
 on January 4, 2017http://rstb.royalsocietypublishing.org/Downloaded from 
rstb.royalsocietypublishing.org
Review
Cite this article: Kaya EM, Elhilali M. 2016

Modelling auditory attention. Phil.

Trans. R. Soc. B 372: 20160101.

http://dx.doi.org/10.1098/rstb.2016.0101

Accepted: 19 September 2016

One contribution of 15 to a theme issue

‘Auditory and visual scene analysis’.

Subject Areas:
neuroscience

Keywords:
computational model, auditory attention,

auditory scene, bottom-up, top-down, salience

Author for correspondence:
Mounya Elhilali

e-mail: mounya@jhu.edu
& 2017 The Authors. Published by the Royal Society under the terms of the Creative Commons Attribution
License http://creativecommons.org/licenses/by/4.0/, which permits unrestricted use, provided the original
author and source are credited.
Modelling auditory attention

Emine Merve Kaya and Mounya Elhilali

Laboratory for Computational Audio Perception, Department of Electrical and Computer Engineering,
The Johns Hopkins University, 3400 N Charles Street, Barton Hall, Baltimore, MD 21218, USA

ME, 0000-0003-2597-738X

Sounds in everyday life seldom appear in isolation. Both humans and

machines are constantly flooded with a cacophony of sounds that need to be

sorted through and scoured for relevant information—a phenomenon referred

to as the ‘cocktail party problem’. A key component in parsing acoustic scenes

is the role of attention, which mediates perception and behaviour by focusing

both sensory and cognitive resources on pertinent information in the stimulus

space. The current article provides a review of modelling studies of auditory

attention. The review highlights how the term attention refers to a multitude

of behavioural and cognitive processes that can shape sensory processing.

Attention can be modulated by ‘bottom-up’ sensory-driven factors, as well

as ‘top-down’ task-specific goals, expectations and learned schemas. Essen-

tially, it acts as a selection process or processes that focus both sensory and

cognitive resources on the most relevant events in the soundscape; with rel-

evance being dictated by the stimulus itself (e.g. a loud explosion) or by a

task at hand (e.g. listen to announcements in a busy airport). Recent compu-

tational models of auditory attention provide key insights into its role in

facilitating perception in cluttered auditory scenes.

This article is part of the themed issue ‘Auditory and visual scene analysis’.
1. Introduction
While at a cocktail party, we often find ourselves flooded by a cacophony of

sounds that impinge on our ears from a multitude of sources. The challenge of

directing our attention despite numerous prominent distractors, referred to as

the ‘cocktail party problem’ [1,2], engages intricate neural networks and cognitive

processes that enable the brain to parse information in the environment [3]. These

processes allow us to navigate our surroundings, focus on conversations of inter-

est, enjoy the background music and be alert to any salient sound events such as

someone calling our name or the ringtone of our phone. Throughout this scene

analysis process, attention plays a crucial role in mediating both perception and

behaviour by focusing both sensory and cognitive resources on pertinent infor-

mation in the stimulus space [4]. This article provides a review of modelling

studies of auditory attention and their impact on studies of attention in audition.

Attention is not a single, unidirectional process [5,6]. It can be modulated by

‘bottom-up’ stimulus-driven factors, as well as ‘top-down’ task-specific goals,

expectations and learned schemas. Ultimately, attention is a form of information

bottleneck that samples the massive sensory input constantly impinging on our

ears and directs sensory and cognitive resources to the most relevant events in

the soundscape [7]. Owing to the complexity of auditory scenes, the relevance

of a sound event can be dictated by the scene itself (e.g. a conspicuous sound

event such as a gunshot that would attract attention) or by a task at hand

(e.g. to follow a conversation with a friend amidst competing sound sources).

