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Abstract

The discrimination of complex sounds is a fundamental function of the auditory system. This operation must be robust in the pres-
ence of noise and acoustic clutter. Echolocating bats are auditory specialists that discriminate sonar objects in acoustically complex
environments. Bats produce brief signals, interrupted by periods of silence, rendering echo snapshots of sonar objects. Sonar object
discrimination requires that bats process spatially and temporally overlapping echoes to make split-second decisions. The mecha-
nisms that enable this discrimination are not well understood, particularly in complex environments. We explored the neural underpin-
nings of sonar object discrimination in the presence of acoustic scattering caused by physical clutter. We performed
electrophysiological recordings in the inferior colliculus of awake big brown bats, to broadcasts of prerecorded echoes from physical
objects. We acquired single unit responses to echoes and discovered a subpopulation of IC neurons that encode acoustic features
that can be used to discriminate between sonar objects. We further investigated the effects of environmental clutter on this popula-
tion’s encoding of acoustic features. We discovered that the effect of background clutter on sonar object discrimination is highly vari-
able and depends on object properties and target-clutter spatiotemporal separation. In many conditions, clutter impaired
discrimination of sonar objects. However, in some instances clutter enhanced acoustic features of echo returns, enabling higher levels
of discrimination. This finding suggests that environmental clutter may augment acoustic cues used for sonar target discrimination
and provides further evidence in a growing body of literature that noise is not universally detrimental to sensory encoding.

NEW & NOTEWORTHY Bats are powerful animal models for investigating the encoding of auditory objects under acoustically
challenging conditions. Although past work has considered the effect of acoustic clutter on sonar target detection, less is known
about target discrimination in clutter. Our work shows that the neural encoding of auditory objects was affected by clutter in a
distance-dependent manner. These findings advance the knowledge on auditory object detection and discrimination and noise-
dependent stimulus enhancement.

auditory object; echolocation; inferior colliculus; noise; sonar object

INTRODUCTION

Parsing and discriminating natural sounds in complex
scenes is vital for humans and other animals that rely on
hearing for survival behaviors, such as communication,
predator evasion, and navigation. This is particularly impor-
tant for those that rely on audition for navigation, such as
visually impaired individuals or echolocating animals. Bats
present a powerful model system to study neural encoding

of complex acoustic information in noisy environments.
Echolocating bats are able to successfully catch prey, even
when target echoes are partially masked by echoes from sur-
rounding clutter, such as vegetation (1–4). Indeed, they can
detect targets in clutter, even when the echoes are only 1 dB
stronger than that of the clutter (5). They also adapt their
flight trajectories to separate a target from clutter along the
range axis (1, 6). Bats respond to echoes in the environment
with adjustments in the interval, duration, and spectral
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content of their calls to mitigate acoustic interference from
clutter (1, 7, 8). Even with flight trajectory and sonar call
adaptations that aid in the localization of objects that are
close to clutter, the presence of masking echoes may either
impair or augment target detection, depending on the tem-
poral separation of target and clutter echoes (9). Although
bats have been shown to accurately discriminate target
shape and texture in open environments (10), previous stud-
ies have not addressed how bats contendwith target discrim-
ination in clutter conditions or the neural mechanisms that
enable this fundamental task. Our work aims to bridge this
gap by studying the neural underpinnings of sonar object
discrimination in clutter.

Neural responses to sound source location and features
have been characterized in the bat inferior colliculus (IC), a
midbrain structure in the central auditory pathway that
receives ascending input from brainstem nuclei and relays
information to cortical areas, while also modulated by de-
scending input from auditory cortex, among other areas.
The midbrain IC shows many neuronal specializations in
bats that point to its fundamental role in auditory process-
ing. First, the IC comprises frequency selective neurons,
which are topographically organized, with neurons tuned to
lower frequencies located on the more dorsal regions and
those tuned to high frequencies in more ventral regions (11–
14). Second, a population of IC neurons are tuned to the du-
ration of sounds (15, 16). In addition, some IC neurons ex-
hibit pulse-echo delay facilitation and tuning (17–19),
posited as the mechanism of sonar target ranging. Last,
some neurons in the bat IC respond selectively to sweep rate
and direction (14, 20). Collectively, IC tuning properties in
bats operate to support sonar object discrimination by
encoding information carried by returning echoes. Although
much has been reported on the auditory features encoded by
the IC, it is still unknown how the encoding of these acoustic
features is altered by the presence of physical clutter.
Likewise, behavioral detection of sonar targets in clutter has
been studied in bats, but their ability to discriminate
between object features in clutter remains unexplored. This
study seeks to understand how the presence of temporally
overlapping clutter echoes affects the encoding of sonar
objects.

