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To form a reliable, consistent, and accurate representation of the acoustic scene, a reasonable conjecture is that cortical neurons maintain
stable receptive fields after an early period of developmental plasticity. However, recent studies suggest that cortical neurons can be
modified throughout adulthood and may change their response properties quite rapidly to reflect changing behavioral salience of certain
sensory features. Because claims of adaptive receptive field plasticity could be confounded by intrinsic, labile properties of receptive
fields themselves, we sought to gauge spontaneous changes in the responses of auditory cortical neurons. In the present study, we
examined changes in a series of spectrotemporal receptive fields (STRFs) gathered from single neurons in successive recordings obtained
over time scales of 30 –120 min in primary auditory cortex (A1) in the quiescent, awake ferret. We used a global analysis of STRF shape
based on a large database of A1 receptive fields. By clustering this STRF space in a data-driven manner, STRF sequences could be classified
as stable or labile. We found that �73% of A1 neurons exhibited stable receptive field attributes over these time scales. In addition, we
found that the extent of intrinsic variation in STRFs during the quiescent state was insignificant compared with behaviorally induced
STRF changes observed during performance of spectral auditory tasks. Our results confirm that task-related changes induced by atten-
tional focus on specific acoustic features were indeed confined to behaviorally salient acoustic cues and could be convincingly attributed
to learning-induced plasticity when compared with “spontaneous” receptive field variability.
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Introduction
Receptive fields characterize how sensory information is pro-
cessed, encoded, and mapped to guide perception and behavior
(Hubel and Wiesel, 1968; Aertsen and Johannesma, 1981; Egger-
mont et al., 1981; DeAngelis et al., 1995; Schreiner, 1995; Fitz-
patrick, 2000; Ghazanfar et al., 2001; Ringach, 2004; Bair, 2005;
Martinez, 2006). Considered as the fundamental building blocks
of perception, a plausible assumption was that receptive fields
(RFs) should remain stable to maintain perceptual constancy.
Although intuitively appealing, the assumption of RF stability
was challenged by compelling experimental evidence for RF plas-
ticity, both during development (Hubel and Wiesel, 1963; de
Villers-Sidani et al., 2007) in the adult brain (for review, see Fritz
et al., 2005b; Weinberger, 2007) or induced by arousal, attention,
and stimulus and behavioral context.

A central paradox arises, however, as to how the brain main-
tains a stable and consistent image of the sensory information,
while at the same time adapting to changing behavioral demands

by changing RF properties. Moreover, to heighten the paradox,
how can we possibly hope to measure induced RF plasticity in a
constantly roiling sea of RF change? In the auditory system, re-
cent studies have addressed this paradox by investigating the na-
ture and magnitude of spontaneous daily variability by measur-
ing variations in frequency tuning parameters of cortical
neurons. Galvan et al. (2001) monitored cortical local field po-
tentials (LFPs) over the course of several weeks in A1 of awake
guinea pigs and reported small daily changes in frequency tuning
(�0.2 octaves). Recent long-term recordings from A1 neurons in
the naive owl monkey also indicate stability in RF best frequency
(D. Blake and J. Fritz, personal communication). However, previous
studies recorded from individual cortical neurons that showed clear
variation in RFs as the animal moved between different states of
vigilance (wakefulness, slow wave, and paradoxical sleep) (Edeline et
al., 2001; Edeline, 2003) although there were no significant popula-
tion level changes between states. Kisley and Gerstein (2001) also
suggested that A1 RFs in anesthetized animals could vary substan-
tially over the course of a week, but the magnitude of the spontane-
ous RF variation they reported was significantly smaller than the RF
changes observed in learning-induced RF plasticity in auditory cor-
tex in their own study (Kisley and Gerstein, 2001) or in other studies
(Weinberger et al., 1993).

In this study, we address the question of cortical RF stability,
monitored in awake animals over a much finer time scale than the
days or weeks of previous studies. Given recent findings of rapid
task-related plasticity in RFs in the primary auditory cortex A1
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over the course of minutes or hours (Fritz et al., 2003, 2005a,b), it
is critical to evaluate RF stability in behaviorally naive animals
over a similar time course to clarify the extent of spontaneous RF
variability, which may reflect normal dynamics. Hence, the goal
of this research was to examine stability of A1 RFs obtained from
consecutive recordings at the same cortical site in awake, quies-
cent animals so that we could assess how repeatable the measure-
ments were and explore any changes in the structure or shape of
these response properties over the course of hours. In the first
part of the study, we describe a computational technique that
allowed us to perform a global assessment to compare RFs of A1
neurons and then label them as stable or labile. This analysis
enabled us to compare RFs in consecutive recordings and showed
that, at the population level, the observed variations were unlikely
to reflect any systematic shift in tuning or alteration in neuronal
selectivity. In the second part of the study, we asked the question
of whether spontaneous variations in passive quiescent animals
were significantly smaller than behaviorally induced changes ob-
served in RFs of trained and behaving animals. To address this
question, we performed a local analysis of RFs by focusing on
frequency-specific changes under passive conditions compared
with behavioral conditions (with animals performing spectral
tasks of either single tone detection or two-tone discrimination).

Materials and Methods
Physiological recordings
All procedures were in accordance with the Institutional Animal Care
and Use Committee at the University of Maryland and the Guidelines of
the National Institutes of Health for use of animals in biomedical re-
search. We performed extracellular recordings from multiple cortical
units in six awake domestic ferrets (Mustela putorius). To enhance the
stability of the recordings, a stainless-steel headpost was surgically im-
planted on each animal’s skull after behavioral training was completed.
The implant procedure is fully described in a previous study (Fritz et al.,
2003). After the animal had fully recovered from the implantation pro-
cedure, we recorded from the primary auditory cortex (A1) in multiple
recording sessions (lasting 6 – 8 h a day) through small craniotomies (�1
mm in diameter) over A1. Tungsten electrodes (3– 8 M�) were used to
record neural responses from single and multiunits at different depths.
The response patterns were stored and processed off-line to sort single-
unit activity. Multi-unit records were constructed from spikes triggered
by a low threshold level [four SDs (4�) above baseline]. Singe units were
derived using a Matlab-based customized manual sorting technique
based on spike templates constructed from thresholds defined at multi-
ple time windows. The window thresholds were chosen such that vari-
ances from the different sorted classes did not overlap at those chosen
points. The variance of each sorted class of units was then estimated and
was always well within the threshold windows chosen in the sorting. In
addition, we always used two other criteria for the sorted spike classes: (1)
the interspike intervals for each class were exponential with a minimum
1 ms spike latency, and the distribution peak was always �2 ms; (2) the
spike rate remained stable throughout the recording time.