While attention has started to garner increasing interest from the auditory

research community [8–10], there is not much tradition of developing compu-

tational models of attention in the context of sound systems. Such models

would need to account for the auditory system’s ability to adapt to the demands

of an ever-changing acoustic environment and task goals. Recent physiological
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Figure 1. A broad classification of models described in this review. Reconstruction techniques are not computational models in the traditional forward architecture of
sound to ‘perception’; however, this methodology provides valuable insight in understanding task-directed attention.
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findings have been amending our views of processing in the

auditory system, replacing the conventional view of ‘static’ pro-

cessing in sensory cortex with a more ‘active’ and malleable

mapping that rapidly adapts to the tasks at hand, sound con-

text and listening conditions [11]. Numerous studies have

revealed that our auditory experiences can have significant

local effects by transforming receptive field properties of indi-

vidual neurons, and profound global effects by reshaping

cortical circuits [12,13]. These effects extend beyond early sen-

sory areas and indicate attentional modulation throughout the

auditory cortex, shedding light on the distributed nature of

processing in auditory pathways in the context of cocktail

party settings [14].

Although research on the neural underpinnings of these

networks is thriving, our understanding of the exact role of

adaptive stimulus- or task-directed processing remains in

its infancy. The field is particularly challenged by the lack of

theories that integrate our knowledge of cortical circuitry in

the auditory pathway with adaptive and cognitive processes

that shape behaviour and perception of complex acoustic

scenes. By contrast, active and adaptive processing has more

commonly been explored in models of the visual system.

These implementations typically model predictive coding in

the visual thalamus (LGN), contextual modulation in primary

visual cortex (V1), attentional modulation in higher cortical

areas (V2 and V4, area MT) and decision-making in parietal

and frontal cortex [15,16]. That being said, recent theoretical

studies are providing insight into common processing traits

of active attention across modalities [17].

A number of perspectives have emerged about conceptual

frameworks for understanding the role of attention in auditory

perception. Much of this work closely parallels theories from

vision in which attention is viewed as a multifaceted phenom-

enon that encompasses mechanisms of selection, integration

and sampling [18]. In one view, attention can be considered

as a filtering or a selection mechanism. This interpretation

ties in directly with findings of receptive field properties in sen-

sory cortex, whereby neurons can be viewed as filters whose
properties are modulated by task-directed attention and

whose activity can be adapted depending on sensory contexts

[11,19]. At a larger scale, this view extends to object-based or

semantic selection processes whereby attention to a specific

target or class of sounds (e.g. speech, music) would engage

specific neural circuits [14,20]. This view parallels selection the-

ories in vision, which present frameworks for funnelling only

relevant information to the processing pipeline, either at an

early or later stage, acting as an informational bottleneck that

mitigates the limited computational resources of the sensory

system [5]. An alternative view of attention frames it as an

integration mechanism, whereby attentional feedback acts as

a prior to bias processing of certain stimuli of interest. Many

theories of sound perception in complex settings favour this

view, under which attention operates as a ‘glue’ that binds

together elements belonging to the same event. This interaction

between object formation and selective attention is instru-

mental in guiding the organization of the foreground and

background, and the interaction between the perceptual

representations of sound targets and interferers [21,22].

The present review aims to provide a synopsis of current

computational efforts in modelling attention in the context of

auditory scene analysis. Figure 1 provides a general overview

of models included in this review. These models often cluster

around accounts of bottom-up or top-down processing,

though they remain confined by hand-picked experimental

observations. The article reviews the relevant perspectives

for both sensory- and task-driven attentional models and

discusses some efforts to validate such models. The review

also touches on relevant applications of such models in

audio systems and hearing technologies.
2. Models of auditory attention
(a) Bottom-up attention
Models of bottom-up attention remain very scarce in the

auditory literature. The limited efforts in this direction have
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greatly benefited from the very prolific research on bottom-up

attention (or salience) in vision. Indeed, visual salience is a

thriving research field that has resulted in a rich body of

work examining the perceptual attributes underlying visual

salience [23], as well as its behavioural correlates [24] and

underlying neuroanatomy [25–27]. In parallel, computational

models of visual salience have built on this knowledge and

made use of the availability standardized eye-tracking datasets

to develop detailed Bayesian and hierarchical accounts of

visual perception [28]. These models can not only account for

human behaviour in natural scenes, but are able to expand

the possibilities of computer vision applications to tackle chal-

lenging visual scenes in fields such as robotics, medical

imaging and surveillance systems [29–31].

