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The human brain extracts statistical regularities embedded in real-world scenes to sift through the complexity stemming
from changing dynamics and entwined uncertainty along multiple perceptual dimensions (e.g., pitch, timbre, location). While
there is evidence that sensory dynamics along different auditory dimensions are tracked independently by separate cortical
networks, how these statistics are integrated to give rise to unified objects remains unknown, particularly in dynamic scenes
that lack conspicuous coupling between features. Using tone sequences with stochastic regularities along spectral and spatial
dimensions, this study examines behavioral and electrophysiological responses from human listeners (male and female) to
changing statistics in auditory sequences and uses a computational model of predictive Bayesian inference to formulate multi-
ple hypotheses for statistical integration across features. Neural responses reveal multiplexed brain responses reflecting both
local statistics along individual features in frontocentral networks, together with global (object-level) processing in centropar-
ietal networks. Independent tracking of local surprisal along each acoustic feature reveals linear modulation of neural
responses, while global melody-level statistics follow a nonlinear integration of statistical beliefs across features to guide per-
ception. Near identical results are obtained in separate experiments along spectral and spatial acoustic dimensions, suggesting
a common mechanism for statistical inference in the brain. Potential variations in statistical integration strategies and mem-
ory deployment shed light on individual variability between listeners in terms of behavioral efficacy and fidelity of neural
encoding of stochastic change in acoustic sequences.

Key words: auditory perception; computational modeling; EEG; multifeature integration; psychophysics; statistical
inference

Significance Statement

The world around us is complex and ever changing: in everyday listening, sound sources evolve along multiple dimensions,
such as pitch, timbre, and spatial location, and they exhibit emergent statistical properties that change over time. In the face
of this complexity, the brain builds an internal representation of the external world by collecting statistics from the sensory
input along multiple dimensions. Using a Bayesian predictive inference model, this work considers alternative hypotheses for
how statistics are combined across sensory dimensions. Behavioral and neural responses from human listeners show the brain
multiplexes two representations, where local statistics along each feature linearly affect neural responses, and global statistics
nonlinearly combine statistical beliefs across dimensions to shape perception of stochastic auditory sequences.

Introduction
In everyday environments, the brain sifts through a plethora of
sensory inputs, tracking pertinent information along multiple
dimensions despite the persistent uncertainty in real-world

scenes. Inferring statistical structure in complex environments is
a hallmark of perception that facilitates robust representation of
sensory objects as they evolve along different perceptual dimen-
sions (or features, used interchangeably). Evidence of statistical
inference has been documented in audition (Creel et al., 2004;
Agus et al., 2010; Pearce et al., 2010; Krishnan et al., 2019); vision
(Fiser and Aslin, 2002; Brady et al., 2009) and olfaction (Degel,
2001), as well as across sensory modalities (Conway and
Christiansen, 2005; Frost et al., 2015), showing that it underlies
the encoding of sensory surroundings in memory.

Predictive coding offers a framework to explain how these
mnemonic representations of the past guide interpretation of
future sensory inputs. The theory posits that the brain builds an
internal model of the external world to make probabilistic pre-
dictions of future events (Friston, 2005; Heilbron and Chait,
2018; Seriès and Seitz, 2013). In audition, the oddball paradigm
has been used extensively to demonstrate the ability of the brain
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to track predictive structures, or regularities, along various audi-
tory dimensions such as pitch, loudness, duration, timbre, and
spatial location (Schröger and Wolff, 1996; Takegata et al., 2005;
Pakarinen et al., 2007; Vuust et al., 2016). Many neurophysiology
studies have shown that the brain makes predictions along multi-
ple features simultaneously (Takegata et al., 1999; Paavilainen et
al., 2001; Caclin et al., 2006; Du et al., 2011; Pieszek et al., 2013).
However, these studies do not give any indication of how these
independent predictions are combined at later stages of process-
ing to give rise to integrated object-level percepts. It is clear
through behavioral studies (and everyday experience) that listen-
ers integrate across features to represent sound sources wholly as
objects (Melara and Marks, 1990; Thompson and Sinclair, 1993;
Dyson and Ishfaq, 2008; Shinn-Cunningham et al., 2008;
Chernyshev et al., 2016). What is not clear is the manner in
which independently tracked sensory dimensions are joined into
a unified statistical representation that reflects the complexity
and nondeterministic nature of natural listening scenarios.

To address the limitations of quasi-predictable regularities of-
ten used in previous studies, we focus on the perception of sto-
chastic regularities that exist in the continuum between perfectly
predictable and completely random. We use stimuli exhibiting
random fractal structure (also known as 1/f or power-law noise)
along multiple features, both spectral and spatial. Random frac-
tals occur in natural sounds, including music and speech
(Pickover and Khorasani, 1986; Attias and Schreiner, 1997;
Geffen et al., 2011; Levitin et al., 2012), and previous work has
shown the brain is sensitive to these types of structures
(Schmuckler and Gilden, 1993; Garcia-Lazaro et al., 2006;
Overath et al., 2007; Maniscalco et al., 2018; Skerritt-Davis and
Elhilali, 2018). Using a change detection paradigm, we task lis-
teners with detecting changes in the entropy of sound sequences
along multiple features. With this paradigm, we probe the ability
of the brain to abstract statistical properties from complex sound
sequences in a manner that has not been addressed by previous
work. Importantly, the statistical structure of the sequences used
in this study carry no particular coupling or correlation across
features hence restricting the ability of the brain to leverage this
correspondence, which is in line with previously reported feature
fusion mechanisms observed within and between visual, somato-
sensory, vestibular, and auditory sensory modalities (Treisman
and Gelade, 1980; Angelaki et al., 2009; Fetsch et al., 2010; Parise
et al., 2012; Ernst et al., 2013).

The use of an experimental paradigm involving uncertainty
raises the specific challenge of interpretation of responses to each
stochastic stimulus, as changes in underlying statistics need
not align with behavioral and neural responses to the instan-
tiations of these statistics. This complexity is further com-
pounded in multidimensional feature spaces, begging the
question of how the brain deals with this uncertainty, espe-
cially with dynamic sensory inputs that lack a priori depend-
encies across dimensions.

The current study develops a computational model to guide
our analysis through simulation and to make inferences
about the underlying computational mechanisms behind
multidimensional predictive coding in the brain. This model
offers the opportunity to ask the following targeted ques-
tions. Which statistics are tracked along each feature? When
does integration across features occur? Are features com-
bined linearly or through some other function? The model is
used to formulate alternative hypotheses addressing these
questions and to compare them by simulating listener
responses in the behavioral paradigm. In addition, we use the

output of the model as an anchor for time-locking analysis of
neural responses, combating the temporal uncertainty that
invariably creeps into the analysis of stochastic responses to
stochastic stimuli.

Materials and Methods
Experimental design and statistical analyses
We conducted four experiments to probe the mechanisms behind pre-
dictive processing along multiple dimensions in auditory perception, as
follows: two psychophysics experiments (Experiments SP and TP) and
two similarly structured electroencephalography (EEG) experiments
(Experiments nSP and nTP, with “n” denoting neural). Listeners were
asked to detect changes in the statistical properties of a sequence of com-
plex sounds varying along the following two perceptual features: in
Experiments SP and nSP, stimuli varied in spatial location (S) and pitch
(P), as denoted by the naming convention; in Experiments TP and nTP,
stimuli varied in timbre (T) and pitch (P).

