral curve, and conse-

quently, decoupled from the actual acoustics. The remarkable

correspondence between these two measures strongly suggests that

the enhanced perception of the target over time is mediated by an

enhancement of the neural signal representation, itself driven by

an accumulation of sensory evidence mediated by top-down

mechanisms. No such neural buildup of the neural response to the

target rhythm is present for the masker task.

The MEG magnetic field distributions of the target rhythm

response component in Figure 5A (insets), showing the stereotyp-

ical pattern of neural activity originating separately in left and

right auditory cortex, illustrate the changing strength of the neural

activity over time in an individual participant.

We confirm the correlation within participants between the

psychometric and neurometric curves over time by running a

bootstrap analysis on a per-participant basis. As expected, the slope

correlating the d-prime and neural response curves for each participant

yield a mean positive slope angle of 34.3u; bootstrap across participants

shows a mean of 32.7u, with the 5th to 95th confidence intervals falling

within the upper-right quadrant (Figure 5B).

We also note that the subsegments over which the neural

buildup is measured are required to span several rhythmic periods

(at least three; see Figure 6A). There is no buildup using intervals

with shorter durations, despite sufficient statistical power. (This

can be shown via the data plotted in the dashed curve in Figure 6A.

The normalized responses in the range 3.5 to 4.5 are elements of

an F(2,180) distribution, corresponding to p-values in the range

1.5% to 3.5%.) This implicates temporal phase coherence (in

contrast to spatial phase coherence) as critical to the buildup of the

neural target representation. That is, the power in each period is

not increasing, but the power integrated over several periods is

increasing. This can only occur if the phase variability decreases

with time, i.e., the neural buildup is due to a buildup in temporal

phase coherence rather than power.

Figure 5. Buildup over time of behavioral and neural responses in target task. (A) Normalized neural response to target rhythm, and
behavioral performance, as a function of time in target task, averaged over participants. Error bars represent standard error. Insets: the MEG magnetic
field distributions of the target rhythm response component for a single participant at representative moments in time (participant 10 from
Figure 2B). (B) Correlation of behavioral and neural responses as a function of time. The ratio of the neural to behavioral response trends as a function
of time, interpreted as a slope angle, is averaged across participants, yielding a mean slope angle of 34.3u (yellow line). Bootstrap estimates (overlying
green line) and the 95% confidence intervals (gray background) confirm the positive correlation between the psychometric and neurometric buildup
curves.
doi:10.1371/journal.pbio.1000129.g005

Figure 4. The effect of bottom-up acoustic saliency on behavior and neural responses. (A) Normalized neural response to target rhythm,
and behavioral performance, as a function of target frequency in target task (left) and masker task (right), averaged over participants. Error bars
represent standard error. (B) Correlation of behavioral and neural responses as a function of target frequency. The ratio of the neural to behavioral
response differences as a function of target frequency, interpreted as a slope angle, is averaged across participants yielding a mean slope angle of
55.1u for target (left) task and 236.3u for masker (right) task (yellow line). Bootstrap estimates (overlying green lines) and their 95% confidence
intervals (gray background) confirm the positive (respectively, negative) correlations for target (respectively, masker) task. (C) Phase coherence
between distant MEG channels of target relative to masker task for high-frequency targets over low-frequency targets. High- versus low-frequency
targets show significant enhancement only for target task (indicated by the asterisk).
doi:10.1371/journal.pbio.1000129.g004
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As noted above, the subsegments, or windows, over which the

neural buildup is measured are required to span at least three

rhythmic periods, since there is no buildup observed using

intervals with shorter durations. Figure 6A illustrates this buildup

for both the three-cycle and one-cycle cases. The requirement of a

longer time window shows that the buildup is not merely due to

increased power at 4 Hz, since in that case, a window of one

rhythmic period would also show buildup. This in turn implies

that temporal phase coherence (in contrast to spatial phase

coherence) is critical to the buildup of the neural target

representation.