To advance the understanding of sonar object discrimina-
tion in the presence of background clutter, we recorded sin-
gle unit response to echoes from physical objects in the IC of
Eptesicus fuscus to explore the neural encoding and discrimi-
nation of sonar objects. We investigated the extent to which
neural activity in the IC can be used to extract acoustic fea-
tures that allow for sonar object discrimination, and fur-
ther tested the influence of physical clutter on sonar object
discrimination. We discovered that clutter can sometimes
produce acoustic scattering that facilitates neural discrim-
ination of object features.

METHODS

Acoustic Stimuli

Echoes from three-dimensional (3-D) solid plastic objects
(Table 1) were collected in an acoustically isolated room lined
with acoustic foam. Echoes were created by broadcasting a

synthetic echolocation FM sweeps (100–20 kHz, 2-ms du-
ration) from an ultrasonic custom-made electrostatic
speaker placed 50 cm away from the object. The echoes
were recorded by a Petersen ultrasonic microphone
located directly above the speaker. The speaker was cali-
brated, and a custom filter was created in MATLAB and
applied to speaker output to obtain a flat frequency
response. The synthetic FM sweep mimicked an E. fuscus
echolocation call. Each object was suspended in place by a
0.5-mm diameter hypodermic tube at a fixed angle. For all
objects, this was �5� off axis from a centered flat face (i.e.,
flat face of cylinder). Clutter was added to some recordings
by hanging a small leafed artificial plant located either 10
cm or 20 cm behind the target (Fig. 1). The sonar broadcast
(pulse) and echo recordings were then used as playback for
passively listening animals.

Stimuli were presented as pulse-echo pairs, with echoes
delayed artificially by inserting a 10-ms interval from the ini-
tial pulse, corresponding to a target distance of 1.7 m. Several
echo delays (5–15 ms) were tested beforehand, however, the
10-ms delay captured the largest number of responsive neu-
rons and was thus selected as our stimulus. The 10-ms delay
between call and echo was filled with the background room
noise picked up in the sound recordings. Five objects were
presented in three clutter conditions (none, þ 10 cm, þ 20
cm) for 18 total stimulus conditions. Responses to these stim-
uli were each recorded over 20 presentations in a random-
ized order. Neural responses to 5 ms pure tones were
collected to build frequency tuning curves for each unit. The
5 ms pure tones were presented with 0.5 ms ramps at begin-
ning and end, in the range of 20–90 kHz in frequency in
steps of 5 kHz; and 20–70 dB SPL in steps of 10 dB. Each
stimulus was generated at a sampling rate of 250 kHz using a
National Instruments card (PXIe 6358) and transmitted with
a calibrated custom-made electrostatic loudspeaker con-
nected to an audio amplifier (Krohn-Hite 7500). The loud-
speaker was placed 30 cm from the bat’s ear, contralateral to
the recording site. The frequency response of the loud-
speaker was flattened by digitally filtering the playback stim-
uli as described by Luo et al. (21).

Animals

Animals (big brown bats, E. fuscus) were recovered from
an exclusion site in Maryland under Permit No. 554400
issued by the Maryland Department of Natural Resources.
All protocols are approved by Johns Hopkins University
under IACUC Protocol No. BA20A65. Bats were housed
socially in flight-rooms and provided with ad libitum food
and water. Four bats were used for this experiment (3
females, 1 male) and each was housed individually after
head-post surgery and during the duration of the recordings.

