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Abstract

Purpose Lung auscultation has long been a standard of

care for the diagnosis of respiratory diseases. Recent

advances in electronic auscultation and signal processing

have yet to find clinical acceptance; however, computer-

ized lung sound analysis may be ideal for pediatric popu-

lations in settings, where skilled healthcare providers are

commonly unavailable. We described features of normal

lung sounds in young children using a novel signal pro-

cessing approach to lay a foundation for identifying path-

ologic respiratory sounds.

Methods 186 healthy children with normal pulmonary

exams and without respiratory complaints were enrolled at a

tertiary care hospital in Lima, Peru. Lung sounds were

recorded at eight thoracic sites using a digital stethoscope.

151 (81 %) of the recordings were eligible for further ana-

lysis. Heavy-crying segments were automatically rejected

and features extracted from spectral and temporal signal

representations contributed to profiling of lung sounds.

Results Mean age, height, and weight among study par-

ticipants were 2.2 years (SD 1.4), 84.7 cm (SD 13.2), and

12.0 kg (SD 3.6), respectively; and, 47 % were boys. We

identified ten distinct spectral and spectro-temporal signal

parameters and most demonstrated linear relationships with

age, height, and weight, while no differences with genders

were noted. Older children had a faster decaying spectrum

than younger ones. Features like spectral peak width,

lower-frequency Mel-frequency cepstral coefficients, and

spectro-temporal modulations also showed variations with

recording site.

Conclusions Lung sound extracted features varied sig-

nificantly with child characteristics and lung site. A com-

parison with adult studies revealed differences in the

extracted features for children. While sound-reduction

techniques will improve analysis, we offer a novel, repro-

ducible tool for sound analysis in real-world environments.
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Introduction

Since the invention of the stethoscope by Laennec in 1819,

few advances have been made in the field of auscultation.

More recently, electronic stethoscopes and digital signal

processing have grown in popularity but have yet to find

clinical acceptance [1–7]. Acoustic information captured

by clinical auscultation is limited by frequency attenuation

due to the stethoscope, ambient noise interference, inter-

observer variability and subjectivity in differentiating

subtle sound patterns [8–10].

Computerized technologies come as a natural adjunct to

aid in the diagnosis of respiratory disease and may be ideal

for a pediatric population, especially in settings where skil-

led healthcare workers are unavailable. Electronic auscul-

tation and automated analysis are advantageous for a number

of reasons. They provide standardized methods for sound

acquisition and enable continuous monitoring and analysis,

which allows for a deeper understanding of the mechanisms

that produce adventitious respiratory sounds. Finally auto-

mated interpretation of auscultatory findings may offer

diagnostic potential for use by community health workers or

other first line providers in low resource settings.

Existing approaches in the literature use techniques to

capture spectral and temporal details of adventitious

sounds like wheezes and crackles, employing frequency

analysis [3, 11], time–frequency and wavelet analysis [7,

11–13], image processing methods [14], or comparison

with reference signals. In most studies, however, auscul-

tation recordings have been limited to adults and acquired

in a controlled, near-ideal environment, where ambient

noise was limited. In this study, we aimed to obtain better

insight into the signal characteristics of lung sounds in

healthy children without respiratory complaints recorded in

a noisy hospital environment. We present an alternative

signal-processing scheme and describe features of normal

lung sounds in healthy children. By characterizing normal

lung sounds in healthy children, our group aims to utilize

these features to better differentiate pathologic sounds

associated with respiratory disease in children.

Methods

Study Design

We enrolled 186 children without respiratory complaints

from outpatient clinics at the Instituto Nacional de Salud

del Niño in Lima, Peru between January and November

2012. Inclusion criteria were: (1) age 2–59 months, (2) no

active respiratory complaint, and (3) normal respiratory

exam performed by a skilled physician. Exclusion criteria

were: (1) history of chronic lung disease excluding asthma,

(2) significant cardiac disease, and (3) acute respiratory

illness within the past month. We obtained informed con-

sent from parents in the Emergency Department (ED) or

outpatient clinics, where testing was performed in a single

visit. Detailed methods are described in detail elsewhere

[15]. The study was approved by the ethics committees of

the Instituto Nacional de Salud del Niño and A.B. PRISMA

in Lima, Peru, and the Johns Hopkins School of Medicine

in Baltimore, USA.