This is further demonstrated by a quantitative model. Typical

simulated response profiles generated by the model are shown in

Figure 6B. The horizontal axis in the model is not increasing time,

but decreasing variability of the distribution of phase of the 4-Hz

signal (i.e., the phase of the signal has greater variability initially

Figure 6. Analysis of neural buildup over time in target task for different duration windows, both for data and in a model of the
data. (A) Normalized neural response to target rhythm as a function of time, in target task, averaged over participants. The solid curve is identical to
the red curve in Figure 5. The dashed curve is the result of identical analysis except that the normalized neural response is calculated for every 250-ms
cycle of the target rhythm, rather than over the 750-ms window of three-cycles used above. Only the longer window shows buildup, implying that it
is not power per cycle that is growing, but phase coherence over several cycles. Error bars represent standard error over all participants. (B) Model
results for 750 ms (three cycles) windows, solid curve, and for 250 ms (one cycle) windows, dashed curve. The modeled normalized neural response
rises as temporal phase jitter decreases, but only in the three-cycle case, since the power per cycle is constant but the temporal phase coherence
across cycles increases. Error bars represent standard deviation over 30 simulation runs.
doi:10.1371/journal.pbio.1000129.g006
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and gets more regular as one proceeds along the axis). In the three-

cycle window case, the buildup is pronounced, but not in the one-

cycle window case. Note that the model does not attempt to

emulate the downturn at the end of the experimental curve, nor

does it attempt to emulate the rate at which the buildup occurs as a

function of time (which would assume a linear decrease in

temporal phase coherence over time).

The model results show that buildup can be due to increasing

temporal coherence, and not due to increasing power. The neural

noise, representing the stochastic firing patterns of the neurons

underlying the MEG signal, is also required for the model’s

agreement with the data. A slight rise in the model’s one-cycle

window case may be seen, but it is not due to power (which never

changes), rather it is due to increased coherence over trials, which

is a weak side effect of increased temporal coherence.

Discussion

This study’s novel experimental paradigm builds on previous

work in stream segregation using simpler stimuli [34,35,53,54], but

(1) using a richer stimulus design and (2) keeping the physical

parameters of the stimulus fixed while manipulating only the

attentional state of the listeners. One major finding is that auditory

attention strongly modulates the sustained (steady-state) neural

representation of the target. Specifically, sustained attention

correlates with a sustained increase in the time-varying neural

signal, in contrast with onset transients [22,55] or nonspecific,

constant (‘‘DC’’) [56–58] effects of attention on auditory signals.

The location of the modulated neural representation is consistent

with core auditory cortex, hence supporting current evidence

implicating neuronal mechanisms of core auditory cortex in the

analysis of auditory scenes [35,59–61]. Furthermore, this modu-

lation of neural signal is significantly distant from the source of the

M100 and so cannot be explained as simply a train of repeated

M100 responses. This steady-state increase in the signal strength is

specific to the frequency of the target rhythm, and is additionally

complemented by an enhancement in coherence over distant

channels, reflecting an increased synchronization between distinct

underlying neural populations. This attentional effect (in both

power and phase) appears exclusively at the target frequency and

is absent not only from other frequency bands whose intrinsic

rhythms and induced response might show attentional changes,

but even from adjacent frequency bins, which argues against any

theory of neural recruitment or redistribution of energy at the low-

frequency spectrum. Therefore, our findings argue that processes

of attention interact with the physical parameters of the stimulus,

and can act exclusively to enhance particular features to be

attended to in the scene, with a resolution of a fraction of a hertz.

Our analysis focuses on steady-state components of feature-based

analysis, hence, complementing event-based analyses that relate

temporal components of the recorded potential to specific

mechanisms of feature-based attention [62–66].