Building on this tradition in the visual modality, early

models of auditory bottom-up attention adapted popular

visual salience models to the domain of sound. Kayser et al. pre-

sented one of the early efforts in this direction [32]. This work

treated the time–frequency representation of sound as an

‘auditory image’ from which spectro-temporal features such

as intensity and spectro-temporal contrast can be extracted

to parallel the feature analysis process in vision models [33].

The back end of the model was essentially a visual salience

model, in which all features were scaled to generate multi-

scale maps which were then normalized to highlight conspicu-

ous peaks and integrated to provide an auditory salience map.

Though operating on relatively simple features and adopting a

vision-based integration architecture, this model was able to

reliably match both human and monkey behavioural responses

in tasks involving detection of salient sounds embedded in

different backgrounds. This work not only demonstrated that

salience processing in the brain may share commonalities

across sensory modalities, but it also provided a guide to

designing psychoacoustical experiments to probe auditory

bottom-up attention in humans.

This initial effort was later expanded to incorporate more

intricate analyses of auditory features. Work by Kalinli &

Narayanan [34] operated on the same auditory image and sal-

ience extraction architecture but extended the feature set to

include pitch and orientation along both time and frequency,

hence incorporating more relevant auditory cues. It also

provided an improved contrast computation scheme to derive

feature maps, making them more robust to noise and multiple

salient locations. Duangudom & Anderson [35] extended the

feature analysis to incorporate more biologically plausible

mechanisms that mimic processing in the peripheral and

central auditory system [36]. This analysis allowed the deri-

vation of spectro-temporal modulation features that simulate

neural responses in the mammalian auditory cortex. These

neural-like processes provided a multi-scale mapping of the

incoming auditory stimulus, effectively replacing the parallel

feature maps favoured in earlier auditory salience models.

While the salience analysis was similar in essence to that for

vision-based models, this study began to steer the literature

towards placing an emphasis on biological plausibility.

Despite their relative success in extending vision-based fra-

meworks to audition, all of the aforementioned models failed

to account for an important distinction between auditory and

visual processing, notably the nature of sound as a temporally

evolving entity. By treating the time (T )–frequency (F ) spectro-

gram as an auditory image, these models treated the T–F
dimensions as spatial X–Y axes, failing to process the time

axis as a special dimension. Effectively, the auditory image
approach ignores temporal build-up and short- and long-

term dependencies, and results in non-causal analyses of cur-

rent events based on future information. Consider for

instance a musical scene such as Haydn’s Surprise Symphony

(figure 2): a mellow string passage abruptly interrupted by a

loud, full orchestra chord—a highly salient section. If the

chord was repeated shortly after, you might be surprised

again, but not as much as the first time, as you have now

adjusted your expectations as to what might occur in the

piece. If this chord were to start regularly repeating, it would

eventually blend into the music and attract little attention.

Now consider if this scene were played backwards, so the

loud chord was heard repeatedly from the onset. None of

the occurrences would surprise the listener—the salience

has disappeared. The surprise only works when the music is

considered as a temporal entity.

One of the first models to address this problem computed a

temporal salience map similarly to the model of Kayser et al.,
but considered all of the features as evolving temporally,

rather than as two-dimensional images [37]. The feature space

was expanded to include perceptual properties of sound: loud-

ness, pitch and timbre. All features were analysed over time to

highlight their dynamic quality before normalizing and inte-

grating across feature maps in line with vision-based models.

By contrast, Tsuchida & Cottrell [38] adapted a different, stat-

istics-based approach from the vision literature [39]. Their

implementation combined long-term scene statistics compu-

ted from natural sound samples with local, rapidly changing

statistics of the current incoming sound. In this framework, sal-

ience became a probabilistic account, where a sound is flagged

as salient if it is determined to be unusual relative to learned

statistics. This model was also the first to consider the compu-

tational efficiency of the features used, where a cochleogram

was adopted instead of a spectrogram and principal component

analysis was applied to reduce feature dimensionality while

retaining significant variations in the features.

Even with the advances achieved by temporal salience

models, basing attentional mechanisms on processes from

the visual domain inherently limits the capabilities of an

auditory salience model. Recognizing this, efforts in model-

ling auditory attention began shifting from adaptations of

the visual literature to building upon inspiration from mech-

anisms known or hypothesized to take place in the auditory

pathway. As this research area is yet in its early stages, there

is an array of possible mechanisms to explore, and the follow-

ing models have explored different avenues to modelling

bottom-up auditory attention.