Participants
In Experiment SP, 16 participants (8 females) were recruited from the
general population (mean age, 25.1 years); 1 participant was excluded
from further analysis because their task performance was near chance
(d9 , 0.05). In Experiment TP, 18 participants (12 females) were
recruited (mean age, 21.5 years); 3 participants were excluded because of
chance performance. In Experiment nSP, 20 participants (9 females)
were recruited (mean age, 23.4 years); 2 participants were excluded
because of chance performance. In Experiment nTP, 22 participants (13
females) were recruited (mean age, 22.5 years); 4 participants were
excluded because of chance performance. Sample sizes were estimated
based on similar experiments previously reported (Skerritt-Davis and
Elhilali, 2018).

All participants reported no history of hearing loss or neurologic
problems. Participants gave informed consent before the experiment
and were paid for their participation. All experimental procedures were
approved by the Johns Hopkins University institutional review board.

Stimuli
Stimuli in all experiments were melodies composed of a sequence of
complex tones varying along two perceptual features. Stimuli in
Experiments SP and nSP varied in pitch and spatial location; stimuli in
Experiments TP and nTP varied in pitch and timbre. To simulate the
variability present in natural sounds, each feature followed the contour
of a random fractal at different levels of entropy or randomness.

Random fractals are stochastic processes with spectrum inversely
proportional to frequency with log-slope b (i.e., 1/fb ), where b parame-
terizes the entropy of the sequence. Fractals at three levels of entropy
were used as seed sequences to generate the stimuli: low (b = 2.5), mid
(b = 2), and high (b = 0, white noise). In all experiments, stimuli began
with both features at lower entropy, and halfway through the melody,
one or both features increased to high entropy. Stimuli with decreasing
entropy were not used in this work for two reasons: (1) to keep the dura-
tion of the multifeature paradigm within a single experimental session;
and (2) our previous work shows no difference in behavioral responses
based on direction of entropy change (Skerritt-Davis and Elhilali, 2018).
We chose to use increasing entropy because it affords the brain more of
a chance to initiate tracking of statistics jointly across features at the
onset of the stimulus.

In the psychophysics experiments (SP and TP), for stimulus condi-
tions with a single feature changing, the nonchanging feature could have
either low or mid entropy. In the EEG experiments (nSP and nTP), the
nonchanging feature always had low entropy. Control conditions con-
tained stimuli with no entropy change in either feature. See Figure 1 for
an illustration of the different stimulus conditions in each experiment.

Each complex tone in the melody sequence was synthesized from a
harmonic stack of sinusoids with frequencies at integer multiples of the
fundamental frequency, then high- and low-pass filtered at the same cut-
off frequency using fourth-order Butterworth filters. Pitch was manipu-
lated through the fundamental frequency of the complex tone, and
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timbre was manipulated through the cutoff frequen-
cies of the high- and low-pass filters (i.e., the spectral
centroid; Allen et al., 2017). Spatial location was simu-
lated by convolving the resulting tone with interpo-
lated head-related impulse functions for the left and
right ear at the desired azimuthal position (Algazi et
al., 2001). Seed fractals were generated independently
for each feature and each stimulus, standardized (i.e.,
zero mean and unit variance), and then mapped to fea-
ture space, as follows:

F0½t� ¼ 350 � 23x½t�=12

S½t� ¼ 15y½t�
T½t� ¼ 1200 � 23z½t�=12;

where F0[t], S[t], and T[t] are pitch (fundamental fre-
quency in hertz), spatial location (azimuth in degrees),
and timbre (spectral centroid in hertz) sequences indexed
by time t. x[t], y[t], and z[t] are their respective seed frac-
tals. Fundamental frequency ranged from 208 to 589Hz,
spatial location ranged from –458 to 458 azimuth at 08 ele-
vation, and spectral centroid (timbre) ranged from 714 to
2018Hz.

In Experiments SP and TP, melody stimuli were
composed of 60 complex tones, each 100ms in dura-
tion with 20ms onset/offset ramps presented isochronously at a rate
of 10 Hz. Two hundred stimuli were generated, 25 for each condi-
tion (5 change, 3 no-change). In Experiments nSP and nTP, melody
stimuli were composed of 60 complex tones, each 100ms in dura-
tion with 20ms onset/offset ramps presented isochronously at a rate
of 8.6 Hz. Two hundred stimuli were generated, 50 for each condi-
tion (3 change, 1 no-change). Audio examples of multifeature stim-
uli are included in Fig. 1-1, Fig. 2-1, Fig. 3-1, Fig. 4-1, Fig. 5-1, Fig.
6-1, Fig. 7-1, Fig. 8-1.

Procedure
Stimuli were presented in randomized order; thus, listeners did not
know a priori which feature was informative for the task. The experi-
ment contained four blocks with self-paced breaks between blocks.
During each trial, participants were instructed to listen for a change in
the melody. After the melody finished, participants responded via key-
board whether or not they heard a change. Immediate feedback was
given after each response.

Listeners were not given explicit instructions about what to listen for,
learning the task implicitly in a training block before testing. Incorrect
responses in the training block resulted in the same stimulus being
replayed with feedback (including, in the case of missed detections, a vis-
ual indication of change during playback).

Stimuli were synthesized on-the-fly at a 44.1 kHz sampling rate and
presented at a comfortable listening level using PsychToolbox
(psychtoolbox.org) and custom scripts in MATLAB (MathWorks).
Participants were seated in an anechoic chamber in front of the presenta-
tion screen.

In Experiments SP and TP, stimuli were presented via over-ear head-
phones (model HD 595, Sennheiser), and participants responded via
keyboard. The experiment duration was ;50min. In Experiments nSP
and nTP, stimuli were presented via in-ear headphones (model ER-2,
Etymotic) and participants responded via response box. Additionally,
before each melody trial, a fixation cross appeared on the screen to
reduce eye movement during EEG acquisition. The experiment dura-
tion, including EEG setup, was;120min.

Statistical analyses
In all experiments, the effects of stimulus condition on behavioral
responses were assessed using repeated-measures ANOVA to control for
differences across subjects, with factors reported for each experiment in
the main text in the Results section, and significant effects seen in Figure
4. Post hoc analyses using t tests were used to determine the extent of
observed effects for individual conditions.

Computational model
We used the dynamic regularity extraction (D-REX) model to investigate
the computational underpinnings of multidimensional predictive proc-
essing (Skerritt-Davis and Elhilali, 2018). The model builds robust se-
quential predictions by exploiting statistical properties of sounds; thus, it
is a potential computational solution for how the brain tracks natural
sound sources that are not perfectly predictable but rather have predic-
tive structures that change over time.

Initially designed to build statistical predictions along a single dimen-
sion, we used the D-REX model as a framework to generate potential
implementations in multiple dimensions. We specified a set of model
variants a priori, each representing a different hypothesis for how the
brain tracks statistics along multiple dimensions. For each model variant,
we then simulated model responses to the same stimuli in Experiments
nSP and nTP, selecting model parameters that maximized agreement
between model and individual listener behavioral responses. The best
model was then used to interpret neural responses.

In this section, we give a brief overview of the principles behind the D-
REX model and how it was used to formulate hypotheses for the computa-
tional mechanisms behind predictive processing of multifeature sounds.