Second, the data reveal that enhanced acoustic saliency

(driven by bottom-up processes), which causes an increase in

perceptual detectability, also correlates with an increase in the

sustained power and coherence of the neural signal. In this case,

the increase in neural signal occurs regardless of the task being

performed, but with different behavioral consequences: in the

target task, it leads to an increase in performance, but in the

masker task, a decrease (via interference). This outcome allows

us to give different explanations of this ‘‘attentionally modulat-

ed’’ neural change: as a marker of object detectability during the

first task, but as a neural correlate of perceptual interference

during the second task.

Third, the data show a left-hemisphere bias in the cortical

representation of the target, for the target task, suggesting a

functional role of the left hemisphere in selective attention,

consistent with previous findings in visual [67] and auditory

[61,68] modalities. This bias may also be due to a left-hemisphere

bias specific to Heschl’s gyrus (the location of core auditory

cortex), for slow rhythmic tone pips (without a masker back-

ground), as seen in [69,70]. In contrast, for the masker task, the

hemispheric bias in cortical representation of the (now non-

attended) target is reversed to the right, and might be simply due

to the nature of the attentional demands of the task (more diffuse

attention to the global structure of the sound), or to the right-

hemispheric bias of steady-state responses when attention is not

specifically directed to the rhythm [71]. It also appears, for both

tasks, that the deviant detection itself is not guiding the

lateralization of the response, running counter to that of Zatorre

and Belin [72], since the task/deviant requiring spectral change

detection shows a left-hemisphere bias, and the task/deviant

requiring temporal change detection shows a right-hemisphere

bias.

Finally, this study offers the first demonstration of the top-

down–mediated buildup over time of the neural representation of

a target signal that also follows the same temporal profile of the

buildup based on listeners’ detectability performance in the same

participant. Using the current experimental paradigm, we are able

to monitor the evolution in time of attentional processes as they

interact with the sensory input. Many studies overlook the

temporal dynamics of the neural correlates of attention, either

by using cues that prime participants to the object of attention

(thereby stabilizing attention before the onset of the stimulus), or

by explicitly averaging out the buildup of the neural signal in their

data analysis (focusing instead on the overall contribution of

attention in different situations, and not monitoring the dynamics

by which the process builds up). Our findings reveal that even

though the sensory target signal is unchanged, attention allows its

neural representation to grow over time, closely following the time

course of the perceptual representation of the signal, within

participants.

Together, these findings support a view of a tightly coupled

interaction between the lower-level neural representation and the

higher-level cognitive representation of auditory objects, in a clear

demonstration of auditory scene segregation: the cocktail party

effect [73]. Our experimental paradigm allows both task-driven

(top-down) and stimulus-driven (bottom-up) processes to guide

perception. For listeners performing the target task, the target

rhythm is the attended auditory object, a foreground stream to be

separated from a noisy background. The masker task, requiring

the listener to reverse the role of the foreground and background,

allows the contrasting situation to be considered under otherwise

identical acoustical conditions. This permits a controlled de-

emphasis of the auditory role of the target rhythm, without the

need for a ‘‘passive’’ listening condition under which the amount

of the listener’s attention is lessened, but actually unknown, and

strongly variable across participants.

The data suggest that new models of attention may be required,

based on temporally coherent or locally synchronous neural

activity rather than neural amplification [74]. The buildup of

neural responses over time is seen only when integrated over

several periods of the target rhythm, but not for individual periods.

This result is difficult to explain using standard models of attention

that rely solely on gain-based changes, or even on gain/spectral-

sensitivity hybrid models [75,76]. Instead, a more plausible theory

of neural mechanisms underlying the role of top-down attention in

the buildup of perceptual streams would involve top-down
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projections acting in conjunction with the physical stimulus as

regulators or clocks for the firing patterns of neuronal populations

in auditory cortex. Another conceivable mechanism for this

increase in temporal coherence may arise from general sharpening

of temporal tuning, which would work for auditory streams far

more complex than the regular stream presented here. The neural

underpinnings of this bottom-up/top-down interaction are likely

to mediate changes in the response profiles of cortical neurons, via

mechanisms of synaptic and receptive field plasticity which have

been shown to be gated by attention; whereby attention plays a

crucial role in shifting cortical circuits from one state to another

depending on behavioral demands [77–80]. We speculate that

temporal patterns of neuronal firings are crucial in any scene

segregation task to resolve the competition between attended and

unattended objects, hence, delimiting the cognitive border

between different streams.