Kaya & Elhilali [40] proposed the first auditory attention

model that was not based on a vision equivalent, but was

rather motivated by processing known to occur in the audi-

tory pathway. This model explored the role of predictive

coding and theories of auditory deviance detection as poss-

ible underlying mechanisms determining auditory salience

in the brain [41–43]. This approach puts great emphasis on

the role of processing events over time and shaping neural

responses of current sounds based on their preceding context.

Kaya & Elhilali employed a rich feature space modelling

human perception of sound [36]. This model mapped the

acoustic waveform onto a high-dimensional auditory space

that explicitly encoded perceptual loudness, pitch and

timbre of the incoming sound, building upon evolving tem-

poral features [37]. The attention model collected feature

statistics over time and made predictions about future

http://rstb.royalsocietypublishing.org/
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Figure 2. The spectrogram (time – frequency ‘image’) of an excerpt from Haydn’s Surprise Symphony. Marked times correspond to the approximate location in the
second movement. The surprising section is a loud chord played by the entire orchestra following a long passage of quiet string instruments. We consider the
scenario of an orchestral passage immediately following the surprise chord. If the passage were reversed in time, the surprise chord would no longer be surprising,
and the switch to a quiet passage is not as surprising as the switch to a sudden loud passage. This figure demonstrates the dependence of auditory salience on time
and context.
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sensory inputs. Salient times were flagged as those for which

the incoming features differed significantly from expec-

tations. Another novel aspect of this model was the role of

integration across features in guiding salience predictions.

Earlier models typically employed a simple linear combi-

nation across features with a fixed weight for each feature.

The Kaya & Elhilali model rejected the notion of indepen-

dence across auditory features of a complex scene in

guiding salience perception. Instead, the model proposed a

nonlinear interaction across the feature space, implemented

by asymmetrical weights between pairwise features, and

guided by psychoacoustic experiments.

Two trends emerged from this work that are reflected in

most current auditory attention models: building probabilis-

tic expectations of sound to derive salience, and employing

behavioural responses from perceptual experiments with

human listeners to learn properties of acoustic features relevant

for salience perception. The idea that salience is derived from

statistics gathered over the scene was further explored in the

work of Wang et al. [44]. This study computed Shannon entropy

as a measure of the informational value of incoming sound seg-

ments, and classified them as salient or ordinary depending on

whether they contained a high amount of information. This is in

line with the concept that bottom-up attention alerts us to

important events in a scene. Moreover, the study by Wang

et al. offered a composite system that combined parallel paths

including: (i) a temporal analysis of sound features operating

on different components derived from mel-frequency cepstral

coefficients [45], an alternative and very popular way to rep-

resent frequency features based on perceptual measures of

pitch; (ii) a spectral mapping analysing the power spectral den-

sity of the stimulus and (iii), the image salience model based on

mechanisms by Kayser et al. [32]. This composite system

demonstrated the benefits of extending the vision-based

model and provided further robustness to salience estimates

especially in real noisy soundscapes.
In contrast with more theoretical approaches to auditory

salience, Kim et al. [46] took a more data-driven approach by

employing human behavioural judgements of salience to

train a linear classifier that performed a simple filtering fol-

lowed by feature integration based on data-driven weights.

Behavioural data were gathered by subjects annotating salient

locations in natural recordings of conference room meetings,

and these data were used to train a model that maximized

the separation between the salient and non-salient sound seg-

ments in the feature space. The results revealed that the

emerging discriminant was shaped to detect temporal and fre-

quency contrasts, and most specifically worked as an onset

detector. Tordini et al. [47,48] approached the problem from

the opposite direction: while Kim et al. used no prior knowl-

edge of acoustical features to guide their feature estimation,

Tordini et al. tested the contribution of acoustic features in

defining auditory salience. Features such as temporal centroid,

spectral centroid, harmonicity, effective duration and tempo

were all found to correlate with salience ratings. The results

also revealed interactions between some of these features in

line with observations from Kaya & Elhilali [40].