Statistical inference along a single dimension.
The D-REX model builds sequential predictions of the next input
xt11, given all previously observed inputs x1; x2; :::; xt . In the pres-
ent study, the input fxtgt2Z1 is a sequence of pitches, spatial loca-
tions, or spectral centroids (timbre). This sensory input is assumed
to be successively drawn from a multivariate Gaussian distribution
with unknown parameters, as this structure encompasses sequen-
tially unfolding sounds in a wide range of natural and experimental
phenomena (Winkler et al., 1990; Attias and Schreiner, 1997;
Nelken et al., 1999; Daikhin and Ahissar, 2012; Garrido et al.,
2013; Skerritt-Davis and Elhilali, 2019). Over time, the model col-
lects sufficient statistics û from observed inputs to estimate the
unknown distribution parameters (Murphy, 2007).

If the generating distribution were stationary, this would yield the
following prediction equation:

Pðxt11jx1:tÞ ¼ Pðxt11jû ðx1:tÞÞ; (1)

where û ðx1:tÞ ¼ fm̂Dðx1:tÞ; R̂Dðx1:tÞg are the sufficient statistics of the
underlying distribution collected over the observed inputs: the sample
mean and sample covariance, respectively. The subscript D denotes
the dimensionality of these statistical estimates, and, equivalently,
the distributional assumption in the generative model of the input

Figure 1. Multifeature stochastic stimuli. a, Stimuli were melodies comprised of tones varying according to
stochastic regularities along two features simultaneously: Pitch and spatial location (in Experiments SP and
nSP); or pitch and timbre (in Experiment TP and nTP). At the midpoint of the melody, one or both features
increased in entropy (nondiagonal and diagonal arrows, respectively), while the nonchanging feature
remained at low entropy. For psychophysics experiments (SP and TP), the nonchanging feature could
also have mid-level entropy (checkered arrows). b, Four example stimulus sequences with condition
indicated by small schematic on left. Arrows indicate change in each feature, when present. The bottom
example is a control trial with no change.
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sequence {xt}. For D = 1, the observations are assumed to be tem-
porally independent, and the model uses a univariate Gaussian,
collecting mean and variance from the observed inputs. For D = 2,
successive observations are assumed to be temporally dependent,
and the model additionally collects covariances between adjacent
inputs. In this manner, we use the model to test for different statis-
tics collected by the brain.

While Equation 1 suffices if the underlying distribution is sta-
tionary, modeling the dynamics of real-world environments
requires relaxing this assumption. The D-REX model assumes the
unknown parameters of the underlying distribution change at
unknown times, and observations before and after each change are
independently distributed. Consequently, the context window of
past observations relevant for the current prediction depends on
when the most recent change occurred. To build predictions ro-
bust to these unknown dynamics, the model entertains multiple
potential context windows ~C ¼ fcig, with a corresponding set of
statistical estimates at time t, ~Ht ¼ fû i;tg; i 2 f1; :::;Mg. Each û i;t is
sufficient statistics collected over context ci, and M is the total
number of context hypotheses (representing a maximal memory
capacity for the model).

When a new input xt11 is observed, the model produces a pre-
dictive probability of this input for each context hypothesis, as
follows:

~Pt ¼ fpi;tg ; i 2 f1; :::;Mg
pi;t ¼ Pðxt11jû i;tÞ;

(2)

where pi,t is the context-specific predictive probability of xt11, given the
statistics estimated over the ith context hypothesis. Alongside these pre-
dictive probabilities, the model maintains a set of beliefs for each context
hypothesis, as follows:

~Bt ¼ fbi;tg ; i 2 f1; :::;Mg
bi;t ¼ Pðcijx1:tÞ;

(3)

where bi,t is the belief in (or, equivalently, the posterior probability of)
the ith context given previously observed inputs.~Bt then forms the pos-
terior distribution over all context hypotheses. The prediction equation
(Eq. 1) is therefore revised to consider unknown dynamics in the input,
integrating context-specific predictions (Eq. 2) weighted by their beliefs
(Eq. 3), as follows:

Pðxt11jx1:tÞ ¼
XM

i¼1

Pðxt11jci; x1:tÞPðcijx1:tÞ

¼
XM

i¼1

Pðxt11jû i;tÞPðcijx1:tÞ

¼
XM

i¼1

pi;t bi;t;

(4)

where the unknown dynamics of the input are treated in a Bayesian fash-
ion by “integrating out” the unknown context.

Figure 2a illustrates the main processing stages of the model for a
single time step. Upon observing the new input xt11, the model first
computes the set of predictive probabilities~Pt using the collected statis-
tics ~Ht (Fig. 2a, Predict). The model then incrementally updates the fol-
lowing two quantities (Fig. 2a, Update): the beliefs ~Bt are updated with
new evidence from~Pt based on how well xt11 was predicted under each
context hypothesis; and the set of statistics ~Ht is updated with the newly
observed input xt11. These are in turn used for predicting the subse-
quent input at time t1 2, and so on (Skerritt-Davis and Elhilali, 2018).

As shown in Figure 2a, the model emits two outputs at different
processing stages, and they each reflect different levels of uncertainty
and dynamics in the input.

Surprisal is a local measure of probabilistic mismatch between the
model prediction and the just observed input:

St11 ¼ �logPðxt11jx1:tÞ; (5)

where St11 is the surprisal at time t1 1, based on the predictive proba-
bility of xt11 from Equation 4. Observations with low predictive proba-
bility have high surprisal, observations with high probability have low
surprisal, and observations predicted with probability 1 (i.e., completely
predictable) have zero surprisal. Relating to concepts from information
theory, this measure reflects the information gained from observing xt11

given its context (Samson, 1953).
Belief change is a global measure of statistical change in the input

sequence. If the new input xt11 is no longer well predicted using the
beliefs~Bt (e.g., after a change in underlying statistics), the updated beliefs
~Bt11 shift to reflect the change in context inferred by the model. The
belief change d t measures the distance between these two posterior dis-
tributions before and after xt11 is observed:

d t ¼ DJSð~Btjj~Bt11Þ; (6)

Figure 2. Model schematic. a, Building blocks of the model for predictive processing along a single dimension. b, Illustration of potential variants of the model for statistical inference along
multiple dimensions. Red indicates aspects of the model that differed by variant: statistics collected along each dimension (D [ {1,2}), early-stage versus late-stage integration, and the operator
used in integration (MAX, MIN, AVG, wAVG). Summary of model variants are in red boxes at bottom.
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where DJSð�jj�Þ is the Jensen–Shannon divergence. The belief change ulti-
mately reflects dynamics in the global statistics of the observed sequence.

We derived a change detection response from the model analogous
to listener behavioral responses by applying a detection threshold t to
the maximal d t:

Model Response ¼ max
t
ðd tÞ � t : (7)

We use this response to compare the model to listeners’ behavioral
responses. In addition, we use the moment when this maximal belief
change occurs, along with surprisal, to examine the neural response
related to different dynamics in the stimuli.

Statistical inference along multiple dimensions.
Now, let the input sequence xt be multidimensional with two compo-
nents along separate dimensions (e.g., pitch and spatial location:
xt ¼ fxPt ; xSt g). The extension of the D-REX model to multidimensional
inputs is not trivial. In this study, we use the model as a springboard to
formulate hypotheses for how statistical inference operates across multi-
ple dimensions. In these different formulations, we explored three com-
ponents of the model, illustrated in Figure 2b (indicated in red).

Statistics D. Listeners potentially collect different statistics along dif-
ferent dimensions. In the model, sufficient statistics are specified by the
D parameter, the dimensionality of the Gaussian distribution, or the
temporal dependence, assumed by the model. In the proposed multidi-
mensional model, a separate D parameter was used for each feature (Fig.
2b, Predict). Each D parameter took one of the following two values:
with D = 1 the model collected lower-order statistics (mean and var-
iance); and with D = 2 the model additionally collected higher-order sta-
tistics (i.e., covariance between adjacent inputs).