Overall, a significant outcome of this study is that it not only

demonstrates a strong coupling between the measured neural

representation of a signal and its perceptual manifestation, but also

places the source of this coupling at the level of sensory cortex. As

such, the neural representation of the percept is encoded using the

feature-driven mechanisms of sensory cortex, but shaped in a

sustained manner via attention-driven projections from higher-

level areas. Such a framework may underlie general mechanisms

of ‘‘scene’’ organization in any sensory modality.

Materials and Methods

Participants
Nine participants (six males; mean age 29 y, range 24–38 y)

participated in the psychoacoustic study. Eighteen participants (11

males; mean age 27 y, range 21–49 y) participated in the MEG

study. Three participants took part in both studies. Among the 18

participants in the MEG study, four participants were excluded

from further analysis due to an excess of nonneural electrical

artifacts or an inability to perform the tasks, leaving 14 participants

(eight males; mean age 27 y, range 21–49 y). All participants were

right handed [81], had normal hearing, and had no history of

neurological disorder. The experiments were approved by the

University of Maryland Institutional Review Board, and written

informed consent was obtained from each participant. Participants

were paid for their participation.

Stimulus Design
The stimuli were generated using MATLAB (MathWorks).

Each trial was 5.5 s in duration with 8-kHz sampling. Every trial

contained one target note, repeating at 4 Hz, whose frequency was

randomly chosen in the range 250–500 Hz in two semitone

intervals. The background consisted of random tones at a density

of 50 tones/s, uniformly distributed over time and log-frequency

(except for the spectral protection region). The frequencies of the

random notes were randomly chosen from the five-octave range

centered at 353 Hz, in two semitone intervals, with the constraint

that no masker components were permitted within a four, or eight,

or 12 semitone around the target frequency (the spectral

protection region half-width). This random sampling of masker

frequencies ensures a minimum spectral distance of two semitones

between maskers, and keeps the probability of harmonically

related maskers minimal. Masker and target tones were 75 ms in

duration with 10-ms onset and offset cosine ramps. All masker

tones were presented at the same intensity as the target tone.

Fifteen exemplar stimuli were generated for each of the four

condition types: null condition (no deviants); target condition (one

target deviant per stimulus); masker condition (one masker deviant

per stimulus); and combined condition (one target deviant and one

masker deviant, at independent times, per stimulus). Each target

deviant was the displacement of a target note (upward or

downward) by two semitones from the target frequency. Each

masker deviant was a single 500-ms time window in which all

masker tones were elongated from 75 ms to 400 ms. The temporal

location of the deviant (for both target and masker tasks) was

randomly distributed along the 5.5-s trial duration, with timing as

indicated by the behavioral buildup curve in Figure 4.

Experimental Procedure
In the psychoacoustic experiment, participants were presented

with 180 stimuli (three protection regions6four conditions615

exemplars) per task. The progression from one trial to the next was

initiated by the participant with a button-press.

In the MEG experiment, only the eight-semitone spectral

protection region half-width was used, giving 60 stimuli (1

protection region 6 4 conditions 6 15 exemplars) per task. The

interstimulus intervals (ISIs) were randomly chosen to be 1,800,

1,900, or 2,000 ms. For each task, the participants were presented

with three blocks, repeating the ensemble of 60 stimuli three times

(totaling 180 stimuli). Participants were allowed to rest after each

block, but were required to stay still.

The identical stimulus ensemble (including identical ISIs in the

MEG case) was presented for both target and masker tasks.