It is worth highlighting that one of the challenges of

studies of auditory salience is the open interpretation of what

auditory salience refers to. Visual salience has historically

relied on measures of eye gaze despite their shortcomings

[28,49,50]. In audition, the lack of unified metrics to define

salience remains a major challenge. Unmistakably salient scen-

arios such as a loud explosion or a male talking amongst

females result in large enough loudness or pitch differences

that every auditory salience model should be able to detect out-

lier events. However, more intricate processing is necessary for

auditory events that are not as objectively salient, such as noti-

cing a cricket among cicadas. The simple image-based features

extracted in most of the aforementioned models are insuffi-

cient to capture subtle changes in temporal dynamics.

Furthermore, feature interactions play an important role in

http://rstb.royalsocietypublishing.org/
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determining perceived salience [40,48]—a factor unaccounted

for in most models.
(b) Top-down attention
In contrast with bottom-up attention, top-down models of

auditory selective attention build on a richer body of work inves-

tigating the neural underpinnings of task-driven attention in the

auditory system. It is well established that neural activity across

the auditory cortex is heavily modulated by directed attention

[9,13,51]. Hubel et al.’s early findings in the late 1950s [52]

showed modulation of neural activity of single units in cat audi-

tory cortex when animals paid attention to novel or surprising

acoustic events, such as jingling of keys. They dubbed such

neurons ‘attention units’ in the auditory cortex. Since then,

many studies have reported similar ‘attention’ effects under

controlled behavioural conditions, in different animal models

and across various auditory cortex regions.

Characterization of the tuning properties of cortical

neurons using computational techniques has played a major

role in investigating adaptive effects of attention on corti-

cal activity. Specifically, spectro-temporal receptive fields

(STRFs) are mathematical descriptions of the selectivity of

individual neurons in response to sound events [53]. The

STRF is a two-dimensional time–frequency representation of

the tuning properties of cortical neurons (figure 3). From a

systems theory viewpoint, each neuron can be thought of as

a filter whose STRF describes the time–frequency attributes

that excite the neuron [54,55]. Evidence from behaving ani-

mals revealed that as behavioural goals changed, the tuning

characteristics of individual neurons as captured by their

STRFs adapted rapidly [56–58]. This neural adaptation, or

rapid plasticity, plays a role in enhancing neural responses to

temporal and spectral modulations belonging to the target

sound events, the foreground, and suppressing those that fall
outside the target, the background (figure 3). Effectively,

under control of attention, the neural population appears to

increase the contrast between the target and background,

hence facilitating focusing on sound events of interest [11].

Crucially, this process appears to be rapid, induced by atten-

tion, dependent on task and reward structure. It reflects the

behavioural state of the animal [59] and spans both primary

and higher auditory areas [60].

Beyond findings at the single-neuron level in animal

models, various non-invasive techniques have been used to

investigate the extent of attentional modulation across auditory

cortex for more complex auditory scenes in human listeners.

Results using functional magnetic resonance imaging and

electroencephalogram (EEG) have confirmed attention-driven

increase of neural activity in the auditory cortex [61,62].

Neural effects revealing distributed activity induced by spatial

and non-spatial forms of auditory attention have also been

observed [14,63]. Different types of attention, notably feature-

based versus object-based attention, appear to induce differen-

tial activation engaging areas such as planum temporale and

different regions of the superior temporal gyrus [64,65].

Tying back to results from single units in animal models,

recent advances in computational methods allowed analysis

of neural recordings in human listeners using magnetoence-

phalography (MEG) and surface electrodes that revealed

greater activation to attended sounds relative to unattended

sounds [9,66]. Going further, mathematical tools are now

being developed to allow estimation of ensemble receptive

fields from MEG and EEG recordings, laying promising

groundwork to unify results across different paradigms for a

complete account of selective attention processing in the

brain [10].

Despite the growing body of work supporting evidence

that responses across auditory cortex are modulated by

attention, translating such knowledge into computational

http://rstb.royalsocietypublishing.org/
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models has been slow. One avenue in modelling has been to

explicitly characterize the adaptation mechanism of STRFs.