Integration stage. Building on previous neural evidence for inde-
pendent predictions along different dimensions, the model generates

predictions separately along each feature. We examine two possible
stages for combining across dimensions after the prediction: early-stage
integration (Fig. 2, top), where predictions are combined across features
before updating context beliefs; and late-stage integration (Fig. 2, bot-
tom), where the d t is computed separately for each feature and com-
bined before the final decision. These two alternatives represent whether
the context window for estimating statistics is inferred jointly across fea-
tures (early) or independently for each feature (late).

Integration operator f(·,·).We test the following four different opera-
tors for how predictive information is combined across features: two lin-
ear operators, average (AVG) and weighted AVG (wAVG), where the
convex weighting across features is adapted to each listener; and two
nonlinear operators, minimum (MIN) and maximum (MAX). These
operators are applied at the processing level specified by the integration
stage.

We examined each permutation of these attributes, yielding 32 var-
iants of the model (2 D � 2 D � 2 stages � 4 operators). Model
responses differed depending on their configuration. Figure 3 shows the
belief change over time across model variants for the following three
example stimuli: two change stimuli (examples 1 and 2) and one control
stimulus (example 3). Note that after applying a given detection thresh-
old to belief change Eq. (7), the model variants differ in their change
detection responses and, if detected, in when the detection occurs.

Model variants were used to simulate listener responses in
Experiments nSP and nTP. After fitting model parameters for each vari-
ant to the behavior of each participant (described in the next section),
model variants were evaluated by comparing listener responses (Fig. 2b,
right) and model responses (Eq. 7) to the same stimuli.

Model fitting
For each model variant, parameters were fit to individual listeners in
Experiments nSP and nTP. In addition to the decision threshold t , there
are two parameters of the model that reflect neural constraints specific

Figure 3. Belief change response from model variants for three example stimuli. Belief change response from model (d t) shown over time alongside example stimuli (top). Horizontal axes
show time in observations. Each row is a model variant, ordered by the average fit loss across subjects found in Experiment nSP (i.e., top row has minimum loss). wAVG variants were excluded
in this figure. Examples are from the following stimulus conditions: (1) single-feature change; (2) both-feature change; and (3) no change (control).
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to each listener: the memory parameter M sets an upper bound on the
context window (and the number of context hypotheses), and an obser-
vation noise parameter N sets a lower bound on prediction uncertainty,
adding independent Gaussian noise with variance N to the predictions.
These parameters represent plausible constraints on perception known
to vary across individuals, with the former representing working mem-
ory capacity (Just and Carpenter, 1992; Conway et al., 2001), and the lat-
ter, perceptual fidelity (Wightman and Kistler, 1996; Kidd et al., 2007).
Models with early-stage integration have a single memory parameter,
because of shared context beliefs across features; models with late-stage
integration have two memory parameters (one for each feature). All
models have two observation noise parameters and a single decision
threshold.

A grid search with 95,000 iterations was used to find parameters M,
N, and t (memory, observation noise, and decision threshold, respec-
tively) that best replicated listener behavior for each model variant. The
model detection rate (i.e., percentage of trials wherein a change was
detected, using Eq. 7) in each condition was collected for each iteration
in the search procedure, and the parameters resulting in the least mean
squared error (MSE) in detection rate across conditions between model
and listener behavior was selected. A modified hinge loss was then used
to compute goodness-of-fit for each model: this loss function penalized
both incorrect model responses and correct responses close to threshold
(i.e., correct with low certainty), thus rewarding models with decision
signals far from threshold (i.e., correct with high certainty). Note that in
this comparison, ground truth is not whether there was a change in the
stimulus itself, but whether the individual listener detected a change. To
determine the best model variant, t tests were used to compare the mini-
mum loss between the top two performing models across subjects.
Cross-validation was used to confirm the model fitting above was not
susceptible to overfitting: a random partition of half of experiment
trials was used to fit the model as described above, and the model
was evaluated using the held-out partition. Cross-validation results
were averaged over 10 iterations to reduce noise from fitting to
behavior estimated over a smaller sample size. In the exploration of
fitted model parameters, multiple linear regression was used to es-
tablish any linear relationship between subject detection perform-
ance and model parameters.

Electroencephalography
Data recording and preprocessing
EEG data in Experiments nSP and nTP were recorded using the
ActiveTwo System (BioSemi) with 64 electrodes placed on the scalp
according to the international 10–20 system, along with 2 additional
electrodes specified by the BioSemi system used as online reference for
common-mode rejection. Data were recorded at a sampling rate of
2048Hz.

For each subject, EEG data were preprocessed with custom scripts
in MATLAB using the Fieldtrip toolbox (www.fieldtriptoolbox.org;
Oostenveld et al., 2011). Bad channels were identified by eye and
removed before proceeding with preprocessing. Continuous EEG was
filtered to 0.3–100Hz (two-pass fourth-order Butterworth filter for high-
pass, and sixth-order Butterworth filter for low-pass) and resampled to
256Hz. Data were then cleaned in the following three stages: the Sparse
Time Artifact Removal (STAR) algorithm was used to remove channel-
specific artifacts (de Cheveignè, 2016), Independent component analysis
was used to remove artifacts because of eye movement and heartbeat,
and missing channels were interpolated using spline interpolation. The
cleaned data were then epoched by melody trial (�1 to 8 s, relative to
melody onset), rereferenced to the average of all 64 scalp electrodes, and
baseline corrected to the 1 s window preceding melody onset. Epochs
with power exceeding 2 SDs from the mean were removed from further
analysis (on average, 3.8% of trials were excluded in nSP, 5% of trials in
nTP).

Data analysis
We further epoched neural responses to �1000 to 1500ms around tone
onsets according to model outputs (surprisal and maximal belief change)

to examine neural responses time locked to predictive events determined
by the model.

In an oddball-like analysis, the EEG response was averaged over nine
frontocentral electrodes (Fz, F1, F2, FCz, FC1, FC2, Cz, C1, and C2) to
maximize auditory-related responses. High- and low-surprisal events
were defined as tones with overall surprisal above the 95th percentile
and below the 5th percentile, respectively. Tone epochs within each sur-
prisal bin were averaged, and the high-surprisal response was subtracted
from the low-surprisal response to yield a difference wave.

To examine the linear relationship between the EEG response mag-
nitude and surprisal, tone epochs across all stimuli were split into 40
bins according to overall surprisal, and tone epochs with power exceed-
ing 2 SDs from the mean were excluded from analysis (average bin size
per subject, 185 epochs). The average response across tone epochs within
each bin was calculated, and the cumulative response magnitude was
computed in the window 80–150ms after tone onset and plotted against
the average surprisal within each bin. A similar analysis was performed
using the individual surprisal along each feature using 128 bins (average
bin size per subject, 66 epochs), where the bins were determined by
bifurcating the 2-D surprisal space across all tones. In both analyses, the
linear relationship between surprisal and neural response was measured
using linear regression.

We examined the neural response time locked to high surprisal and
to maximal belief change in two time windows: 80–150 and 300–800ms.
In each window, 10 channels with the largest amplitude in the grand av-
erage (5 positive polarity, 5 negative polarity) were selected for statistical
analysis. For each subject, response magnitude was measured as the deci-
bel root mean square (rms) amplitude across channels averaged over the
time window relative to a baseline window (�152 to �82 and �630 to
�130ms for the early and late windows, respectively). The significance
of neural response relative to baseline was determined using t tests.