Electronic Auscultation

We recorded lung sounds at 44.1 kHz using a digital

stethoscope (ThinkLabs ds32a, Centennial, Colorado,

USA) and a standard MP3 recorder at each of the following

eight thoracic sites for 10 s: left and right anterior superior

(AS), right and left antero-lateral inferior (AI), right and

left posterior superior (PS), and left and right posterior

inferior (PI). The ThinkLabs stethoscope contains a dia-

phragm, behind which is a metal plate that allows con-

version of sound to an electronic signal at the level of the

patient. Lung sounds were obtained as in most clinical

settings, with the diaphragm in contact with the skin of the

patient. The examiner adjusted the pressure applied to the

diaphragm based on the cleanliness of sound he/she

appreciated through the earpieces and the cooperation of

the patient.

We obtained lung sounds recordings when the child was

breathing normally without being asked to take deep

breaths. Although not ideal for sound quality, deep

breathing was not expected of infants and young children

in real-world clinical settings for a few reasons. Develop-

mentally, following simple commands occurs around age

of 18 months, and realistically, sick, irritable children often

refuse or are unable to breathe deeply due to tachypnea. All

children were supine or upright and often were held by a

parent during sound recording.

Computerized Lung Sound Analysis

Acquired signals were low-pass filtered using a fourth

order Butterworth filter at 1 kHz cutoff, down-sampled to

2 kHz, and normalized to have zero mean and unit variance

(Fig. 1). This was done because 91 % of the total signal

energy was found in frequencies below 1 kHz. Sounds

were processed into short-time 2-s segments using a rect-

angular window with 50 % overlap.

Noise Segment Removal

We excluded segments judged as either non-informative or

contaminated with noise from our analyses. We defined

non-informative segments as intervals whose amplitude
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was less than 20 % of the average signal’s amplitude,

typically corresponding to silent segments; and, segments

contaminated with noise as those characterized with

irregular high frequency contents in the range of

200–500 Hz, which corresponds with children’s crying

[16–18]. Increased energy in the power spectrum was

defined relative to a uniform threshold and set to 1E-07, to

ensure that no false positives were produced during

exclusion. (see Fig. 2a for an example of a crying interval.)

The power spectrum was obtained using a 214-point Fast

Fourier Transform [25] and was further smoothed by a low-

pass fifth order Butterworth filter at 20 Hz to better capture

regions of increased frequency contents. The above crite-

rion was developed considering the current sample of

healthy children. Extension of this approach to children

with respiratory disease will require caution and further

refinement to account for any abnormal sounds with

overlapping spectral components.

Biostatistical Methods

We extracted ten unique parameters from the spectral and

spectro-temporal representations of recordings from indi-

vidual children (Table 1). The spectral analysis captures

information about the frequency content of the recorded

signal such as slow or fast variations in the signal and

includes parameters such as peak width (PW), the spectrum

slope (SL), power of regression line (PLN), and power ratio

(PR). These features highlight energy concentration along

frequency regions and were extracted from the smoothed

power spectrum described above. In addition, Mel-fre-

quency cepstral coefficients (MFCC) features were

extracted. They encode information about the chest shape

and resonances of lung sounds. Finally, more complete

joint time–frequency parameters were extracted, including

spectral shape and temporal modulations, to give a better

representation of the dynamic changes (or modulations) in

the frequency content of lung sounds. Preliminary analysis

revealed linear associations between spectral/spectro-tem-

poral signals and basic clinical information. We, therefore,

used multivariable linear regression to model each of the

spectral and spectro-temporal parameters as a function of

age, weight, height, and gender, and determined goodness-

of-fit with the coefficient of determination (see Online

Supplement). A complete analysis was also performed for

each auscultation site by combining both left and right

recoded signals from AS, AI, PS, and PI sites. We con-

ducted one-way ANOVA to determine if there were dif-

ferences among thoracic sites. We used Matlab (www.

mathworks.com) and R (www.r-project.org) for analyses.