The ferrets were gradually habituated to lie calmly in an open restrain-
ing tube for increasing periods of time period up to 6 – 8 h. The record-
ings were performed in awake ferrets in both passive and active condi-
tions. In the passive state (P), the animals were awake and quiescent but
were not performing any experimentally defined behavioral task,
whereas the active condition (A) required the ferrets to perform an
acoustic behavioral task during the recording of their neural activity. The
behavioral tasks consisted of a single tone detection or a two-tone dis-
crimination task. In the tone-detection task, the animals were trained to
recognize broadband ripples as “safe” sounds, during which they could
continuously lick water through a spout, and were trained to refrain from
licking during presentation of “warning” target sounds (pure tones) to
avoid mild shock (Heffner and Heffner, 1995; Fritz et al., 2003). During
two-tone discrimination, the animals were trained to lick during the

presence of ripple noises and reference single tones and refrain from
licking during target tones (Fritz et al., 2005a).

Stimuli
To derive receptive fields from the recorded units, we used noise-like
broadband sounds consisting of ripple mixtures, called temporally-
orthogonal ripple combinations (TORCs) (Klein et al., 2000; Depireux et
al., 2001). Each TORC is a broadband noise with a logarithmically spaced
carrier and a dynamic spectral profile consisting of six superimposed
envelopes drifting at different velocities from 4 to 24 Hz. The spectral
envelope of each TORC consists of equally spaced peaks from 0 (flat) to
1.4 peaks per octave. A full set of 30 TORCs (at all spectral spacing and
upward vs downward dynamic drifting) was required to characterize the
receptive field of each unit. The TORC stimuli were 1.25 s (in active
conditions) and 3 s (in passive conditions), and the full set was repeated
6 –15 times on average. The interstimulus interval was 1.2 s for the active
conditions and between 1 and 1.2 s in the passive conditions. The sounds
were computer generated and were delivered to the animal’s ear through
inserted earphones that were calibrated in situ at the beginning of each
experiment. The amplitude of the TORCs was fixed for a recording ses-
sion at a level between 55 and 75 dB sound pressure level, depending on
the maximally effective level at best frequency (Kowalski et al., 1996).

Receptive field estimation
Determining the spectrotemporal receptive field. Characterizing the recep-
tive field of the cortical units required at least the presentation of one full
set of 30 TORCs. We hence defined one stimulus repetition to be equal to
one set of 30 TORCs, which were necessary to span the entire stimulus
space (Klein et al., 2000). Depending on the signal-to-noise ratio (SNR)
for each recording, multiple stimulus presentations were required to
obtain a reliable receptive field, with an average recording time of 12–30
min for each recording (i.e., between 6 and 15 repetitions of each stim-
ulus set). The spectrotemporal receptive fields (STRFs) from single unit
and multiunit responses in both passive and active conditions were com-
puted using standard reverse correlation techniques (Klein et al., 2000;
Depireux et al., 2001; Miller et al., 2002). In the active condition, only the
TORC portion of the recording was used to estimate the STRF while
discarding the responses to the reference or target tones (see Fig. 1). The
reliability of an STRF was measured using a bootstrap technique (Efron
and Tibshirani, 1998), which allowed us to quantify the variance of the
neural response and hence the overall SNR for each STRF. The bootstrap
analysis, as well as SNR measurement procedure, are explained in details
by Klein et al. (2006). Most SNRs were �1, and we excluded all STRFs
with an SNR �0.2 from our analysis.

Determining the center of the receptive field. To define the center of the
receptive field of a given unit, we extracted the Hilbert envelope (Oppen-
heim and Schafer, 1999) of the spectral receptive field and defined the
peak of the magnitude of this Hilbert envelope as indicative of the center
of the receptive field of the cell. This chosen center usually corresponded
to the maximal excitatory or inhibitory response of the cell. However,
this analysis was not possible in �15% of the cases where the STRF
exhibited a complex spectral pattern (e.g., multipeaked excitatory re-
sponses). In those cases, we chose the center of the receptive field of the
unit to be the maximal excitatory or inhibitory response in the STRF.

Data selection
Spike-matching algorithm. We were interested in characterizing the sta-
bility of the neural response over a sequence of consecutive recordings.
To ensure that the recording was stable over the course of the experi-
ment, we investigated the persistence of the action potential waveform
shape. Hence, we used a spike-matching algorithm to test the similarity
of spike shape clusters across sequences of consecutive recordings (both
for single unit and multiunit responses). We used a clustering technique
based on a Fisher discriminant analysis (FDA) to project the data on a
two-dimensional space (Duda et al., 2001). An FDA projection mini-
mized the scatter within each recording and maximized the discrimina-
tion across recordings, making it a very conservative selection criterion.
Recording sequences that achieved a high overlap in this projected plane
[with statistical significance quantified by a permutation test (Efron and
Tibshirani, 1998)] were labeled as belonging to the same unit or group of
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units and included in the analysis. Recordings
with spikes not significantly overlapping in the
FDA projection were rejected from our
analysis.

Stability criterion
Tree-structured vector quantization algorithm.
We used a tree-structured vector quantization
(TSVQ) technique to project the STRFs into a
space where we can define a stability criterion.
The hierarchical TSVQ algorithm has been suc-
cessfully used to analyze multiscale data
(Breiman et al., 1984; Gersho and Gray, 1991).