Table 1. Target object sizes

Object Size, cm

Cube 3 � 3 � 3
Cylinder 2.5 base � 3 height
Large dipole 1 cm spheres connected with 3 cm hypodermic tube
Small dipole 1 cm spheres connected with 1 cm hypodermic tube
Small sphere 1 cm diameter
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Neurophysiology

Bats were prepared for neural recordings by securing a
head post to the skull, as described by Salles et al. (14).
Briefly, bats were anesthetized with 1%–3% isoflurane gas. A
longitudinal midline incision was made through the skin
overlying the skull and themusculature was retracted. A cus-
tom-made metal post was attached to the skull surface using
dental cement (Metabond). After surgery, bats received an
oral analgesic (Metacam 12.5 mg/kg), and subsequently the
same dose daily after neural recordings, until the experiment
was concluded. Bactrim was administered once daily for 7
days to prevent infection together with the analgesic.
Animals were allowed to rest for 48 h before neurophysiolog-
ical recordings. On the first day of recordings, a <1 mm cra-
niotomy was drilled on the skull over the IC before electrode

insertion, preserving the dura. For neural recordings, each
bat was placed in a foam body mold, with its head tightly
fixed by the head post attached to a metal holder. All record-
ings were conducted in a sound attenuating and electrically
shielded chamber (Industrial Acoustics Company, Inc.).
Recordings from each bat were taken over multiple sessions
over a period of 2–3 wk, with each session lasting a maxi-
mum of 4 h. Bats were offered water in the middle of each
session. No sedative or other drugs were administered dur-
ing recording sessions. A Neuronexus (impedance 1.50–1.78
MX) silicon probe (A1x16-5mm-50-177-A16) was orthogonally
inserted into the brain using a hydraulic microdrive
mounted on amicromanipulator (Stoelting Co.). The craniot-
omy was covered with saline solution during the experi-
ments and care was taken to prevent desiccation. The brain
surface was used as reference for depth measurement (0
μm), the electrode was advanced in steps of 10 μm and
recordings were taken at least 100 μm apart. A silver wire,
placed 1–2 cm rostral to the recording electrode and under-
neath the muscle, was used as a grounding electrode. The
electrical signals from the recording probe channels were
acquired with an OmniPlex DNeural Data Acquisition System
(Plexon, Inc.) at a sampling rate of 40 kHz (per channel) and
16-bit precision. Synchronization between the neural record-
ings and acoustic stimulus broadcasts was achieved with a
transistor transistor logic (TTL) pulse output from a National
Instrument card and was recorded on channel 17 of the
Plexon data acquisition system. The output of the broadcast
was recorded on channel 18 to confirm stimulus onset timing.
Each echo stimulus was broadcast 20 times, randomly
selected from the entire stimulus set. Afterward each tone-in-
tensity combination was randomly presented 15 times to gen-
erate frequency tuning curves. After each day’s recording
session, the craniotomy site was covered with kwik-cast gel to
prevent dehydration.

Analysis

Single units were isolated following methods outlined by
Quiroga et al. (22). The Wavelet transformation and the
superparamagnetic clustering resulted in isolation of single-
unit extracellular potentials that matched with qualitative
assessments of spike waveforms and estimates of single-unit
isolation based on spike refractory periods. Neural responses
of each unit to all acoustical stimuli were visualized with dot
raster displays and poststimulus time histograms (PSTH, 1-
ms bin width). For each echo stimulus, neural responses
were quantified by measuring the number of spikes in a 45-
ms window from call onset. For the call discrimination anal-
ysis, the window was reduced to 10 ms to avoid overlap with
responses to echo return. Neurons with fewer than five
spikes in the entire 45-ms response window were not consid-
ered responsive and thus discarded from the analysis.