Depending on the task being performed, participants were

instructed to listen for the presence of a frequency deviant in the

target rhythm (target task) or a duration deviant in the masker

(masker task); each task deviant was present in exactly half the

trials.

Psychoacoustical study. Participants were seated at a

computer in a soundproof room. The signals were created

offline and presented diotically through Sony MDR-V700

headphones. Participants controlled the computer using a

Graphical User Interface (GUI) using the mouse. The task, as

well as the basic use of the GUI, was described to participants.

Participants were allowed to adjust the volume to a comfortable

level before proceeding with the experiment.

A training block of 20 trials was presented before each task. In

the target task training, the protection region half-width decreased

from 12 semitones to four semitones in steps of four semitones. In

the masker task training, it increased from four semitones to 12

semitones in steps of four semitones. Participants were permitted

to listen to each sound as many times as desired; then participants

were prompted to indicate whether a deviant was present. The

correct answer was displayed afterwards. Participants pressed a

button to initiate the presentation of the next stimulus.

Each participant performed both the masker task and the target

task, with task order counterbalanced across participants. Each

task required the participant to listen to the entire set of 180

stimuli described above. Each stimulus was presented only once,

and no feedback was given after each trial. The entire session of

both tasks lasted approximately 1.5 h.

MEG study. Participants were placed horizontally in a dimly

lit magnetically shielded room (Yokogawa Electric Corporation).

Stimuli were presented using Presentation software

(Neurobehavioral Systems). The signals were delivered to the

participants’ ears with 50-V sound tubing (E-A-RTONE 3A;

Etymotic Research), attached to E-A-RLINK foam plugs inserted

into the ear canal, and presented at a comfortable loudness of

approximately 70 dB SPL. The entire acoustic delivery system is

equalized to give an approximately flat transfer function from 40–

3,000 Hz.
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Before the main experiment, a pre-experiment was run in which

a 1-kHz, 50-ms tone pip was presented about 200 times. The ISI

was randomized between 750 ms and 1,550 ms, and participants

were instructed to count the tone pips. The aim of this task was to

record the M100 response (a prominent peak approximately

100 ms after pip onset, also called N1m) used for differential

source localization. The responses were checked to verify that the

location and strength of neural signals fell within a normal range.

In the main experiment, participants were presented with three

blocks of the 60 stimuli described above. Each participant

performed both the masker task and the target task, with task

order counterbalanced across participants. Participants were

instructed to press a button held in the right hand as soon as

they heard the appropriate deviant.

A training block with 12 sounds was presented before each task.

Each training sound was presented twice. Participants verbally

indicated the existence of the deviants and the feedback was given

by the investigator. The entire session of both tasks lasted

approximately 1 h.

MEG recordings were conducted using a 160-channel whole-

head system (Kanazawa Institute of Technology). Its detection

coils are arranged in a uniform array on a helmet-shaped surface

on the bottom of the dewar, with about 25 mm between the

centers of two adjacent 15.5-mm-diameter coils. Sensors are

configured as first-order axial gradiometers with a baseline of

50 mm; their field sensitivities are 5 fT/!Hz or better in the white

noise region. Three of the 160 channels are magnetometers

separated from the others and used as reference channels in noise-

filtering methods. The magnetic signals were bandpassed between

1 Hz and 200 Hz, notch filtered at 60 Hz, and sampled at the rate

of fs = 1,000 Hz. All neural channels were denoised twice with a

block least mean square (LMS) adaptive filter, first, using the three

external reference channels [41], and second, using the two

channels with the strongest cardiac artifacts [82].

Data Analysis
Behavioral performance analysis. The ability of

participants to perform the requested task was assessed by

calculating a d-prime measure of performance [83]. For each

condition (i.e., each task and protection region), we estimated the

correct detection and false alarm probabilities for detecting the

target or masker deviants; converted them to normal deviates (z-

scores), and computed the d-prime value. The performance shown

in Figure 1 depicts the mean d-prime values across participants.

The error bars represent the standard error of mean.