Results

Patient and Sound Recording Characteristics

A total of 186 children were enrolled into the study. Mean

age, height, and weight among study participants were

2.2 years (±1.4), 84.7 cm (±13.2), and 12.0 kg (±3.6),

respectively. A total of 27 % were infants (2–12 months),

44 % were aged 1–2 years, and 30 % were aged 3–5 years.

We used 151 sound recordings (71 girls and 80 boys) out of

186 in our analysis. We excluded 21 (11 %) complete

sound recordings because of technical difficulties during

the recording process and 14 complete sound recordings

(8 %) because of missing child data. The recordings were

mostly comprised normal airflow and heart beat sounds. A

total of 11,721 two-second segments (50 % overlap) were

available for analyses in the 151 children; however, after

noise removal, 348 (3 %) segments were found to be either

non-informative or noisy (Fig. 2a) and were not included in

the analyses. For example, crying intervals were easily

visualized through the spectral characteristics of the time

waveforms due to their distinct patterns (Fig. 1).

Fig. 1 Recording excerpt of one study subject. Top the time

waveform. Bottom the corresponding spectrogram representation,

calculated on a 64 ms Hanning window with 50 % overlap. A

processing window of 2-s duration is marked within the black

margins. The two arrows indicate recorded noise, in the form of

stethoscope movement (short burst of energy at 4.9 s) and cry (longer

duration interval starting at 7.2 s). The color bar is shown in decibels

(db)

Lung

123

http://www.mathworks.com
http://www.mathworks.com
http://www.r-project.org


Spectral Characteristics, Spectral Shape, and Temporal

Modulation

In Fig. 2, we summarize the feature extraction process for

the average power spectrum, spectral shape, and temporal

modulation (panels a, c, and e), and the average profiles

for these features (panels b, d, and f). As expected, lung

sounds were found in the lower frequency range. For

example, the average spectrum profile shows that most of

the energy contents were concentrated in the lower fre-

quencies (i.e., below 500 Hz) and the MFCC1 contained

resonances mostly at frequencies close to 56 Hz. Our

analyses also revealed that the spectral shape profile was

mostly smooth over the frequency axis, i.e., 70 % of the

frequency contents of lung sounds were concentrated

among scales less than 1 cycle per octave. The
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smoothness was not a feature of the inherent background

noise. In fact, if we exclude some of the heavily noise-

contaminated sounds, the average spectrum profile looked

even smoother. This suggests that auscultation signals

were strongly broadband and at any given time they

varied smoothly along the frequency axis. The average

temporal modulation profile showed high-energy contents

around -1 Hz (i.e., upward deflection) and 2 Hz (i.e.,

downward deflection), suggesting a slow change in energy

contents along the time axis.

Average population values for all spectral and spectro-

temporal parameters are presented in the first column of

Table 2; however, our analyses of 109 sounds with anno-

tations of auscultation site (72 % of total data) revealed that

spectral and spectro-temporal characteristics indeed varied

across auscultation sites (Table 2). The proportion of

sounds that were excluded from analyses because they were

either non-informative or contaminated with noise was

similar across auscultation sites, and ranged from 1.4 % to

4.9 %. Specifically, we identified a wider power spectrum

and a lower energy of MFCC1 in anterior versus posterior

sites. Furthermore, the scale profile was increased in ante-

rior sites versus posterior sites, especially in the AS which

can be indicative of the prominent energy peaks due to heart

rate. Finally, the upward rate profile was increased in pos-

terior versus anterior sites, but this difference was not

significant.

b Fig. 2 a Power spectrum computed from the 2-s window marked in

Fig. 1 bottom, and a power spectrum of an interval containing crying

(dashed line). The peak width feature (PW) is marked. Inset shows

the logarithmic spectrum (dashed line) and the corresponding

regression line (solid line). The slope of the regression line (SL) is

-11.26 dB/octave and is marked together with an octave interval.

b The average subject profile of the power spectrum, as calculated

using a short-time FFT, smoothed with a Butterworth low-pass filter.