Data availability
Source code is available at: https://github.com/JHU-LCAP/DREX-
model.

Results
We first present behavioral results and their consequences
for multidimensional predictive processing. We then further
explore the computational implications of the behavioral
responses using the model. Finally, we use the model to
interpret neural responses.

Perceptual experiments
Listeners were tasked with detecting changes in the statistical
properties of a sequence of complex sounds varying along the
following two perceptual features: in Experiments SP and
nSP, stimuli varied in spatial location (S) and pitch (P), as
denoted by the naming convention; in Experiments TP and
nTP, stimuli varied in timbre (T) and pitch (P). Results
within each set of features are presented side by side for
comparison.

Detection performance improves with feature conjunction
Figure 4 shows detection performance in psychophysics Experiments
SP (left) and TP (right). To establish whether listeners integrated in-
formation across features to perform the change detection task, we
compared single- and both-change conditions, with the nonchanging
feature at low entropy (excluding mid-entropy conditions; Fig. 4,
checkered bars).

In Experiment SP, an ANOVA with one within-subject factor
(three conditions) showed strong significant differences between
conditions (F(2,28) = 12.07, p= 0.0002), with post hoc paired t tests
confirming the effect between Both and each single-change con-
dition (Both vs Pitch: t(14) = 6.12, p, 0.0001; Both vs Spatial:
t(14) = 4.64, p= 0.0004; Fig. 4, bracket across solid and striped
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bars). In addition, a more stringent test showed
that for each subject, performance in the Both
condition was significantly better than the highest
of the two single-change conditions [Both vs max
(Pitch, Spatial): t(14) = 3.70, p=0.0024].

We found the same effects in Experiment TP.
The ANOVA showed strong differences between
change conditions (F(2,28) = 23.74, p, 0.0001),
with post hoc paired t tests confirming the effect
between Both and each single-change condition
(Both vs Pitch: t(14) = 7.77, p, 0.0001; Both vs
Timbre: t(14) = 3.35, p=0.0047). The more strin-
gent test also showed that each subject performed
significantly better in the Both condition com-
pared with the maximum of the single-change
conditions [Both vs max(Pitch, Timbre):
t(14) = 3.01, p= 0.0093].

We replicated the same analysis for behavioral
responses in the EEG Experiments nSP and nTP
(not shown in figure). Listeners performed the
same change-detection task, with the only difference being the
exclusion of the mid-entropy conditions (Fig. 1, checkered bars).
We observed the same behavioral effects as above in the EEG
experiments: detection performance increased in the Both condi-
tion relative to each of the single-change conditions [nSP: Both
vs max(Spatial, Pitch), t(17) = 4.86, p = 0.00,015; nTP: Both vs
max(Timbre, Pitch), t(17) = 3.29, p= 0.0043].

If listeners were processing each feature completely independ-
ently, we would expect performance in the Both condition to be,
at most, the maximum of the two single-change conditions.
Instead, the apparent increase in detection performance suggests
that listeners can flexibly integrate predictive information when
corroborative evidence across features is available.

Higher entropy in uninformative feature increases false alarms
but not missed detections
In a second analysis of Experiments SP and TP, we looked at
whether the uninformative (i.e., nonchanging) feature could dis-
rupt change detection in the informative (i.e., changing) feature.
We compared performance in the single-change conditions
when the nonchanging feature was low entropy versus mid en-
tropy (excluding the Both condition; Fig. 4, striped bars).

In Experiment SP, an ANOVA with two within-subject fac-
tors (two levels of changing feature � two levels of entropy of
nonchanging feature) showed a significant main effect of entropy
(F(1,42) = 5.01, p=0.031), and no effect of changing feature (F(1,42)
= 1.15, p= 0.29) or interaction (F(1,42) = 1.12, p=0.30; Fig. 4,
bracket across solid and checkered bars). Interestingly, post hoc t
tests showed that the decrease in performance was because of an
increase in false alarms (FAs; Pitch/Spatial entropy: low/low vs
low/mid, t(14) = –7.44, p, 0.0001); low/low vs mid/low, t(14) = –
2.48, p=0.013) and not a decrease in hit rates (same ANOVA as
above applied to hit rates: entropy: F(1,42) = 2.82, p = 0.10; fea-
ture: F(1,42) = 0.44, p = 0.51; interaction: F(1,42) = 0.55,
p = 0.46).

We found similar effects in Experiment TP. The ANOVA
showed a significant main effect of entropy (F(1,42) = 8.00,
p=0.0071) and no interaction effect (F(1,42) = 0.28, p= 0.60), but
it did show a main effect of changing feature (F(1,42) = 32.03,
p, 0.0001). This difference between the Pitch and Timbre con-
ditions likely reflects a difference in task difficulty because of
stimulus design, rather than a persistent effect because of the fea-
tures themselves or an interaction between the two. As for the

main effect of nonchanging entropy, post hoc t tests again
showed the decrease in detection performance was because of an
increase in FAs (Pitch/Timbre entropy: low/low vs low/mid, t(14)
= –5.91, p, 0.0001); low/low vs mid/low, t(14) = –3.93,
p= 0.00,075) and not a decrease in hit rates with higher entropy
(same ANOVA as above applied to hit rates: entropy: F(1,42) =3.5,
p=0.068; feature, F(1,42) =29.48, p, 0.0001; interaction, F(1,42) =
1.75, p=0.19).

The uninformative (nonchanging) feature did in fact affect
overall detection performance, where higher entropy led to
increased FAs; meanwhile, the detection of changes in the in-
formative feature (i.e., hit rates) was not affected. Because stimu-
lus conditions were randomized from trial to trial, listeners did
not know a priori which features might change. If statistics were
collected jointly across features, we would expect higher entropy
in any feature to yield poorer statistical estimates, leading to
higher FAs and lower hit rates. However, differences in the unin-
formative feature did not disrupt listeners’ ability to track statis-
tics in the informative feature. This result suggests that statistics
are collected independently along each feature rather than jointly
between features, and integration across features occurs after sta-
tistical estimates have been formed.

Computational model
Behavioral results so far demonstrate that listeners collect statis-
tics independently along multiple features and then integrate
across features at some later processing stage, begging the ques-
tion of how this combination occurs. To answer this, we formu-
lated many possible models to appraise different hypotheses for
the underlying computational mechanism that could lead to lis-
tener behavior. These model variants explore the following three
aspects of multifeature predictive processing: (1) the statistics
collected along each feature; (2) the processing stage at which
integration occurs; and (3) the function or operator used to com-
bine across features.

Model comparison to listener behavior
Figure 5 shows the loss by model (rows) and subject (columns) af-
ter the fitting procedure for Experiments nSP and nTP. For each
experiment, models are ordered by decreasing average loss (Fig. 5,
top row, minimum average loss), and subjects are ordered by
increasing detection performance d9 (Fig. 5, right column, highest
d9). Model variants are labeled according to the configuration illus-
trated in Figure 2b: stage_DXX_operator, where XX specifies the

Figure 4. Behavioral results for Experiments SP and TP. Average change detection performance (d9) is shown
by changing feature (abscissa) and entropy of nonchanging feature (fill pattern). Error bars indicate 95% bootstrap
confidence interval across subjects (N= 15 for both experiments).
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statistics (1 or 2) used for each feature. For example, in Experiment
nSP in Figure 5, the Early_D12_MAXmodel uses early-stage integra-
tion, D=1 for pitch, D=2 for spatial, and the MAX operator for
integration.