To determine the effect of the target’s tonal frequency on the

neural responses, the stimuli were divided spectrally: each sound

was characterized as a low- or high-frequency target tone sequence

depending on the target tone’s relation to the middle frequency

353 Hz (those with target tone frequency of 353 Hz were

randomly assigned as low or high in such a way as to equipartition

the high and low categories). A d-prime measure was then derived

for each of the low or high target trials from both target and

masker tasks.

To investigate the buildup of the target object during the

target task, we divided the deviant trials according to the nine

possible temporal locations of the deviant throughout the

stimulus sequence. A probability of hit was then measured for

each trial. Because of the temporal uncertainty in the false alarm

trials, we calculated an average false alarm rate (irrespective of

when the false response was issued), and combined it with the

time-specific hit rate to derive a d-prime measure for each time

segment. Using this behavioral assessment measure, five

participants yielded nonpositive d-prime values due to their

high false alarm rate and low hit rate, and were excluded from

the analysis of buildup.

Neural data analysis. After recordings were completed and

noise reduction algorithms applied, the responses to each stimulus,

from 1.25 s to 5.5 s poststimulus, were extracted and

concatenated, forming a single extended response with duration

T = 765 s (4.25 s660 sounds6three blocks) for each channel. This

was done separately for each task block. The discrete Fourier

transform (DFT) was applied on the single response, giving a single

Fourier response from 0 to 500 Hz with frequency resolution of 1/

765 Hz.

The evoked neural responses to the target sequences were

characterized by the magnitude and phase of the frequency

component at 4 Hz (the tone presentation rate) and were used

for localization and for phasor maps. The complex magnetic

field strength is given by the product of the value of DFT times

the sampling interval (1/fs), and has units of fT/Hz. Power

spectral density is calculated as the product of the inverse

duration (1/T) times the modulus squared of the complex

magnetic field strength, and has units of fT2/Hz. The remainder

of the analysis was based on the normalized neural responses,

defined to be the squared magnitude of the frequency

component at 4 Hz divided by the average squared magnitude

of the frequency components between 3 Hz and 5 Hz (excluding

the component at 4 Hz), averaged over the 20 channels with the

strongest normalized neural responses for each participant. The

channels were allowed to vary from participant to participant to

allow for inter-participant configuration variability. Using 10,

20, or 50 channels yielded similar findings; however, only the 20

channel analysis is reported here, indicating that this method is

robust against the particular subset of channels used. This

normalization is not biased by the task, since the average

squared magnitude of the frequency components between 3 Hz

and 5 Hz did not significantly differ between tasks.

The spatial pattern of the neural responses was represented by a

phasor map, a graph of the complex (magnitude and phase)

magnetic field on all channels. For each channel, the length of the

vector arrow is proportional to the magnitude of the 4-Hz

frequency component, and the direction of the arrow represents

the phase according to standard polar coordinates. Red and green

contours represent the magnetic field strength projected onto the

line of constant phase that maximizes the projected field’s variance

[43]. The phasors are visually faded using the signal-to-noise ratio

(SNR) of each channel as linear fading coefficients.

The normalized neural responses difference between target task

and masker task was averaged across 14 participants to

characterize attention gain effect. Furthermore, to evaluate the

effect of attention at across frequencies, the same analysis is done

at 4 Hz and the two adjacent frequency bins (4 Hz2Df and

4 Hz+Df ), and also at 11 frequencies in the alpha, theta, and low

gamma frequency bands, in approximately 5-Hz increments from

approximately 5 Hz to approximately 55 Hz. For consistency with

the frequencies examined in tests of phase coherence (next), we

used Df = 1/(4.25) Hz, with analysis performed only at its integer

multiples (e.g., 17Df = 4.0 Hz and 21Df<4.94 Hz). The normal-

ization is only weakly affected by the task, since the average

squared magnitude of the frequency components did not vary

strongly by task (no difference below 5 Hz, a relative enhancement

in the target task of approximately 1 dB from 5 to 25 Hz, and a

relative enhancement for the masker task of approximately 1 dB

from 25 to 50 Hz).