Population Clustering

A total of 422 responsive units were initially selected for
analysis. To cluster units into groups by response profile, a
45-ms echo poststimulus window was created. Call-echo
PSTHs were compared across units. Call-echo responses for
each object were averaged across all 20 repetitions. The
mean PSTHs were concatenated to create a single vector
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Figure 1. Schematic and example of acoustic stimuli. A: an ultrasound
loudspeaker (S) and two microphones (M) were suspended 50 cm (lightest
gray) from an object with artificial foliage suspended either þ 10 cm (mid-
dle gray) or þ20 cm (black) behind the object. B: objects used in this
study. Cylinder (blue), cube (maroon), small dipole (yellow), large dipole
(orange), and small sphere (cyan). Details about object size and composi-
tion are found in Table 1. C: example echo spectrograms from the large
dipole object. Synthetic calls with properties matched to average
Eptesicus fuscus calls (purple arrow, 2 ms 100–20 kHz down sweep) were
broadcast at objects in front of no clutter (top), þ 10 cm clutter behind
object (middle), or þ20 cm clutter behind object (bottom). Sonar sound
broadcast and object echoes (orange) were recorded by two ultrasound
microphones. Objects in front of clutter resulted in echoes with overlap
between object echoes and clutter echoes (green).
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PSTH for each unit. The response patterns across units were
highly variable, but several groups showed similarities, such
as tonic responses during stimulation, or isolated activity to
pulses, echoes, or both, suggesting that neurons responded
to different stimulus components. To quickly cluster groups
of neurons that showed similar response properties t-distrib-
uted stochastic neighbor embedding (t-SNE) (23) was per-
formed using MATLAB. A t-SNE (three-dimensional) was
run on average PSTHs for each unit to compute response dis-
tance to sort units into groups. Plotting the results of the t-
SNE as a three-dimensional scatter plot with each point the
average PSTH of a unit showed roughly three clusters.
Individual units were assigned to each population through
k-means (k = 3) clustering of the three-dimensional response
distances (Fig. 2).

Discrimination Analysis

Discrimination analyses were based on methods des-
cribed by Allen and Marsat (24) using a modified van
Rossum spike distance metric (25) and the discrimination
toolkit described by Marsat (26). The measure is based on
comparing averaged neural population responses to either
repeated presentations of the same echo (interecho distan-
ces) or pairwise comparisons to the other echoes (intrae-
cho distances). The 45-ms PSTHs used to identify
populations aforementioned were separated into two sepa-
rate windows around the call-evoked portion of the
responses [Rc(t)] and echo-evoked [Re(t)] portion of the
responses of length L (Lc = 10 ms, Le = 25 ms) extracted
from the sorted spike trains. [Rc(t)] comprised time 10–19
ms post stimulus and [Rc(t)] of t (20–45). Individual neuro-
nal responses varied within these windows, but always fell
in these time frames. The responses were convolved with a
Gaussian filter with a half-maximum width of 2 ms. Two
hundred randomly selected responses to a single repeti-
tion of each echo were averaged to create a sample popula-
tion response for both call and echo responses (PRc and

PRe) using the function: PRz tð Þ ¼

Xn

i¼t
Rz tð Þ

n . Distance (D)
was calculated for all sets of combined responses, creating
an array of response distances for each comparison (inter-
[Dxx] and intraecho [Dxy]) using the following function:

Dxy ¼

XL

t¼O
Rx tð Þ�Ry tð Þ½ �2
L . The probability distributions of the

values in these arrays [P(D)] were used for analysis.
Receiver operator characteristic curves were calculated by
varying a threshold distance (T) to separate inter- (xx) and
intraecho (xy) responses. This process was also repeated
on intracall responses. For each threshold, the probability
of discrimination (PD) was calculated as the sum of P
(Dxy � T), and the probability of false alarm (PF) as the
sum of P(Dxx T). This process was repeated through 100
iterations, each time selecting a new pool of random call
and echo responses to create a bootstrapped estimation of
true population responses. The error level for each thresh-
old value is E � PF/2·(1 � PD)/2. The discrimination rates
reported in Figs. 3 and 5 are the inverse minimum value of
E averaged across iterations (i.e., Accuracy = 100 � E) with
standard error.

Discriminability Analysis with a Biomimetic Midbrain
Model

Using a computational model that replicates the fre-
quency modulation and sweep direction selectivity of the
bat’s IC neurons, we performed additional analyses to
explore the effect of clutter on discrimination. We built an
ensemble model by gathering output nodes (i.e., artificial
neurons) of three biomimetic networks (300 total nodes).
Each biomimetic network was constructed with the same
configuration: a triple stacking network with 10% sparsity
and nonlinear activation (leaky ReLU) (27).