TSVQ is a clustering algorithm that con-
structs a binary-search-tree data structure by
recursively dividing the data space into two
subspaces at each resolution level. The division
at each level is performed by minimizing the
cost (distance) between a “standard” STRF, the
VQ encoder �, and all STRFs in the space. We
define the distortion as D(�) � � f � �( f ) � 2,
where f is the individual STRF. Using an L2
distance is akin to the use of correlation coeffi-
cient measures to quantify STRF similarities
(DeAngelis et al., 1999).

The solution to the minimization problem is
given as follows: the “standard” STRFs (Si)
should be the average of all those training
STRFs that are in the encoding region Ri,
where:

Rt � ��:�� � St�2 � �� � Sj�2, � j	.

In other words, the TSVQ divides the data
space at different levels. At each resolution, the
space is partitioned into different clusters or cells, which are determined
by repeated application of the Linde–Buzo–Gray algorithm (Abut, 1990).
The algorithm finds the optimal clustering of the data at a given level, as
defined by the cost function above. The procedure is first applied to the
coarsest resolution of the data vectors; then, clustering is performed
successively at finer resolutions to yield additional insights about the
structure of the data space.

Multiscale analysis of STRFs
The different resolution levels were defined by approximations from
singular value decomposition (SVD) of the STRFs at different ranks.
SVD is a factorization technique that can be applied to any finite dimen-
sional matrix (in this case, the STRF) by writing it in the form S � UËVT

(Haykin, 1996; Hansen, 1997). The columns of U and V form an or-
thonormal basis of left and right, respectively, singular vectors, whereas Ë
is diagonal matrix with entries that correspond to the singular values (�)
of the matrix S. Singular value decomposition can be viewed as reformu-
lating the STRF matrix S into a sum of separable matrices, where the
columns u1,.., um of U and v1,.., vn of V correspond to spectral and
temporal cross sections of these separable transfer functions.

Typically, the number of nonzero singular values is equal to the rank r
of the matrix S. However, because of the presence of noise in the mea-
surement, the � values are all expected to be nonzero with their values
decreasing monotonically to a noise floor, which depends on the level of
the noise (Depireux et al., 2001). Depending on the spectrotemporal
interactions in each neuron, its receptive field can either be fully separa-
ble (rank 1), partially separable (rank 2), or of higher order. In the case of
higher-order STRF, adding more terms to the SVD summation allows to
capture more of the receptive field features. To illustrate this concept,
Figure 2a (right panel) shows an example of an STRF with tuning that can
be captured by its rank 1 approximation, but its orientation (tuning to
upward moving spectrotemporal patterns) can only be captured starting
from its rank 2 estimate.

Based on previous studies (Depireux et al., 2001; Simon et al., 2007), it
has been shown that most STRFs obtained in both anesthetized and

awake recordings in A1 tend to be of rank 1 and 2, with few exceptions at
higher ranks. Following these results, we based our multiscale clustering
on gradual levels of SVD approximations of the STRF, up to rank 4. In the
first level, we estimated the rank-1 approximation of all STRFs in the
training set and used the VQ algorithm for clustering. As we move to
the next level, we added an additional rank to the approximation and
clustered the data within each group into two subsets.

In each clustering level, we first aligned all STRFs by their best frequen-
cies. This allowed us to avoid a trivial outcome that could result in a
classification based on spectral tuning. We were primarily interested in a
classification based on the spectrotemporal features (e.g., tuning pattern
and temporal dynamics) of the receptive field; whereas a division of units
based on high-frequency/low-frequency cells is of little interest in this
analysis.

Localized analysis of receptive field changes
To quantify the local changes in receptive fields from one STRF measure-
ment to the next, we subdivided the spectral axis into bands (
fi) of 0.5
octave width (1 � i � 10, over five octaves) and extracted localized
measures of spectral change in each recording pair. This procedure was
performed by first normalizing each STRF by its Euclidean norm and
then calculating the difference between the two STRFs in the sequence
(STRFdiff). Next, we extracted a measure of change at each frequency
band 
Ai, defined as the local maximum difference for that band i. This
point is taken as the one spectrotemporal bin with maximal change over
the entire spectral band 
fi (�0.25 octave around the tone of interest).
The values of 
Ai were reported as percentages relative to the maximum
value of the first STRF (Fritz et al., 2005a). This analysis yielded 10 dif-
ferent 
Ai values for each STRF pair. In the case of the passive STRF pairs
[passive–passive (PP) recordings], we reported the average value of 
Ai

for each STRF pair. We also ran a statistical analysis of the 
A distribu-
tions, without averaging the values of 
Ai to ensure that we were not
minimizing or washing away the effects by taking the average. In the
passive–active (PA) recording sequences, we distinguished between two
kinds of spectral bands (
fi): (1) 
ANB (nonbehavioral), corresponding
to the average 
Ai obtained from spectral bands that did not coincide

Figure 1. Experimental design for PP and PA paradigms. a, PP paradigm. Sequences of receptive field recordings were per-
formed in awake, nonbehaving animals (P). The stimulus set consisted of broadband noise-like stimuli known as TORCs, which
were used to derive the spectrotemporal receptive field of each neuron using standard reverse correlation techniques. The
successive recordings were performed over the course of 30 min to 2 h. b, PA paradigm. Similar receptive field sequences were
measured using the same stimulus design but changing the behavioral state of the animal. Initially, a P receptive field was
obtained from a nonbehaving animal. Next, the animal was engaged in a behavioral task (A) and a similar receptive recording was
obtained again. The behavioral paradigm has been described previously (Fritz et al., 2003, 2005) and included the use of a set of
TORC and single tone stimuli. Only the TORC stimuli were used for deriving the receptive fields in the active state, allowing us to
compare receptive fields that are obtained from the same stimulus set but under different behavioral conditions.
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with a behavioral tone frequency; and (2) 
AB (behavioral), which cor-
responded to the spectral change observed in the vicinity of a behavior-
ally relevant tone (i.e., target tone in a detection task, or reference, and
target tones in a discrimination task).