To study attention modulation effects on the synchronization

between two distinct neural populations, phase coherence between

channels m and n, c2
mn, is obtained from Q = 180 trials [84,85]:
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c2
mn fð Þ~

Xmn fð Þ2
��� ���

SXmm fð ÞTSXnn fð ÞT ,

where Xmn( f ) is the average cross spectrum between channel m

and channel n, Xmm( f ) is average power spectrum of the individual

channel m:

Xmn fð Þ~ 1
Q

PQ
q~1

Fmq fð ÞFnq fð Þ�,

where Fmq fð Þ is the Fourier transform of the qth trial of channel m

at frequency f. A coherence value of one indicates that the two

channels maintain the same phase difference on every trial,

whereas a coherence value near zero indicates a random phase

difference across trials. The coherence difference between target

task and masker task was computed for every channel pair. The

standard error of the mean (SEM) emn was constructed to identify

robust coherence change [84,85]:

emn~

ffiffiffiffi
2

Q

s
1{c2

mn

cmnj j

� �
:

To emphasis phase modulation in auditory cortex, each

participant’s 20 channels with the strongest normalized neural

response at target rate were included in further analysis. In

addition, to exclude the artificial coherence that resulted from

volume conduction effects on extracranial magnetic field and

measure genuine phase correlation between distinct populations of

neurons, only long-distance channel pairs (channel separation

.100 mm) were included [85]. The difference between number of

channel pairs with robust increased coherence and channel pairs

with decreased coherence is normalized over the total number of

long-range channel pairs for each participant. Furthermore, to

evaluate the effect of attention at across frequencies, the same

analysis is done at 4 Hz and the two adjacent frequency bins

(4 Hz2Df and 4 Hz+Df ), and also at 11 frequencies in the alpha,

theta, and low gamma frequency bands, in approximately 5 Hz

increments from approximately 5 Hz to approximately 55 Hz. For

phase coherence (measured across trials), Df = 1/(4.25) Hz, and

phase coherence was analyzed only at its integer multiples (e.g.,

17Df = 4.0 Hz and 21Df<4.94 Hz).

To investigate the possibility of hemispheric bias, the 20

channels with the strongest normalized neural response at the

target rate were chosen from left and right hemispheres,

respectively, to represent the overall neural activity of each

hemisphere. Neural responses averaged across the 20 channels

were subtracted across hemispheres for each task and for all 14

participants. Using 10, 20, or 60 channels yielded similar findings;

however, only the 20-channel analysis is reported here.

To determine the effect of the tonal frequency on the neural

responses, the stimuli were divided spectrally as described above.

The neural responses at the target rate (both normalized response

and phase coherence), from low- and high-frequency target tone

stimuli, were obtained for each participant in the same way as

described above, but with only appropriate epochs concatenated

or phase-averaged.

To investigate the buildup of the target object in target task, the

responses were divided temporally: the analysis epochs were

divided into five temporal segments of 750-ms duration each, e.g.,

from 1.25 s to 2 s poststimulus (or 2 s to 2.75 s, etc.), were

extracted and concatenated, forming a single extended response

with duration T = 135 s (0.75 s 6 60 sounds 6 3 blocks) for each

channel. The discrete Fourier transform (DFT) was applied on the

single response, giving a single Fourier response of from 0 to

500 Hz with frequency resolution 1/135 Hz. The first segment

began at 1,250-ms poststimulus since earlier time intervals showed

substantial power at the frequency corresponding to the segment

duration, an artifact indicating that the measured spectral power

was extrinsic to the analysis window, not intrinsic to the neural

signal. The segment duration of 750 ms was used since shorter

durations did not show the buildup effect, an effect that is

elaborated upon in the discussion of the quantitative model of

neural buildup. An analogous analysis of phase coherence buildup

over time was performed but did not yield significant results.