The column to the right of each fit matrix in Figure 5
shows the average loss across all subjects. The model labels
reveal high agreement in the top-performing models fit
across Experiment nSP and Experiment nTP—in fact, the
ordering of the top 11 models is identical across experiments.
Notably, model Late_D22_MAX yields the best fit on average
across all subjects for both experiments. Specifically, Late_
D22_MAX has a significantly lower loss (i.e., better fit)
across subjects when compared with the next best model,
Early_D22_MIN, in both experiments (nSP: t(17) = –3.82,
p = 0.0014; nTP: t(17) = –3.63, p = 0.0021).

With the poorer fitting models in the lower half of Figure 5,
model variants with Early-MAX or Late-MIN have a fit loss near
chance. This is not surprising given that both are less sensi-
tive to changes: the Early-MAX models only detect changes
when both features violate prediction, and similarly the Late-
MIN models require the change signal of both features to
cross threshold. Neither of these types of models fit listener
behavior well. Additionally, models with lower-order statis-
tics (i.e., D = 1) in one or both features tend to have poorer
fits (and higher loss).

To examine the robustness of the model fitting, we performed
cross-validation where the model was fit to a random partition
of half of experiment trials, and this fitted model was then com-
pared with listener behavior using task performance (d9) on the

held-out trials. Figure 6 shows model performance on the
test partition for four model variants plotted against listener
behavior. The four models—Late_D22_MAX, Late_D22_MIN,
Late_D11_MAX, and Early_D11_MAX—were selected to dem-
onstrate how tweaks in the model configuration lead to drasti-
cally different replication results. For each model variant, a linear
regression with explained variance (R2) is overlaid onto the data,
and the diagonal line indicates an ideal model (i.e., model per-
formance matching listener behavior). The best-fitting model
variant from the comparison above (Late_D22_MAX) explains a
high amount of variability in listener behavior across perform-
ance levels and has low MSE, approaching the diagonal in
both experiments (SP: R2 = 0.96, MSE=0.14; TP: R2 = 0.98,
MSE= 0.24). By comparison, the performance of higher-perforn-
ing subjects cannot be matched by the Late_D22_MIN model
(SP: R2 = 0.20, MSE= 1.02; TP: R2 = 0.34, MSE=2.11), or by the
Late_D11_MAX model (SP: R2 = 0.45, MSE=1.04; TP: R2 =
0.40, MSE=2.30). And the Early_D11_MAX model is not able
to perform the task at all, with performance below chance (SP:
R2 = 0.21, MSE=3.59; TP: R2 = 0.18, MSE= 7.40). This cross-val-
idation analysis confirms the results above showing that the
Late_D22_MAX model is able to closely replicate listener behav-
ior in both Experiments SP and TP.

Together, these results suggest that for both spectral and spa-
tial features, listeners track higher-order statistics separately
along each feature and integrate at a later stage, making a nonlin-
ear change decision based on the feature with the most evidence
for change. In later analyses, we use this fitted model to guide
analysis of neural responses.

Figure 5. Model comparison in Experiments nSP and nTP. Each model variant was fit to individual subjects, and the resulting loss is displayed by color. Each row is a model variant (ordered
by average loss), and each column is a subject (ordered by d9). Model names to the left of each image indicate integration stage, statistics (D) collected for each feature, and integration opera-
tor. The two best models, Late_D22_MAX and Early_D22_MAX, were compared using a t test (N= 18 in both experiments).
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Model interpretation of individual differences
Looking closer at variability in model loss across
individuals in Figure 5, some patterns emerge
across Experiments nSP and nTP. For better per-
forming subjects (Fig. 5: d9 . 1, right side of each
image), there is high agreement in loss across all
model variants. For poorer performing subjects
(Fig. 5, left side of each image), there is more var-
iability in model fit across subjects, with some
model variants with higher overall loss fitting
individual subjects quite well. For example, in
Experiment nSP (Fig. 5, left), the
Late_D12_MAX model has loss near chance for
subjects with d9 . 1, but for subjects with d9 , 1,
loss is near zero. Interpreting through the lens of
the model, this suggests individualized listening
strategies, possibly reflecting differences in the
inherent ability to track statistics in sound
sequences. Unfortunately, in this work we are
unable to disentangle the effects because of the
listening strategy from noise effects because of
lack of attention, deficient task understanding, or
fatigue; however, there are avenues for using the
model to investigate this in future work.

We can also examine how individual differen-
ces are explained by the model parameters fit to
each subject. Using the Late_D22_MAX model,
the “best” overall model, we tested for correspon-
dence among the four perceptual parameters
(memory and observation noise for each feature)
and detection performance across listeners. In
Experiment nSP, a multiple linear regression
explained 82% of the variance in d9 and showed
strongly significant correlation between both
memory parameters and detection performance
(MS, p= 0.0070; MP, p=0.0004) and no signifi-
cant correlation between the observation noise
parameter and performance in either feature (NS,
p=0.82; NP, p= 0.33), where MS and MP are the
memory parameter for spatial location and pitch,
respectively, and NS and NP are the accompany-
ing observation noise parameter for each feature..
We see similar results in Experiment nTP, with the perceptual
parameters accounting for 81% of the variance in d9 and sig-
nificant correlation between the spatial memory parameter
with weaker significance in the pitch memory parameter
(MT, p = 0.0009; MP, p = 0.0975; NT, p = 0.87; NP, p = 0.54),
where MT and NT are the memory and observation noise pa-
rameters for timbre, respectively. Figure 7 shows the fitted
memory parameters for each feature plotted against overall
d9 for Experiments nSP (left) and nTP (right), along with the
multiple linear regression. This result suggests that the dif-
ferences in behavior across listeners in Experiments nSP and
nTP could be because of differences in memory capacity
rather than difference in perceptual fidelity (as represented
by observation noise), where better performing subjects use
higher memory capacity for statistical estimation in each fea-
ture. We stress, however, that the model parameters are indi-
rect measures of memory capacity and perceptual fidelity,
but these questions could be further probed in future work.

We additionally tested for correlations between memory pa-
rameters across feature. Linear regression showed significant
correlations in memory across features in both experiments

(nSP: r = 0.53, p=0.0232; nTP: r = 0.61, p=0.0076). This result
holds implications for the independence of neural resources used
in statistical predictive processing: While predictions occur sepa-
rately across features, this suggests that the quality of statistical
estimates (as embodied by the memory parameter of the model)
is linked across features.

EEG brain responses
The model simulates predictive processing moment by
moment, giving a window into the underlying processes that can-
not be observed through behavior. In this section, we use the
Late_D22_MAX model to guide analysis of neural responses in
Experiments nSP and nTP.

Two model outputs were used to specify epochs for trial aver-
aging: surprisal, the local measure of deviance between each ob-
servation and its prediction; and maximal belief change, the
global measure of melody-level statistics when the largest change
in beliefs occurs in each trial. Note that there are distinct sur-
prisal responses for each feature (e.g., each tone in the melody
elicits a surprisal in pitch and a surprisal in spatial location from
the model). In comparison, the maximal belief change occurs

Figure 6. Cross-validation comparison between fitted model and listener behavior. Task performance (d9) on a
held-out test partition is plotted for four model variants (denoted by color) against listener performance
in Experiments SP and TP. For each experiment, models were fit to each subject using a random partition
of experiment trials, and evaluation results on the test partition were averaged over 10 cross-validation
iterations. The dotted line on the diagonal indicates an ideal model, where the fitted performance repli-
cates human behavior.