Because the spectral effects captured by 
Ai could be either “facilita-
tive” (positive) or “depressive” (negative), we compared the populations
of 
APP, 
ANB, and 
AB by taking the absolute magnitude only and
ignoring the sign of the spectral change. This analysis allowed us to focus
on how “small” or “significant” the effects were and, hence, how much
change was induced when the animal engaged in behavior relative to the
spontaneous changes observed in receptive fields. For population analy-
sis, we ran a two-sample Kolmogorov–Smirnov test and t test (Lindgren,
1993) to compare how statistically different or similar these populations
were.

Results
We examined changes in receptive field properties in primary
auditory cortex of six awake ferrets by performing sequences of
extracellular recordings at multiple sites. In the first set of exper-
iments, we obtained at least two consecutive recordings at each
cortical site during a passive (nonbehavioral) state of the animal.
Sequences of passive recordings were labeled PP and were ob-
tained from 52 cortical sites that conformed to our selection cri-
teria (see Materials and Methods). In a second set of experiments,
the receptive field sequences were obtained from a passive fol-
lowed by an active behavioral state of the animal (Fig. 1). The
active recordings were acquired while ferrets, previously trained

on various acoustic paradigms, were per-
forming a behavioral task of single tone
detection (Fritz et al., 2003) or two-tone
discrimination (Fritz et al., 2005a). In
tone detection, animals were trained to
lick water during the presentation of safe
broadband sounds (TORCs) and refrain
from licking during a target single fre-
quency tone. In tone discrimination par-
adigm, animals could safely lick during
the TORC sounds as well as a safe refer-
ence tone and were trained to stop lick-
ing during a target different frequency
tone. Sequences of interleaved passive
and active STRF measurements were la-
beled PA. We recorded 101 such PA
sequences.

The STRF estimation was performed
following standard reverse correlation
techniques (see Materials and Methods),
where only the responses to TORC
sounds were used to measure the recep-
tive field, in both passive and active
states. We note that in the active behav-
ioral states, the response to the reference
or target tones was not included in the
STRF measurements. Hence, the same
stimulus set was used to characterize re-
ceptive fields in both passive and active
settings. The only major difference be-
tween the PP versus PA conditions was
the uniform versus changing behavioral
state of the animal during the recording
of the sequence.

Clustering of STRF shapes
To quantify the stability of STRF se-
quences, we aimed to define a criterion

by which we could label our data set into stable versus labile units.
We opted for a clustering algorithm that would span the space of
receptive fields naturally observed in the primary auditory cortex
of awake ferrets. By dividing this STRF space in a data-driven
manner, we could organize STRFs into different groups based on
their spectrotemporal properties. We could then label two STRFs
in a sequence as belonging to a stable unit if all receptive fields in
the sequence belonged to the same cluster in our STRF classifica-
tion. Similarly, a unit was labeled as labile if the receptive fields
recorded within minutes/hours at the same site fell in different
clusters.

We used a TSVQ technique, using a Euclidean distance (L2),
to cluster STRFs into different groups (see Materials and Meth-
ods). We analyzed 794 single-unit STRFs measured in previous
studies from awake ferrets (Elhilali et al., 2004; Fritz et al., 2003,
2005a) as our training set to define the optimal projection from
STRF space to an L2 plane (Fig. 2a). The algorithm organized the
pool of STRFs into subgroups at different levels of resolution
starting from a coarse level (rank 1 STRF approximation) to a
finer level (rank 4).

The clustering obtained from our training set is shown in
Figure 3. Each horizontal level represents a clustering of the
STRFs at a given resolution. We examine the receptive field fea-
tures that arose in each branch and note the following. Level 1: as
expected, receptive fields were naturally clustered into an “exci-

Figure 2. Stability analysis for receptive fields based on TSVQ. a, TSVQ analysis. Tree-structure vector quantization is a hierar-
chical clustering algorithm that organizes data at increasing levels of resolution (based on multiple scales). The right panel depicts
the multiple resolutions of analysis used to cluster the STRF space. Each original receptive field matrix can be approximated by
STRFs with different ranks using SVD. Each additional rank captures more specific features of the STRF. The rank-1 STRF fails to
capture the orientation of the STRF and rather denotes the general tuning of the receptive field. By adding an additional degree
(Rank-2), the original receptive field is now better approximated as an oriented function. b, Schematic of TSVQ clustering of STRF
space [reproduced from Duda et al. (2001)]. Functions in the STRF space are projected on a two-dimensional plane by computing
Euclidian distance (L2) between each pair. STRFs that have smaller L2 distances are deemed closer, and effectively belonging to a
same cluster, and vice versa. c, Distribution of L2 distances in PP pairs. On average, most STRF pairs in the PP sequences tend to have
a small L2 distance, making them effectively stable receptive fields (based on our stability criterion). The distribution, however, has
a longer tail, indicating that a smaller subset of cells does in fact exhibit a wider variation in receptive field shapes over successive
recordings.

Elhilali et al. • Receptive Field Stability in A1 J. Neurosci., September 26, 2007 • 27(39):10372–10382 • 10375



tatory branch” (Fig. 3, left) and an “inhib-
itory branch” (Fig. 3, right). Two-thirds of
the data set (498 U) fell in the “excitatory”
group, and one-third (296 U) was classi-
fied as “inhibitory.” Level 2: the “excita-
tory branch” appears to subdivide further
based on temporal criteria such as the la-
tency of the excitatory peak of the STRF
and its temporal extent, both significantly
longer in the left branch (slow STRFs)
compared with the right (fast STRFs). The
“inhibitory branch” segregates based on
spectral (and not temporal) criteria. Thus,
the temporal properties of STRFs in the
two branches at this level do not show sig-
nificant differences, whereas the spectral
properties are noticeably diverse. For ex-
ample, the right branch of this inhibitory
cluster (Fig. 3) groups spectrally symmet-
ric units, in contrast to the left branch that
has mostly asymmetric STRFs with side-
band excitatory fields. Level 3: on the “ex-
citatory branch,” another temporal subdi-
vision occurs between faster and slower
cells, whereas the “inhibitory branch” sub-
divides based on spectral criteria (STRFs
with different degrees of asymmetry). Fi-
nally, in the final step (level 4), STRFs in
both branches subdivide based on mixed
spectrotemporal criteria.