The dashed lines depict variations among different subjects.

c Schematic representation for the extraction of the Spectral shape

profile. Spectrogram information was processed for each time index

and passed through a bank of 31 filters varying from narrowband (ex.

top filter shown), capturing the peaky contents, to broadband (ex.

bottom filter shown) capturing the smooth contents. For display

purposes, spectrogram was computed on a 64 ms Hanning window

with 50 % overlap. d The average profile for the spectral shape over

all subjects. Dashed lines depict the variation among subjects, and the

vertical bold line indicates the separation of contents below and above

1 cycle/octave. e Schematic representation for the extraction of the

temporal modulation profile. Spectrogram information was processed

along each frequency band and passed through a bank of 23 filters

varying from high/fast rates (filters shown on the left) to low/slow

rates (filters shown on the right), for both positive phase-downward

direction (?) and negative phase-upward direction (-), capturing the

changes of the frequency content along time. For display purposes

spectrogram was computed on a 64 ms Hanning window with 50 %

overlap. f The average profile for the temporal modulations over all

subjects. Dashed lines depict the variation among subjects. Notice the

strong energy around the region of -1 Hz and 2 Hz

Table 1 Spectral and spectro-temporal parameters

Peak width (PW) The peak width of the smoothed power spectrum,
P. The peak of the spectrum was identified in the
range of 0–200 Hz. Its width was measured at
75 % of the corresponding height (Fig. 2a)

Spectrum slope (SL) The slope of the linear regression line, fit to
spectrum P in logarithmic axes. The power
spectrum, when plotted in dB as 20�log (P/Pmin)
with Pmin = 5 E-05, was previously shown to
decrease exponentially with frequency for
contents higher than 75 Hz [19]. SL is measured
in dB/octave, where an octave represents the
interval needed to double the frequency (Fig. 2a
inset)

Power of regression line
(PLN)

The power of the area under the regression line

Power ratio (PR) The power ratio is defined as PR = 1 - |1 -
Espectrm/Eregression|, where Espectrm is the area
under the logarithmic spectrum and Eregression is
the area under the regression line. These areas
are computed using trapezoidal integration
method. A power ratio value close to 1 means
that the logarithmic spectrum follows the
regression line closely [19]

Mel-frequency cepstral
coefficient (MFCC)

Mel-frequency cepstral coefficients encode
information about the peak energies or
resonances of a sound signal and are indirectly
related to the impulse response of the system
used to produce the sound. In our study, we can
consider the chest as a solid system and the
resulting MFCC coefficients as indicators of its
impulse response. As the lung sound signal is
recorded after traveling through various chest
chambers, different chest formations are
expected to yield variations in the MFCCs (see
Online Supplement A). MFCC sequences can be
calculated using filters centered at various
frequencies. For the current study, three
coefficients (MFCC1, MFCC2, MFCC3) were
kept for each subject by averaging over all short-
time extracted MFCCs, corresponding to filters
centered at frequencies {56, 116, 181} Hz
respectively

Spectral shape (scales) Scales estimate how broad or narrow the spectral
profile is. These spectral modulations reflect
how contents vary along frequency and were
calculated from the auditory spectrogram,
modeling the cochlear representation of sounds,
calculated over 8 ms window. The auditory
spectrogram was filtered using 31 Gabor-shape
seed filters, logarithmically spaced, and varying
from wideband to narrowband: 0–8 cycles/
octave (c/o) [26, 27]. The response, produced for
each scale and time index, was averaged over
time to yield the scale profile. Low scale values
(\1 c/o) corresponded to a very smooth spectral
profile with peaks that spread over more than 1
octave; high scale values corresponded to a
peaky spectrum with number of tips to troughs
in the spectrum greater than 1 in each octave.
Figure 2c shows a schematic representation

Temporal modulations
(rates)