Figure 7. Memory parameters of the Late_D22_MAX model fit to individual subjects in Experiments nSP and
nTP. Fitted memory parameters plotted against overall detection performance d9, along with multiple linear
regression fit (R2 is at the bottom of each plot). Observation noise parameters (data not shown) did not have a
significant correlation with d9.
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once in each trial and reflects more global statistical processing
of the stimulus sequence.

Neural response magnitude increases with local surprisal
We used model surprisal to perform an oddball-like analysis of
neural responses. While this type of analysis typically relies on
deterministic patterns to define “deviant” and “standard” events,
without such structure we use surprisal from the model to guide
identification of tones that fit predictions well and those that do
not. First, we use an overall measure of surprisal to define devi-
ant and standard by summing surprisal across features (e.g.,
St ¼ SPt 1 SSt , where SPt and SSt are the tone-by-tone surprisal
from pitch and spatial location, respectively; Eq. 5). We com-
pared the neural response time locked to high-surprisal tones to
the response time locked to low-surprisal tones, where high and
low were defined as the top and bottom 5%, respectively, for
each subject. In this analysis, we averaged the EEG response
across frontocentral electrodes typically used in auditory analyses
(according to 10–20 system: Cz, C1, C2, FCz, FC1, FC1, Fz, F1,
and F2).

Figure 8a shows the grand average response to high- and
low-surprisal tones along with their difference wave for
Experiments nSP and nTP. High-surprisal tones elicit a larger
magnitude response relative to low-surprisal tones, as can be
seen in deviations in the difference wave from 0mV at typical N1
and P2 time windows. Topography in Figure 8a shows the am-
plitude of differential response in the 80–150ms window after
tone onset, along with channels used in this analysis. Note the
oscillations in the grand average response are entrained to tone
onsets (every 116ms); the response to high-surprisal tones aug-
ments this obligatory onset response.

To determine whether there is a linear relationship between
the overall surprisal (St) and the neural response, we took
advantage of surprisal as a continuous measure of probabilistic
deviance to bin tones across all trials into 40 equal-sized bins by
overall surprisal. We then averaged the neural response within
each bin across subjects and across tone epochs and extracted
the neural response magnitude 80–150ms after tone onset (cor-
responding to the typical N1/mismatch negativity (MMN) time
window; Fig. 8a, overlay on difference wave). Figure 8b shows

EEG magnitude plotted against surprisal in each bin. Linear
regression showed an increase in EEGmagnitude with increasing
surprisal in both experiments (nSP: R2 = 0.62, p, 0.0001; nTP:
R2 = 0.54, p, 0.0001). However, nonparametric tests using
Spearman correlations partially contradicted the significance of
these results for Experiment nTP (p= 0.14), while the effect in
Experiment nSP remained highly significant (p=0.0006).

We further examined this linear relationship in an extended
analysis using the feature-specific surprisal (e.g., SPt and SSt ). For
each subject, tone epochs were binned into 128 equal-sized bins
in the 2-D space spanned by surprisal along each feature, and the
neural response was averaged within each bin over epochs and
subjects. Figure 8c displays EEG magnitude for each bin at the
average surprisal along each feature. Multiple linear regression
shows a strongly significant correlation between EEG magnitude
and surprisal in both experiments (nSP: R2 = 0.41, p, 0.0001;
nTP: R2 = 0.38, p, 0.0001) with EEG magnitude significantly
increasing with surprisal along both features (nSP: pitch sur-
prisal, p=0.0124; spatial surprisal, p, 0.0001; nTP: pitch sur-
prisal, p=0.0272; timbre surprisal, p, 0.0001).

Going beyond previous work showing linear superposition of
deviance responses in oddball paradigms (Takegata et al., 1999),
these results show that the neural response magnitude increases
proportionally with the level of surprisal along each feature,
which then combines linearly in the EEG response recorded at
the scalp. This effect cannot be measured from stimulus proper-
ties alone nor by behavior, requiring a model to estimate the
local surprisal of each tone along each feature given its context.

Distinct responses to local surprisal and global statistical change
We next examined neural responses aligned to high-surprisal
events alongside responses aligned to the maximal belief change,
where the former represents local prediction mismatch and the
latter represents global statistical change in the stimulus. High
surprisal is again defined as tones with overall surprisal (e.g.,
St ¼ SPt 1SSt ) in the top 5%. Maximal belief change is the
moment when the d t reaches its maximum across the melody
trial (Eq. 6). Note that by aligning to model responses before trial
averaging, the temporal position of the motor response relative

Figure 8. Surprisal response in Experiments nSP and nTP. a, Oddball-like analysis contrasting neural response to high-surprisal tones (top 5%) with response to low-surprisal tones (bottom
5%), where overall surprisal is summed across features (e.g., SPt1STt ). Difference wave (high-low) shows 95% confidence interval across subjects. b, EEG magnitude (80–150 ms) in subaverages
of tone epochs binned by overall surprisal (abscissa). R2 from linear regression. c, EEG magnitude (80–150 ms) binned by feature-specific surprisal in both features (horizontal axes). Gray points
on horizontal axis show the position of each point in surprisal space. R2 is from multiple linear regression.
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to time= 0 is shuffled, thereby reducing confounds because of
motor preparation.

Figure 9a (top) shows an illustration of this analysis with an
example stimulus and its model outputs, St and d t. Dotted lines
show moments used to align epochs for each type of event.
High-surprisal events can occur at multiple points within the
same melody stimulus, while there is only one maximal belief
change. Note that when an epoch qualified as both a high-sur-
prisal and maximal belief change, it was excluded from the high-
surprisal events to keep the epochs in each average response dis-
tinct. For each subject, the neural response was averaged for each
aligning event (i.e., high-surprisal and maximal belief changes)
across epochs from all melody trials.

Below the illustration, Figure 9a shows the grand average
neural response across subjects for all 64 channels time locked to
the two aligning events, high surprisal (left) and maximal belief
change (right), in Experiments nSP (top) and nTP (bottom).
Topography to the right of each grand average show two
responses that emerge in the highlighted time windows after

alignment: an early frontocentral negativity (FCN) with a latency
of 80–150ms (the same surprisal response examined above), and
a later (and much slower) centroparietal positivity (CPP) with a
latency of 300–800ms.