In the first analysis, we reperformed the neural dis-
crimination of object echoes with the computational
model. After upsampling to 333 kHz, the acoustic stimuli
used in the physiology were converted to auditory spec-
trograms with 128 frequency bins (28). To obtain
responses of the computational model PR(t), we built a
response model for node k as

PRk tð Þ ¼ Bernoulli r Mk tð Þ
� �� �

Mk tð Þ ¼ mk tð Þ þ cgk tð Þ þ bk;

where Mk(t) is membrane potential resulting from a stimu-
lus and disturbance. With a 32-ms sliding window in steps
of 0.2 ms, stimulus potential mk(t) is calculated over the
time. For disturbance, gk(t) and bk is noise and bias
designed by Gaussian and Poisson distribution, respec-
tively. c is a parameter to adjust the power ratio of stimu-
lus potential and Gaussian noise. And Bernoulli{.} is the
Bernoulli sampling based on activation probability repre-
sented by applying sigmoid r(.) to the membrane poten-
tial. We separated the responses into two parts responding
to call PRk

c tð Þ and echo PRk
e tð Þ, respectively. As in the neu-

ral recordings, features to calculate distance were obtained
by performing a convolution between the responses PRk

e tð Þ
for 25 ms and a Gaussian filter with a half-maximum width
of 1 ms. Then, we performed the pairwise discrimination
with distributions of intra- and interdistance (Dxx and Dxy)
on each node in the same manner as the neural recording
data. Based on average discrimination rate for all discrimi-
nation pairs, 34-best informative nodes were used in the
analysis of clutter effects. Note that the number of nodes
was heuristically optimized near the 10% sparsity. We per-
formed the discrimination 100 times due to randomness
in the Bernoulli sampling and disturbance in the response
model, and the results were summarized to mean and
standard deviation over all repetitions.

Although the pairwise discrimination tests in IC and artifi-
cial neurons were performed on a single acoustic stimulus
per each object, in the second analysis, we compared dis-
criminability in various clutter conditions with multiple
stimuli per each of the objects mentioned in Acoustic
Stimuli. Instead of membrane potential over the time, we
used a react feature m = [mk j1 � k � 34]T that represents
stimulus potential across the nodes applied in the first analy-
sis. Note that a time index is omitted in the react feature
because the feature was calculated for a single rectangular
patch spanning 128 frequency bins and 32 ms and encom-
passing echoes from object and clutter in the spectrogram.
To quantify the discriminability, we defined an f-distance
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Figure 2. Response patterns of different
populations of inferior colliculus (IC) units. A:
t-SNE sorted units grouped by k-means
clustering show three response patterns in
recorded IC units. Population I (cyan, n =
89), population II (purple, n = 150), and pop-
ulation III (yellow, n = 183). B: the smoothed
population averaged instantaneous firing
rates (1/ISI) of each population show distinct
response profiles. Responses to each
object are shown. Shaded area indicates
standard deviation around the mean. Boxes
indicate analysis windows for call (blue) and
echo (red) evoked portions of the poststimu-
lus time histograms (PSTH). C: clutter alters
population I echo responses. D: representa-
tive unit response to cube stimulus in three
clutter conditions. Red line indicates mean
instantaneous firing rate. ISI, interspike inter-
val; t-SNE, t-distributed stochastic neighbor
embedding.
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that represents the ratio of interclass to intraclass variance of
react features f – dist. = trace(CB)/trace(CW), where CB ¼
Ei½Em2Ci ½m�Em2Ci ½m�T � is a covariance matrix for the mean of

react features in each class and CW ¼ Ei Em2Ci mmT½ �
h i

is an

averaging covariance matrix of intraclass covariances. The
trace(.) is an operator for summation of diagonal elements
that is equal to summation of its eigenvalues. If the feature
distributions have small variances within class and large var-
iance between classes, the features can be easily categorized.
Thus, the larger the f-distance, the more discriminable the
features.