Mesgarani et al. [67] hypothesized that the spotlight of atten-

tion works to enhance the separation between task-relevant

target stimuli and the distractor background. Thus, the optimal

STRF can be modelled as the filter that gives the highest

discrimination between the neural responses to target and

background acoustics, resulting in a deterministic linear

system that can apply gain to physical features of the auditory

input. In this framework, selective attention can work in a

multitude of ways by enforcing different constraints based on

perceptual goals, e.g. when listening for short dripping

sounds to find the source of a water leak, optimization cost

would be increased for slow temporal dynamics, or when

attending to a male in a busy room full of children, lower

pitches would be enhanced. While relatively simple, this

model provides a powerful account of attentional effects at

the single-neuron level. Still, it is limited in its ability to

extend beyond orienting attention to physical properties of

sound (e.g. attend to a class of sounds as opposed to a specific

exemplar) and is invariant to task structure due to its

implementation. In the last example, if the task were to ignore

the male, the adaptation result would not be guaranteed to be

different from that for the attend task, as the model separates

two signals (male, children) without a conceptual knowledge

of task demands (target/distractors).

Recognizing these limitations, Carlin & Elhilali [68] pro-

posed a framework to account for an explicit notion of

foreground and background, assigning binary labels to dis-

tinguish target sound segments from reference segments as

defined by a behavioural task. The addition of task structure

to the model resulted in opposite adaptation patterns when

the task was switched between reward (foreground) and eva-

sion (background), in line with observed neurophysiological

responses at the level of primary auditory cortex in behaving

animals [57]. The model was expanded to allow for object-

based attention selection, which can ‘focus attention’ on

simple abstractions based on physical properties of sound,

rather than the acoustics themselves. For instance, attending to

speech as a sound class (regardless of specific utterances and

who the speaker is) requires ignoring details of specific acoustic

instantiations and responding to abstracted representations of

speech that distinguish its characteristics from those of other

classes (or objects). The authors modelled such object-based

selection as constraints on magnitude and phase profiles of

the spectro-temporal dynamics of sound, and provided simu-

lation results to show that modelled STRFs sharpen and orient

to target modulations in line with reported physiological effects

[56]. Future research is necessary to unify the feature and object-

based attention models, and provide neural recording data that

better account for attention to complex abstractions of sound.

Another body of work modelled selective attention in a

more abstract way by incorporating the attentional gains

observed in neurons across physiological experiments into

computational models implementing various components of

auditory scene analysis. Kalinli & Narayanan [69] extracted

the ‘gist’ of an auditory scene from the biologically motivated

acoustic features used in their model of salience [34], and

employed a neural network to automatically learn optimal

gains given specific tasks, such as scene classification. Patil &

Elhilali [70] implemented the hypothesis that attention acts

as a prior in a Bayesian representation of the information

from the senses [7]. This model used a two-stage
computational framework for recognition of acoustic scenes:

a feature-extraction stage that mimicked processing in the audi-

tory pathway from cochlea to primary auditory cortex, and an

object-mapping stage that performed classification of features

into scene types. Top-down attention worked at both the fea-

ture and the object level by applying gains onto the spectro-

temporal filters that extract the features, and by adjusting the

parameters of a scene classifier to optimize detection of the

target scene.

The studies described thus far have taken a forward

approach to modelling attention: given the sound input, they

predict neural responses and compare the model output with

brain responses. Some recent studies have taken a reverse

approach to characterizing attention by reconstructing the

sound input from recorded neural signals and comparing

the reconstructed acoustic waveform with the input to illumi-

nate the aspects of the soundscape that are most prominently

represented in the recorded cortical area. While employing

regression methods to reconstruct the sensory input from

neural recordings is not new, the potential of this paradigm

to study the effects of attention has only recently been used

to demonstrate exciting results. Mesgarani & Chang [9] recon-

structed the spectrogram of the input from intracranial

recordings to show that neural representations code salient

acoustic features of sound; the reconstruction correlated most

strongly with spectro-temporal areas of high energy in the

attended source. Further, Ding & Simon [66] reconstructed

the input sound envelope from MEG recordings to show that

it correlated more closely with the attended speech than

the unattended speech in a scene of competing concurrent

speakers. This set-up has been extended to reconstruct the

attended speech from noisy single-trial EEG recordings

[71,72], an especially important development for the EEG

domain where noise reduction techniques coupled with aver-

aging a high number of trials are typically necessary to

estimate the neural signal. With this established framework,

biologically plausible models are being designed to reconstruct

the input sound from neural recordings, using dynamic state-

space models [73] and deep neural networks [74], extending

our understanding of attentional gain at the systems level.
3. Validation of auditory attention models
While eye-tracking data provides objective evaluation metrics