To determine whether the neural response is significantly
larger in these two time windows, we compared the cumulative
rms amplitude of the neural response to baseline amplitudes in
windows at the same cyclic position relative to neural entrain-
ment (�152 to �82 and �630 to �130ms for the early and late
windows, respectively). In each time window, 10 channels with
the largest magnitude in the grand average (5 with positive polar-
ity, 5 with negative polarity) were selected for within-subjects
analysis; selected channels for each response are highlighted in
the topography in Figure 9a. Figure 9b shows decibel amplitude
in Experiments nSP (left) and nTP (right). In both experiments,
the neural response amplitude increased significantly in the early
window after high-surprisal tones (nSP: t(17) = 3.88, p=0.0012;
nTP: t(17) = 2.45, p=0.0253) and after the maximal belief change
(nSP: t(17) = 2.93, p=0.0093; nTP: t(17) = 4.86, p=0.0001). Note

Figure 9. Neural response aligned to model outputs. Illustration of example stimulus with model outputs above: moments of high surprisal and maximal surprisal (black, high) used to align
epochs for time averaging. a, Grand-average responses for Experiments nSP (top) and nTP (bottom). Shaded regions indicate two time windows of interest, with topography to the right show-
ing the average response amplitude within each time window at each channel relative to baseline. Highlighted channels used in statistical analysis. b, rms amplitude in decibels relative to
baseline in each time window (color) at each aligning event (horizontal axis). Error bars indicate 95% bootstrap confidence interval across subjects. c, Response amplitude in each time window
at each aligning event plotted against detection performance (d9) across subjects.
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that maximal belief change often coincides with high surprisal
(Fig. 9, top), so this result is not altogether “surprising.”
However, in the later window, the neural response only signifi-
cantly increased after maximal belief change (nSP: t(17) = 3.02,
p=0.0076; nTP: t(17) = 4.98, p=0.0001), with no significant
increase in amplitude after other high-surprisal moments in both
experiments (nSP: t(17) = 1.05, p= 0.31; nTP: t(17) = –0.43,
p=0.67).

Finally, we examined the relationship between these effects
and behavioral performance in the change detection task in
Experiments nSP and nTP. Figure 9c shows the overall d9 value
for each subject (vertical axis) plotted against the neural response
amplitude (horizontal axis) in each time window (by row) at
each aligning event (by column). Linear regression analysis
showed no significant correlation between neural responses and
behavior in the early time window at either aligning event. At the
maximal belief change, however, correlations between the neural
response amplitude in the late time window (i.e., the CPP
response) and behavior is significant in Experiment nSP (R2 =
0.2, p=0.036) and is marginally significant in Experiment nTP
(R2 = 0.12, p=0.086).

Together, these results suggest distinct underlying neural
computations leading to the FCN and CPP effects. The FCN
effect is elicited by any high-surprisal event. Moments of maxi-
mal belief change are a subset of these events, where incoming
observations no longer fit with current statistical estimates,
resulting in poor predictions and higher surprisal. The surprisal
response, as shown in the previous analysis, is elicited independ-
ently along each feature and combines linearly for multidimen-
sional sounds. The CPP effect, on the other hand, occurs only at
the maximal belief change, suggesting that this response relates
to global contextual processing after integrating nonlinearly
across features. Additionally, this CPP effect is weaker for poorer
performing subjects (Fig. 9c), possibly reflecting individual dif-
ferences in integration strategies or memory capacity for statisti-
cal estimation.

Discussion
Sound sources in natural environments vary along multiple
acoustic dimensions, yet how the brain integrates these features
into a coherent auditory object is an open question. Our
approach combined psychophysics, computational modeling,
and EEG to probe the mechanisms behind feature integration in
predictive processing. Importantly, we used a stochastic change
detection paradigm to approximate the challenges and uncer-
tainty encountered in natural environments, where regularities
emerge at unknown times and along unknown perceptual
dimensions.

Through behavioral results, we demonstrated that listeners
have access to a joint representation to perform the stochastic
change detection task, flexibly combining evidence for statistical
change across multiple features. To illuminate how this joint rep-
resentation is constructed, we used a computational model
grounded in Bayesian accounts of statistical predictive coding in
the brain (Knill and Pouget, 2004; Tenenbaum et al., 2006;
Daunizeau et al., 2010; Pieszek et al., 2013; Wilson et al., 2013).
This model embodies several theoretical principles of predictive
processing: that the brain maps sensory inputs onto compact
summary statistics (Brady et al., 2009; McDermott et al., 2013);
that the brain entertains multiple hypotheses or interpretations
of sensory information (Mumford, 1991); and that the brain
incrementally updates its predictions over time based on

evidence from new inputs (Darriba and Waszak, 2018). The D-
REX model and its multifeature extension presented above rep-
resent a computational instantiation of these theoretical princi-
ples that can be used to interpret experimental results.

We formulated multiple possible implementations for statisti-
cal prediction and integration. Using experimental data to fit
these model variants to each subject, our analysis suggests that
listeners independently collect higher-order statistics and infer
context along multiple dimensions, integrating across dimen-
sions at a later stage. We additionally used this best model to
interpret variability in behavior across listeners, where detection
performance ranged from near chance to near ceiling. A high
degree of variability in listener behavior could be explained by
the memory parameter of the model, which represents working
memory capacity used to estimate statistics along each feature
known to vary from person to person (Just and Carpenter, 1992;
Conway et al., 2001; Kidd et al., 2007). Interestingly, the fitted
memory parameters correlated across features, suggesting that
listeners are estimating statistics under the same neural resource
constraints across dimensions. Alternatively, variability in behav-
ior could be because of different listening strategies or resolution
of statistical representation (D=1 or 2), particularly for lower-
performing subjects. Worth noting is that the same lower-per-
forming subjects (d9 , 1) also reveal weaker centroparietal late
activity in response to maximal belief change of the melody,
which may underlie limited predictive tracking or sluggish cross-
feature integration of statistical beliefs. The lack of any correla-
tion between surprisal brain responses and perceptual perform-
ance (Fig. 9c) argues against poor performance being because of
weaker deviance tracking at the level of individual features.
Naturally, the source of these individual differences needs further
investigation in future work with better tailored experimental
paradigms.

That being said, it is clear from the neural responses that the
brain multiplexes two types of responses that can be defined in
terms of predictive processing. The FCN is an MMN-like
response, having similar characteristics to the response to devi-
ants in oddball experiments (Takegata et al., 2001; Pakarinen et
al., 2007; Garrido et al., 2013). Borrowing terminology from the
oddball paradigm, in our analysis we used the model to define
deviant events in our stochastic stimuli. These high-surprisal
events were followed by the FCN response (changepoint or not),
signifying a local, tone-level response because of mismatch
between the immediate sensory input and internal predictions.
Furthermore, we found that the response magnitude was propor-
tional with surprisal in each feature independently, agreeing with
similar results in the literature using less stochastic stimuli
(Paavilainen et al., 2001; Vuust et al., 2016). This parallel tracking
likely leverages the topographic organization in auditory cortex
along different features (Schreiner, 1992; Read et al., 2002).

The CPP, on the other hand, is later, having similar latency
and topography to the P3b response, which has been linked to
context updating in working memory because of expectation vio-
lations (Donchin and Coles, 1988; Polich, 2007; Romero-Rivas et
al., 2018; Darriba andWaszak, 2018). Additionally, in contrast to
the MMN response, the P3b is associated with changes in global
regularities encompassing higher-order statistics (Bekinschtein
et al., 2009; Wacongne et al., 2011; Chennu et al., 2013) and
more complex stimuli (Chernyshev et al., 2016). Our interpreta-
tion agrees with these previous results: the CPP effect follows
maximal changes in the context beliefs, the equivalent of context
updating within the terminology of our model, and these shifts
reflect broader changes in the statistics of the melody after
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integrating across features, rather than a response to a single
tone or a single feature.

Finally, all of our results, from behavior to modeling to EEG,
were consistent across two sets of experiments, each using a dif-
ferent combination of features. Where in one set of experiments
(SP and nSP) the features were spectral and spatial, the second
set (TP and nTP) used features that were both spectral in nature,
countering the argument that these results were because of dis-
tinct what/where pathways in the brain (Murray and Spierer,
2009). Instead, these results support a domain-general statistical
predictive coding machinery in the brain that operates in parallel
along multiple perceptual features to tackle the uncertainty pres-
ent in complex environments.
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