Behavioral versus neural correlation and bootstrap

analysis. We correlated the effect of high versus low target

frequencies in the behavioral and neural responses by contrasting

the per-participant psychometric and neurometric measures. First,

we scaled the neural data (i.e., the normalized responses to target)

by a factor of three in order to match the absolute ranges of both

neural and behavioral values. We then derived the angle (i.e.,

inverse tangent) of the slope relating the high versus low

frequencies of the behavioral and neural data points for each

participant and each task. The across-participant slopes were then

combined using circular statistics to yield an angular mean for

each task [86].

We performed a bootstrap procedure in order to confirm the

positive (respectively, negative) correlation between the neuro-

metric and psychometric functions in the target (respectively,

masker) task. We followed a balanced bootstrap sampling

procedure [87] by randomly selecting 14 participants with

replacement and computing their angular sample mean and

repeating this process 1,000 times. The procedure was controlled

to ensure that all participants appeared the same number of times

over all 1,000 bootstrap samplings. Confidence measures were

then derived from the bootstrap statistics.

A similar statistical analysis was performed to correlate the

psychometric and neurometric curves for the target detection

buildup. To match the range of values from the neural and

behavioral data, we scaled the neural responses by a factor of two

(note that the different scaling is due to the reduced values of the

normalized neural response due to the smaller window for the

buildup analysis). The behavioral curves for each participant were

then interpolated to match the sampling rate of the neural data.

Subsequently, these two curves were then fitted by a first-order

polynomial to derive the slope relating the two functions. The

slope value was transformed into an angle and then combined

across participants, following the same procedure described above.

Note that the five participants with negative d-prime values were

excluded from this correlation analysis, because of their question-

able behavioral performance.

Neural source localization. Source localization for the

M100 response was obtained by calculating the current-

equivalent dipole best fitting the magnetic field configuration at

the M100 peak, in each hemisphere. Source localization for the

neural response to the target was obtained by calculating the

complex current-equivalent dipole best fitting the complex

magnetic field configuration at 4-Hz peak, in each hemisphere

[43]. Only channels with SNR .4 were used in the fitting.

Goodness of fit, as a function of the complex current-equivalent

dipole, is given by one minus the residual variance ratio. As

discussed in [43], the goodness of fit for complex magnetic field

distributions and complex dipoles gives typical values that are
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much lower than for comparable real distributions, due to the

doubling of number of degrees of freedom absorbing noise power.

Significance of the relative displacement between the M100 and 4-

Hz dipole sources were determined by a two-tailed paired t-test in

each of three dimensions: lateral/medial, anterior/posterior, and

superior/inferior.

Quantitative Model of Neural Buildup
A model simulation to illustrate a mechanism of neural buildup

was implemented in MATLAB (MathWorks). The model

simulates MEG responses by generating 4-Hz signals whose phase

is a random variable with constant mean, additionally corrupted

by additive Gaussian white noise. This noise represents neural

variability inherent in the neural processing mechanisms under-

lying the MEG signal and is critical to the model (external

magnetic field noise had already been removed from the data by

active filtering [41] and is not modeled). The normalized response

power was calculated by the same method as in the experiment:

concatenating 50 signals and normalizing the power at 4 Hz by

the average power in the 3–5 Hz band, averaging the 20 best

channels (out of 100 simulated auditory channels), and then

averaging that over simulation runs. This was done for five

different distributions of the phase random variable with standard

deviations ranging from 1/60 to 1/12 of a cycle.

The model’s level of Gaussian white noise was obtained by the

biological requirement that the model’s normalized response for

the three-cycle window, with highest jitter, match the data’s; the

buildup rate as a function of decreased variability, as well as the

average level of the normalized response for the one-cycle window,

follow automatically. The simulated response results depend

weakly on the number of channels simulated. The experimental

MEG system records from 157 channels, but not all are strongly

auditory. The results shown here use 100 simulated auditory

channels.
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