STRF stability
Using the TSVQ classification as our stability criterion, we found
that 73% (38 of 52) of multiunit passive recording pairs (PP)
could be labeled as stable (i.e., recordings of successive responses
in the same site yielded receptive fields that shared the same
branch in the tree, up to the fourth level). Additionally, of
those 52 multiunit PP pairs, 72% had at least one single unit
that could be labeled as stable. These numbers suggest that the
majority of passive cortical neurons in awake nonbehaving
ferrets had consistent spectral and temporal features that al-
lowed them to maintain stable receptive fields over the course
of minutes to hours.

Figure 2c illustrates the population results of L2 distances be-
tween consecutive STRFs in a PP sequence. As expected, we ob-
tained a unimodal distribution with a long tail. The majority of
units yielded a small L2 distance between consecutive pairs
(mean, 0.6), hence allowing them to fall in the same cluster. A
smaller subset (belonging to the tail of the distribution) appeared
to have a bigger L2 difference yielding a labile STRF population.

There was no apparent correlation between a particular
branch or node, and the ratio of stable versus labile units belong-
ing to that node. Hence, the stability or instability of A1 cells does
not appear to be obviously related to the spectrotemporal prop-
erties of their receptive fields. In addition, given that the TSVQ
algorithm aligns STRFs according to their best frequency, we
checked whether there was any obvious change in the center of
the receptive field of each sequence. This analysis confirmed that
the STRF center in all PP sequences did not change significantly
from one STRF to the other (mean difference between PP pairs,
0.047 � 0.04 octaves for multiunits, n � 52, and 0.095 � 0.13
octaves for single units, n � 94).

Stable versus labile STRFs
To illustrate the variations in the properties of a stable versus
labile sequence, Figure 4 shows examples of four receptive field
sequences. In Figure 4a, the sequence of stable STRFs was mea-
sured over the course of �2 h (time stamps of the recordings
shown above each STRF). Despite some inherent spontaneous
changes in their spectral and temporal properties, these receptive
fields exhibited low variability and could be labeled as stable ac-
cording to our TVSQ classification. To confirm this assessment,
we plot separately the spectral receptive field and temporal im-
pulse response of the STRF (right panels). These plots confirm
that no significant variability was observed in the properties of
this receptive field sequence. Similarly, the second sequence in
Figure 4a illustrates a series of six stable receptive fields, measured
over the course of 2.5 h. Again, whereas we observed some small
variability in the background features of these receptive fields, the
key properties of each STRF remained unchanged.

In contrast, the sequences shown in Figure 4b are receptive
fields measured from a labile site. Both sequences exhibited no-
ticeable variability in their spectral and temporal properties. In
the first sequence, the right panel of Figure 4b shows a strength-
ening of the excitatory field and weakening of the inhibitory field
in the receptive field. Temporally, we note a 10 ms shift in the
latency of the excitatory peak. This variability leads to a signifi-
cant difference between the STRFs in this sequence, causing them
to fall in different TSVQ leaves, and hence were labeled as labile.
In the second example of Figure 4b, the STRFs exhibit variations
in both of their spectral and temporal features in time. Starting
from a receptive field tuned at 500 Hz, with a slight side-band
inhibition at �800 Hz, both excitatory and inhibitory fields

Figure 3. Clustering of receptive field space. The tree-structured diagram depicts the classification of STRFs at different levels
of resolution. The gray versus green vertical branches illustrate a natural division of receptive fields into excitatory versus inhibitory
units. The vertical direction reveals a more refined division of each branch by adding increasingly more information going from
levels 1 to 4 (see description in Materials and Methods).
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change in strength and location. The temporal dynamics also
exhibit a change in latency of �8 ms.

Stability and STRF convergence
What properties distinguish stable and labile populations? Al-
though we could not observe any apparent correlation between
the STRF shapes and their stability, we investigated a possible
correspondence between the receptive field stability and their
rate of convergence during measurement. Each receptive field
was obtained by presenting multiple repetitions of the TORC
stimuli. On average, we collected seven repetitions (or �15 min)
worth of data in each recording site to measure a receptive field.
However, units varied in how fast they yield a convergent recep-
tive field. An STRF N obtained from N stimulus repetition was
called convergent if the variation between STRF N and STRF N�1

conforms to our stability criterion (i.e., had an L2 difference less
than a SD, � � 0.85). In other words, we define convergence to
mean the number of stimulus repetitions needed for the L2 cri-
terion to be met. Figure 5 shows four examples of STRFs obtained
as we accumulated additional data from multiple presentations

of the stimulus (the stimulus presenta-
tion number is indicated above each
STRF). In Figure 5, a and b illustrate ex-
amples of neurons that yielded a conver-
gent receptive field after two or three
stimulus repetitions; whereas c and d de-
pict examples of slowly converging re-
ceptive fields that minimally vary only
after six or seven repetitions of the stim-
ulus. Overall, STRFs labeled as stable
converged much faster than labile ones.
Stable units required �3 � 0.5 stimulus
repetitions (which is equivalent to �10
min). In contrast, the labile population
showed a great variability in the conver-
gence rate, with an average of 4.8 repeti-
tions and a SD of �2 repetitions. Hence,
we can infer that stable units yielded re-
ceptive fields converged significantly
faster than the labile neurons.