Rates capture how fast or slow the frequency
contents change with time and in which phase
(direction), positive or negative. These temporal
modulations were calculated from the auditory
spectrogram using 23 exponential filters,
constructed of varying velocities [ [0, 64] Hz for
both directions [26, 27]. Rates were computed
for each frequency band of the spectrogram, and
results were averaged to yield one rate profile
per subject. Figure 2e shows a schematic
representation
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Effect of Child Characteristics on Spectral

and Spectro-Temporal Signal Parameters

In Fig. 3, we show the relationship between spectral/

spectro-temporal signal parameters and specific childT
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characteristics. While most of the signal features revealed

linear relationships with age, height, and weight for the

particular study population, no significant relation was

found with gender. We did not find differences when data

were analyzed using either Z-scores instead of raw

anthropometry data or if non-parametric tests were used

(see Online Supplement). Trends of the regression lines for

age, height, and weight were similar across parameters. In

other words for RR, HR, PW, and SL parameters, lower

distribution values were found for subjects of lower age,

height, and weight, while older kids yielded higher distri-

bution values for MFCCs, PR, PLN, and Rates-parameters.

A detailed display of the regression coefficients can be

found in Table 3 and in the Online Supplement.

Discussion

Our results provide a novel method of analysis and char-

acterization of normal lung sounds in children. By

extracting spectral and spectro-temporal signals in record-

ings of lung sounds, we were able to identify ten unique

parameters that characterize both static and dynamic fea-

tures of normal breathing in healthy children. With these

parameters, we provide a range of normal lung sounds in

children \5 years of age taken in real-world noisy envi-

ronments. With this information, we offer simple, repro-

ducible equations that account for age, height, and weight

that allow for comparison with pathologic sounds in future

studies.

While age, height, and weight were shown to influence

normal sounds in children, no significant relation was

found between the extracted features and gender informa-

tion in this age range. Age was also correlated strongly

with both heart rate and respiratory rate in our study, as

would be expected. MFCC coefficients, or measurements

of chest formation, were also strongly associated with age,

particularly low-frequency filter MFCCs, which showed

higher spectral envelope power for older children.

Comparing results with previously published work on

adult subjects [19, 20], the spectral slope in our study was

found to be shallower. This could be a result of additional

noise in our dataset or intrinsic to age itself. Broader

spectrum peaks and shallower slopes were observed in

signal segments containing more noise, which tend to

manifest mostly at higher frequencies and broaden the

spectral profile; however, this might also be unique to

young age. More research and improved noise-cancelation

techniques will allow clarification of this discrepancy.

With regard to different lung fields, our results differed

from those of Boersma, who found the spectral slope

varied among site locations [19]. While this was not

consistent with our study, peak width, MFCC coefficients,

and the spectral modulations varied significantly with site

locations, particularly when respect to front versus back

sites. This may be partially due to the finding that children

were more likely to be agitated when the stethoscope was

out of their visual range, possibly altering variable

analysis.

The spectral shape profile portrayed interesting infor-

mation about HR and RR in pediatric subjects. In the

temporal profile, two distinctive peaks were observed: one

with negative and one with positive phase. The envelope of

the HR cycle has been shown to have a strong positive

peak followed by a weaker negative one [21–23], while the

breathing cycle has been reported to have a strong negative

peak (at the end of expiration phase) followed by a strong

positive peak (beginning of inspiration phase) [24, 25].

This would suggest that the observed peak at ?2 Hz is

likely a result of HR, as it was strong and non-variable

across individual subjects. In contrast, content at -1 Hz

was weaker and more variable, which is indicative of

uncontrolled pediatric respirations.

Perhaps the greatest challenge and limitation of this

study was also one of the most innovative aspects, ana-

lyzing sounds from noisy children in a noisy environment.

Literature to date do not account for the above factors.

Instead, most studies involve adults in controlled sound

environments with specific instructions for respiration rate

and depth of breathing. Our study was designed to promote

analysis of a vulnerable population in a real-world envi-

ronment. We used minimal noise-cancelation techniques

for this analysis. We opted to simply remove excessively

low or high-energy segments that are outside the range of

known lung sound frequency. While our results contain

variable information, we have shown trends with a range of

data points that can be considered within normal. In

addition, we were able to identify simple linear relation-

ships and equations among extracted features and patient

information that will allow for subsequent comparison with

adventitious lung sounds.