for vision models, attention models in audition have suffered

from a lack of clear salience metrics. Most attention models

mentioned in this review use their own validation data and

metrics, ranging in scope from single-neuron activity to

human responses or carefully selected sound events or scenes

with attended or salient ‘ground-truth’ determined concep-

tually by the experimenter. Unfortunately, there is so far little

consensus on the best way to probe effects of attention on audi-

tory perception, whether it is task-directed or purely based on

salience.

With the first auditory salience models, behavioural exper-

imentation was employed merely to illustrate that the model

could detect objectively salient events, such as an animal call

amidst pure noise. These studies had subjects choose the

more salient of two presented scenes [33,35,38], and used a var-

iety of natural environmental sounds as the salient events.

Later models adapted more sophisticated paradigms where

the background had a predictable structure, and the task was
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the detection of the salient event, which had a deviation

from the predictable pattern [40,47], such as a violin note pop-

ping out of a stream of piano notes. While these efforts provide

a structured way of investigating the precise characteristics of

salience perception, their artificial structure limits their account

of salience in realistic settings. Attempts at using unstructured

natural soundscapes to probe the perception of auditory

salience are being made, where subjects listen to real record-

ings and denote by an interface the time instances they think

are salient or interesting [75]. However, unlike the visual

domain, in which automatic eye saccades can be rapidly

recorded for many scenes, the auditory method is not only

much slower and inefficient, but suffers from conscious

decision-making, and arguably does not represent purely

bottom-up processing as well as its visual counterpart. An

intuitive and objective ground-truth dataset for auditory

salience would probably lead to a significant increase in mod-

elling efforts, both in designing specialized computational

systems that perform robust and efficient computations that

can be incorporated into real-time naturalistic applications,

and in comparing the performance of various mechanisms

hypothesized to underlie neural attentional processing.

On the neural front, single-unit recordings from cats, mon-

keys and ferrets provide the most direct access to effects of

attention on neural activity in the auditory system. While very

informative about neural correlates of attentional modulation

on brain networks, they are costly to perform, too invasive for

human research and are limited in the amount of information

that can be extracted about the intricate cortical networks

engaged in auditory perception. They are also restricted to rela-

tively simple or constrained behavioural paradigms that can be

used to train animals in a laboratory setting.

The closest correlate to single-unit recordings for humans is

electrocorticography (ECoG). Though highly invasive and

applicable only to neurosurgery patients, this technique uses

electrode grids placed on the exposed brain to investigate atten-

tional modulation of cerebral cortex using rich and complex

stimuli. By contrast, MEG and EEG offer non-invasive alterna-

tives that are applicable to a more general population, even

though they lack the spatial resolution of EcoG, and are more

susceptible to artefacts. Unlike other behavioural measures,

MEG and EEG also allow direct insights into neural processes

without engaging explicit perceptual decision. However,

analytic techniques need to be improved to balance the elimin-

ation of noise and preservation of neural information about

attentional and perceptual states of subjects, especially in com-

plex sound environments [76]. Further, particularly in studies

of bottom-up attention, a common experimental design is

such that the subject is instructed to ignore the auditory

input and remain engaged in a visual task such as watching

a silent film or reading a book. This paradigm is vulnerable

to top-down attentional confounds in the absence of distracting

auditory stimuli or sufficiently engaging visual tasks.
4. Applications of auditory attention models
Aside from providing important contributions to theoretical

neuroscience, models of attention play a significant role in a

large variety of engineering applications. Particularly, perform-

ance on tasks for which humans effortlessly outperform

computers could be improved with attention mechanisms,

where the attention component would act as a filter to guide
computational resources to areas of maximum information,

effectively reducing system noise by ignoring irrelevant parts

of the scene. One such task is speech and sound recognition:

although a trivial task to perform for humans, automatic recog-

nition suffers from significant performance degradation in

noisy environments. Some of the surveyed modelling studies

have demonstrated various ways in which attentional mechan-

isms could work to improve existing recognition technologies.