We also explored any dependence of
stability of the units on the temporal sep-
aration between recordings. In most
cases, our STRF recordings were ob-
tained within 10 –15 min of each other.
Of our 52 PP recordings, 50 were per-
formed in �60 min of each other, with
an average inter-recording time of 12.8
min (minimum of 2 min, median of 11.2
min). Two recordings were done �1 h
apart (one 65.1 min and a second one
2.3 h apart). There was no correlation
between this recording pattern and the
likelihood of stability/lability of the
units. The two recordings that were
more than 1 h apart yielded 1 stable and 1
labile multiunit. In addition, there was
no correlation between the temporal
separation between recordings and the
unit stability in the remaining 50 U.

Stability versus plasticity of STRFs
In the second part of this study, we con-

trasted the spontaneous changes in receptive fields with the be-
haviorally induced plastic changes in cortical neurons. We com-
pared the receptive field properties of the PP versus PA
sequences. Our active set of units includes neural responses mea-
sured during the performance of spectral tasks (tone detection
and discrimination), and hence mostly induced localized plastic
changes correlated with the frequency of the target and/or refer-
ence tones. Our recent results show that during performance of a
tone detection task, receptive fields exhibit an enhanced response
at the frequency of the target tone (Fritz et al., 2003). Tone dis-
crimination tasks induce a distinct pattern of STRF changes, by
selective enhancement of the target frequency and depression of
the reference frequency (Fritz et al., 2005a). These results empha-
size that differing predictive roles for the same stimulus during
task performance in distinct behavioral contexts induces a differ-
ential response in cortical neurons.

We derived a localized change measure of receptive fields over
specific frequency bands. We quantified the average changes in
two consecutive passive STRFs over spectral bands of 0.5 octave
width (Fig. 6a). These changes lead to a distribution over our

Figure 4. Examples of stable versus labile units. a, Stable units. Each row shows a sequence of receptive fields obtained from
successive recordings over the course of 2–2.5 h. The receptive fields show a remarkable stability and hardly change their main
tuning features. The right panels depict the spectral receptive fields and temporal impulse responses extracted from these
receptive fields and confirm the stability of the shape and tuning of the response properties of these units. The number shown on
top of each STRF plot indicates the average firing rate of the cell during that particular recording. The L2 distances between the
consecutive STRFs in the top example are 0.51, 0.52, 0.65, and 0.72 and in the second example are 0.38, 0.26, 0.35, 0.37, and 0.3.
b, Labile units. The panels show examples of two labile units. The receptive fields obtained over the course of 1 h exhibit changes
in the spectral and temporal tuning, as depicted in the right panels. The L2 distances between the consecutive STRFs in the first
labile example are 0.94 and 1.05 and in the second labile example are 0.93 and 0.94.
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population of PP single-unit sequences (Fig. 6b, green curve)
with mean value 10.73 � 8.22. In contrast, we display the average
amplitude change in the PA paradigm during detection and dis-
crimination tasks. We derived two values from each PA sequence:
(1) 
AB, or average behavioral change, which quantifies the re-
ceptive field difference at a behaviorally relevant frequency band
(for instance, for a PA recording during a detection task of a 6
KHz tone, 
AB computes the receptive field change in the vicinity
of 6 KHz); (2) 
ANB, which is a similar measure but away from
the behaviorally relevant tone. We averaged the change values of
all 0.5 octave bands outside the behaviorally relevant tone, yield-
ing the 
ANB value for each receptive field pair (Fig. 6a). The
population of 
ANB is shown in gray in Figure 6b, yielding a
Gaussian fit with mean value 17.74 � 16.48. The distribution of

AB is shown in red, with an average value of 53.14 � 32.99. The
same analysis can be made for the multiunit clusters, as shown in
Figure 6c. The Gaussian fits yielded a comparable trend to the
single unit data, with 
APP fitting a Gaussian with mean 10.59 �
8.7. The fit for the multiunit 
ANB was 15.73 � 14.16; whereas for

AB, it was 50.82 � 29.8.

Based on these population results, the passive distribution
gives us a benchmark against which we can compare the behav-
iorally induced plastic changes. Our results clearly suggest that
the behaviorally induced plastic changes are beyond the normal
spontaneous variations in cortical receptive fields. To confirm
that the passive and behavior populations were different, we ran
statistical tests comparing these distributions. Using a two-

sample Kolmogorov–Smirnov test (Lindgren, 1993), we con-
firmed that the PP and PA-behave (
AB) distributions were dif-
ferent with confidence p value �10�6. Also, we verified that the
PA-nonbehave (
ANB) and PA-behave (
AB) distributions were
different with confidence p value �10�7. Using the same statis-
tical test, we found that the PP and PA-nonbehave (
ANB) distri-
butions were statistically similar. These same findings were also
confirmed using a two-sample t test and applied to both the single
and multiunit data.

To ensure that using 
A averages in the PP and PA-
nonbehave populations did not dilute any possible strong effects
at specific spectral locations, we ran a permutation test compar-
ing these distributions, without averaging the values of 
A ob-
tained at each spectral band. Instead, we compared the entire
population for PP and PA-nonbehave (
APP and 
ANB) and
tested the null hypothesis that these two groups were drawn from
the same underlying probability distribution. The permutation
test statistic confirms that these two populations were the same.
In comparing these distributions with the PA-behave population
(
AB), the permutation test yielded an achieved significance level
�0.01, which is considered very strong evidence for rejecting the
null hypothesis (Efron and Tibshirani, 1998). This statistical
analysis of population data confirms that task-related plastic
changes of cortical receptive fields were significantly above the
spontaneous variability in STRFs.