Future work will include improved sound acquisition and

sound processing techniques. Our group has been developing

a device composed on electret pressure microphone arrays,

b Fig. 3 Linear fit (solid line) for each feature (rows, y axis) with

respect to patient characteristics (columns, x axis). Point-wise

prediction bounds (see Online Supplement) with 95 % confidence

level are also shown with dashed lines. Inset R2
a , the adjusted

coefficient of determination of the quadratic fit; r, the linear

correlation coefficient, displayed only if a significant correlation

(P value \0.01) was achieved. Gender column: boxplots for boys

(M) and girls (F). HR: heart rate, RR: respiratory rate, MFCC1,2,3:

Mel-frequency cepstrum coefficients for filters centered at 56, 116,

and 181 Hz, respectively, PW: spectrum peak width, SL: slope of

regression line fit of the logarithmic spectrum, PR: power ratio of the

total calculated power versus the power of the regression line, PLN:

total power of the regression line
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inverted large area electret microphones, piezoelectric, and

pseudo-piezoelectric transducers designed to achieve a uni-

form sensitivity over the entire area of the chest. With

improved coupling to the body to reduce leaks from the

outside and echo-canceling techniques to further mitigate

environmental noise, we will improve the quality of sound

before signal processing occurs.

This study has successfully presented a thorough char-

acterization of control cases in pediatric auscultation, and

described the inherent challenges and the way those chal-

lenges may affect the profiles of lung sounds of a subject.

Future work by our group will focus on two crucial areas:

noise reduction techniques and identifying abnormal lung

sounds using our knowledge of what is normal. Further

noise modification techniques will be required for analyz-

ing and automating pathologic sounds, as wheezing has

been shown to elicit similar peaks in the power spectrum

[19]. Nonetheless, electronic auscultation will likely ben-

efit from using additional clinical information to avoid

misinterpretation of pathologic versus normal sounds. We

aim to then utilize the information gained from this study

to compare these sound parameters with those of children

with respiratory diseases to better understand how disease

processes affect their spectral profiles. Our eventual goal is

to create an automated algorithm for the diagnosis of

respiratory disease in children, particularly where trained

ears are not readily available.
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22. Zhang Q, Manriquez AI, Médigue C, Papelier Y, Sorine M

(2006) An algorithm for robust and efficient location of T-wave

ends in electrocardiograms. IEEE Trans Biomed Eng

53:2544–2552

23. Choi S, Jiang Z (2008) Comparison of envelope extraction

algorithms for cardiac sound signal segmentation. Expert Syst

Appl 34:1056–1069

24. Gavriely N, Nissan M, Rubin AH, Cugell DW (1995) Spectral

characteristics of chest wall breath sounds in normal subjects.

Thorax 50:1292–1300

25. Hadjileontiadis LJ (2009) Lung sounds: an advanced signal

processing perspective. Morgan & Claypool, San Rafael, CA

26. Chi T, Ru P, Shamma SA (2005) Multiresolution spectrotemporal

analysis of complex sounds. J Acoust Soc Am 118:887–906

27. Yang X, Wang K, Shamma SA (1992) Auditory representations

of acoustic signals. IEEE Trans Inf Theory 38:824–839

Lung

123

http://arxiv.org/abs/1009.2796v1

	Developing a Reference of Normal Lung Sounds in Healthy Peruvian Children
	Abstract
	Purpose
	Methods
	Results
	Conclusions

	Introduction
	Methods
	Study Design
	Electronic Auscultation
	Computerized Lung Sound Analysis
	Noise Segment Removal
	Biostatistical Methods

	Results
	Patient and Sound Recording Characteristics
	Spectral Characteristics, Spectral Shape, and Temporal Modulation
	Effect of Child Characteristics on Spectral and Spectro-Temporal Signal Parameters

	Discussion
	Acknowledgments
	References