Feature-based approaches make use of the feature-extraction

schemes of salience models as a way to get a perceptually infor-

mative representation of sound input. This representation can

be used to detect prominent syllables from speech [34] or as

an intermediate step for traditional speech feature extraction

and recognition, or fed directly into a clustering mechanism

for sound or emotion classification [77,78]. Top-down task–

based adaptations have been incorporated in attention systems

by modelling the attentional gain as weights in the classifier to

optimize performance based on specific task goals [77,78], or as

a separate cognitive model deciding which speaker to attend to

among competing sources [79]. A more holistic attention mech-

anism has instead used the goal-directed adaptation framework

of physiological STRFs as a pre-processing stage to speech rec-

ognition, by enabling the separation of the target speech stream

from the distractor soundscape it is embedded in [80]. The atten-

tional filter provides significant gain to the target speech while

being robust to previously unseen noise types. This system was

further generalized to use model STRFs optimized for the task,

where STRFs are designed as two-dimensional filters, with their

parameters estimated from training data [81]. Parametrizing the

STRFs allowed for greater flexibility in implementing plasticity.

While the authors demonstrated that this model resulted in

better identification of speech in noise, the underlying frame-

work can also be applied to a variety of auditory scene

analysis problems by training STRFs for specific tasks.

The beneficial effect of attention has also been incorporated

into numerous computational auditory models; we give some

illustrative examples here. One computational system incor-

porated both bottom-up and top-down components to mimic

human attentional orienting in a busy acoustic environment,

allowing a soundscape designer to evaluate how the sound

in planned urban environments might affect people [82].

A bottom-up attention mechanism specifically designed for

efficient auditory surveillance demonstrated powerful detec-

tion of alarming sound events such as gunshots and screams

in natural scenes [83]. It has been suggested [48] that attention

models are of great importance for improvements in sonifi-

cation systems aimed at converting information into sound

(e.g. as aids for the blind). An integration of bottom-up

and top-down modelling techniques replicating processes in

the auditory pathway was demonstrated to improve sound

localization in reverberant environments [84]. Auditory sal-

ience has been demonstrated to be an effective criterion for

compression to reduce data size while retaining meaningful

segments of large datasets of sound [85] and video [86]. Sal-

ience extraction has also been used as an abnormal sound

detection mechanism for temporal signals, and generalized

to lung sounds to use for finding medical abnormalities [87].

Finally, auditory attention models are an important com-

ponent of audio–visual models and applications. In recent

years, the necessity of incorporating auditory salience infor-

mation in visual attention models is becoming increasingly

recognized. This has led to the emergence of models using

auditory salience direction to guide visual attention
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[89–90], along with audio–visual models where the two

domains have equal weight in determining attentional orien-

tation [91]. These models show better performance than

visual-only salience models in predicting eye gazes in videos.

Mechanisms of multimodal attention are especially crucial

in efficient designs of robotic systems [92] and brain–computer

interfaces (BCIs). EEG being the most portable method by

which brain signals can be recorded, models extracting

cognitive information from EEG recordings are of particular

significance for BCI systems. The surveyed stimulus reconstruc-

tion mechanisms that demonstrate the ability to detect who the

subject is listening to have significant implications for powerful

naturalistic BCIs. It is of particular interest that these methods

are being optimized to use fewer electrodes and faster para-

digms to achieve more portable, real-time interfaces [72].

Artificial intelligence systems need attentional filters to select

sensory input to process in a goal-oriented manner, and to be

able to adapt to unpredictable natural environments. Attention

mechanisms have been modelled in various robot and machine-
sensing applications [93,94]. However, these systems use

platform-specific definitions of salience and attention, and do

not have a direct correlate in the purely computational atten-

tion models described here. The computational modelling

field has seen significant advances since these robotic sensory

designs. Exploring the applicability of new models in robot

perception can provide valuable direction to future models,

and as computational architectures develop refined biologi-

cally plausible mechanisms, human-like robots will become a

closer reality.
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