Finally, we address the question of whether the likelihood that
an STRF would change during a behavioral task was in any way

Figure 5. Convergence of receptive field estimates over time. Examples in a and b depict two units with rapidly converging STRFs. The top panels show the STRF estimate after increasing numbers
of repetitions of the stimulus sequence (1, 2, up to 8 repetitions). The plot below the STRFs measures the L2 distance between every receptive field and its previous estimate. Examples in c and d
illustrate two cases of slowly converging receptive fields. As reflected in the L2 distance plots, the STRFs keep changing after each repetition of the stimulus and take approximately six and seven
stimulus iterations before reaching the convergence criterion.
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related to its characterization as stable or labile according to the
convergence criterion discussed previously. To do so, we deter-
mined the number of repetitions needed for convergence for each
passive STRFs in the PA-behave sequences. We also determined
for each PA pair the 
A changes in the STRF during the active
epoch. The two are plotted against each other in Figure 6d. The
results clearly show that there was no dependence between the
two factors (i.e., both stable and labile STRFs could potentially
exhibit rapid plasticity effects).

Changes in firing rates
Given that our measures of STRF plasticity normalize by the spike
rate of each unit, we examined the possibility of any systematic
changes in firing rates as we collected both PP and PA sequences.

For each sequence, we compared the fir-
ing rate of the first recording (R1) to that
of the second sequence (R2). Firing rates
are computed as the total number of
spikes throughout the stimulation pe-
riod divided by the total stimulus dura-
tion. Figure 7 shows the average firing
rate change, defined by 
r � (R2 � R1)/
(R2 � R1). The distributions for the PP
and PA sequences were quite symmetri-
cal at �0, indicating no systematic in-
crease or decrease of firing rate over the
course of the recording. These distribu-
tions are statistically identical to Gauss-
ian function with zero mean, and hence
we cannot claim any systematic change
of response gain over successive record-
ings. Nonetheless, there was a noticeably
big variance observed in PA sequences,
reflected in their Gaussian-fit SD of
�0.06 � 0.47 for multiunits and
�0.05 � 0.42 for single units. This vari-
ance was much greater than that from PP
sequences (0.0 � 0.27 for multiunits and
�0.02 � 0.29 for single units) and was
likely caused by the changing levels of
arousal in the behaving animal. Arousal
or lick-related influences during behav-
ior may induce overall changes in re-
sponsiveness of cortical cells beyond the
auditory-related behaviorally induced
changes in receptive fields, and hence
confound our ability to correlate any
variations in overall firing rate with be-
havior. Hence, the lack of any systematic
bias in gain changes confirms that nor-
malizing the rate of the STRFs is an ap-
propriate way to analyze our data, allow-
ing us to focus on STRF shape variations
instead.

Discussion
The current study investigated the de-
gree of intrinsic receptive field variability
in the awake, quiescent, nonbehaving
animal. Our results indicate that most
receptive fields in A1 (approximately
three-fourths of cells) are stable over the
course of 30 min to 2 h. Although not
previously investigated at such short

time scales, this experimental validation of receptive field stability
is not surprising by itself. It complements previous studies con-
firming that receptive fields in the auditory cortex remain un-
changed over longer time periods extending to several days when
the animal is in the same state of vigilance (Williams et al., 1999;
Witte et al., 1999; Galvan et al., 2001). It also supports the notion
of a receptive field as an intrinsic property of neurons, which
reflects their fixed tuning to spectrotemporal sound features.

Unlike previous studies, however, this paper adopts a new
approach to analyzing receptive field stability by taking advan-
tage of years of recordings of cortical receptive fields in our
laboratory. This large database of STRFs acquired over the
course of 7– 8 years offers a rich sampling of the space of

Figure 6. Local spectral changes in receptive fields in both behavioral and passive conditions. a, STRF sequences and difference
in one PP and two PA examples. Each row depicts a sequence of two consecutive STRF measurements. The third panel shows the
difference in STRF obtained by subtracting the second receptive field from the first one. The highlighted spectral bands in the
STRFdiff illustrate the amount of change (
A) at that given band. b, Local spectral change in PP and PA populations in single units
and multiunit clusters. Each panel shows the distribution of 
A values at spectral bands across the tonotopic axis in passive STRF
sequences in green, away from any behaviorally relevant spectral bands in gray (in PA sequences), and at the behavior tone in red
(in PA sequences). The summary histograms (shown as smooth curves) depict a Gaussian curve to the underlying distributions.
They reveal a significant difference between the three populations, with a mean value of 10.73% for PP and 17.74% for nonbe-
havioral bands in PA, in contrast with 53.14% for the behaviorally relevant tone locations. The same trend holds for multiunit data,
with mean values of 10.59% for PP, 15.73% for nonbehavioral bands in PA, and 50.82% for behavioral bands.
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receptive fields in A1 of awake animals (almost 800 single
units) and allowed us to define a nonparametric criterion by
which to delineate stable receptive fields. By organizing this
space in a data-driven manner, we allow receptive fields to fall
into different categories based on how closely matched their
spectral and temporal features were. Clearly, radically differ-
ent methods could be used to study neuronal and receptive
field stability, ranging from trial-to-trial variability in latency
or amplitude of response to the same acoustic stimuli or
changes in frequency response fields in response to pure tones.
An advantage of the present approach is that it frees us from
defining any specific dimensions along which to analyze re-
ceptive field variability (e.g., latency, bandwidth, or best fre-
quency). Instead, the clustering algorithm simultaneously ex-
plores all of these dimensions at once by treating the STRF
shape as a full feature vector. Finally, we point out (as an aside)
that the results of the clustering of A1 STRFs (Fig. 3) reveal an
interesting insight into the structure of cortical receptive
fields, namely that this variety of STRFs originates primarily
from dynamic and spectral variations in the excitatory inputs.
Specifically, it suggests that inhibition provides a relatively
stable “broad” focus around which excitation distributes both
temporally and spectrally.

Utility of the STRFs
A question that emerges from the current stability investiga-
tion is the underlying meaning of the possible distinction be-
tween the stable and labile neuronal populations. The present
study demonstrates that stable units tend to yield stationary
and reliable STRFs at a much faster rate (i.e., requiring fewer
number of stimulus repetitions) compared with the labile

ones. This distinction might be confounded by the use of a
linear model (the STRF model) to capture the tuning proper-
ties of these neurons, and the convergence rate could be a
reflection of the degree of nonlinearity of the labile popula-
tion. Nevertheless, we only included units that yielded an
STRF estimate that satisfied our selection criterion, and hence
our analysis was at the outset dealing with neurons with a
certain degree of linearity.

STRFs are quantitative measures of neuronal receptive
fields that offer a straightforward quantitative linear descrip-
tion of the selectivity of the neuron to specific stimulus pat-
terns and, hence, provide a deeper understanding of cortical
processing and neural encoding of sensory information. They
have, however, been criticized for their shortfalls, particularly,
linearity. When probed with more behaviorally relevant nat-
ural sound ensembles, the linear STRF model proves to be an
incomplete description of response properties of nonlinear
auditory neurons (Theunissen et al., 2000) and fails to success-
fully predict responses to many natural stimuli. A success pre-
diction rate of 10% (Machens et al., 2004) to 40% (Sahani and
Linden, 2003) was typically reported for classes of natural
sounds. A second shortfall is lack of generalization. Whereas
the STRF model seems to give satisfactory results for a large set
of stimulus ensembles (e.g., ripples, modulated noise, random
tone pips, and classes of natural sounds), it appears that com-
parisons of receptive fields obtained from different stimulus
bases lead to a striking difference between the derived kernels
(Theunissen et al., 2000, Elhilali et al., 2004). STRFs have also
been reported to lack robustness relative to stimulus pertur-
bations, such as use of background noise with natural stimuli
(Bar-Yosef et al., 2002).

Despite these known limitations, STRFs remain powerful
tools to explore the functional architecture of the auditory
cortex. The current study tries to work within these mathe-
matical limitations to compare sequences of STRF measure-
ments. Given the use of the same stimulus ensemble in all
recordings, the STRF technique is behaving as a piece-wise
linearization of the system over time and, hence, operates
within the same regime at different time instants. Therefore,
any time-dependent shift of receptive field properties is not a
reflection of the constraints of the experimental tool but
rather an inherent change in the tuning properties of cell. The
population of neurons exhibiting response variations over
time may reveal an intrinsic malleability of the sensory system.
A subset of A1 cells may be spontaneously dynamic, with re-
ceptive fields that are in a state of active flux, or oscillating in
a random walk around an attractor state (Hopfield, 1982).
From a theoretical and functional perspective, this variability
may provide the system with a mechanism for robust sensory
encoding at the neuronal population level. Carefully designed
studies are needed to elucidate the source of this spontaneous
variability. It also remains to be shown how the system may
benefit from its dynamic structure to robustly encode sensory
information and reliably interpret it to guide perception.

Learning-induced receptive field plasticity
Finally, we used our stability findings as a benchmark of spon-
taneous natural receptive field variation against which to com-
pare previous results of task-related plasticity of cortical re-
ceptive fields (Fritz et al., 2003, 2005a,b, 2007). Establishing a
baseline for spontaneous changes in cortical receptive fields is
necessary to properly and confidently interpret any changes
induced by learning or experimental manipulations. Our anal-

Figure 7. Change in firing rate in PP versus PA sequences. Each panel shows the distribution
of rate changes in each sequence, measured as (R2 � R1)/(R2 � R1), where R1 is the average
firing rate for the first measurement in a sequence, and R2 is the rate in the second measure-
ment. The histograms reveal that that gain changes in both PP and PA cases are mostly sym-
metrical at �0. The main difference between the two cases is the noticeable increased vari-
ability in the PA recordings, possibly because of the changed attentional state, alertness level,
and behavioral demands in the active condition.
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ysis confirms that task-driven rapid plasticity cannot be attrib-
uted to simple intrinsic changes in receptive fields of cortical
neurons but is significantly bigger and more systematic than
inherent receptive field variations. The plastic changes are
chiefly observed at particular frequencies, representing behav-
iorally relevant spectral regions. As has been argued in our
previous work, the comparison between active and passive
receptive fields is also in agreement with the comparison be-
tween active and naive or poorly behaving animals (Fritz et al.,
2003, 2005a). Thus, in our studies, systematic changes in re-
ceptive fields are observed only during task-related behavior.

In summary, we described stability of neuronal receptive
fields in awake quiescent ferrets. Our results suggest that re-
ceptive fields in A1 exist along a stability continuum, where a
majority (three-fourths) of cells exhibit stable receptive field
properties, and one-fourth of the population varies in the
amount of its intrinsic fluctuations. This classification of sta-
bility has to be taken with the evident caveats of choice of
stability criterion (i.e., TSVQ clustering technique with an L2
measure), use of receptive field measure (i.e., STRF model), as
well time window of investigation (i.e., of the order of 30 min
to 2 h). With that in mind, the current analysis allows us to
emphasize the importance of learning-induced plasticity in
cortical neurons against this background of stability. Our data
clearly show that behaviorally driven receptive field changes
are task specific and perceptible above and beyond any spon-
taneous variability. However, it remains an open question as
to how this stability in the quiescent state and plasticity in the
behavioral state of the animal functionally relate to each other.
This question invokes the so-called “stability-flexibility” par-
adox (Liljenstrom, 2003), which describes the constraints on
the functional organization of cortical maps to both reliably
parse an acoustic scene and at the same time adapt to changing
behavioral demands. In this regard, one could entertain mul-
tiple possible hypotheses that could offer a resolution to this
paradox; such as state-dependent receptive field stability, in
which sensory receptive fields would remain unchanged in a
given state, and alter only if the state changed, or if new be-
havioral demands appear. Another hypothesis is that the in-
herent variability of receptive fields reflects normal dynamics
of the neural machinery and provides the system with a robust
mechanism for reliably representing sensory information and
guiding behavior and perception. Yet, a third hypothesis pos-
its the presence of a mixture of different types of cortical sen-
sory neurons, some with stable and others with labile receptive
field properties. Additional studies are required to explore
these possibilities and integrate these findings of population
neuronal stability with the remarkable degree of plasticity in
the auditory cortex of adult animals.
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