RESULTS

A Population of IC Neurons Responds Differentially to
Different Sonar Objects

We analyzed the firing rate profile in the responses of 422
single units in the bat midbrain inferior colliculus to play-
backs of call-echo pairs described in METHODS. Briefly, a syn-
thetic call was broadcast at different five simple geometric
objects (Table 1) and the returning echoes were collected by
microphones located right above the speaker (Fig. 1). A t-
SNE analysis revealed three distinct populations of neurons
based on the firing rate profile (Fig. 2). Population I (n = 89)
showed clear firing rate peaks at the call and at the echo,
respectively. Although the responses to the call were highly
similar and on average less accurately discriminated from
each other (Fig. 3A), visual inspection of the firing rate peak
corresponding to the response to the distinct object echoes
revealed differences among objects. Population II (n = 150)
showed sustained firing rates during the whole call-echo
pair stimulus presentation and did not show differences in
the responses to the distinct objects. Population III (n = 183)
showed very low firing rate and was excluded from further
analysis.

Further analysis of population I revealed that the response
patterns to the distinct echoes of the different objects in the
no clutter condition can be correctly discriminated by a
spike distance metric classifier response profile with >90%
accuracy (Fig. 3B). Population II and population III showed
average classification accuracy of 61.5% and 52.9%, respec-
tively (Supplemental Fig. S1; all Supplemental material is
available at https://doi.org/10.6084/m9.figshare.14639856)
in the no clutter condition. For population I, the cube was
most consistently well discriminated from other objects with
an average discrimination accuracy of 87.8% against other
objects, whereas overall discrimination accuracy was 76.7%
(range for all objects 55.4%–99.6%). The most accurate dis-
crimination was achieved in comparing the cube against the
small sphere, reflecting the visually apparent differences in
firing rates evoked by those objects.

Neurons Involved in Sonar Object Discrimination Show
Frequency Tuning to Enhanced Spectral Content of
Echoes

We evaluated the frequency tuning characteristics of the
units by playing pure tones ranging from 20 kHz to 90 kHz
at intensities ranging from 20 to 70 dB SPL. Candidate neu-
rons for sonar object discrimination (population I) show a
wide range of frequency selectivity (Fig. 4, A and B). In ac-
cordance with previously reported results, tonotopy
appeared in the IC, with deeper recordings showing tuning
to higher frequencies and more dorsal units being tuned to
lower frequencies (Fig. 4C). Interestingly, 41.5% of units in
population I showed tuning below 30 kHz, at which the dif-
ferent echoes show the greatest variability in power (Fig.
4D). We calculated the variance in the power spectrum
across objects in 5 kHz bins starting at 20 kHz, we then com-
pared the number of neurons with a best frequency in each
bin to the calculated variance and found no correlation
(Supplemental Fig. S2). There are some neurons tuned to fre-
quencies where the variance in the power of the echoes is

A

B

Figure 3. Pairwise discrimination of objects by the inferior colliculus (IC). A:
population responses evoked by repeated presentations of calls.
Numbers shown indicate mean percent discrimination accuracy after 100
iterations (100: perfect accuracy, 50: chance level). Numbers shown indi-
cate mean percent discrimination accuracy after 100 iterations. Smaller
numbers indicate standard deviation around that mean. Note that some
amount of above-chance level discrimination accuracy is achieved. This is
potentially due to variations in background noise present in the recordings
themselves. B: population responses evoked by repeated presentations
of ensonified objects are generally more discriminable than calls, with
varying levels of accuracy.
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minimal. This implies that at least for some units in popula-
tion I, object selectivity may not arise from frequency selec-
tivity alone. The intensity of the echoes could be one of the
main drivers in the differential neural responses between
objects, this is supported by the fact that the cube (which
shows the greatest energy across frequencies) and the small
sphere (which shows the lowest energy across frequencies)
are themost accurately discriminated objects.

Object Discrimination Is Affected by Clutter

To understand the effects of physical clutter on object
discrimination in the IC, we incorporated acoustic noise
created by foliage into the object echo recordings.
Plastic plants were suspended behind objects at close
(þ 10 cm) and far (þ 20 cm) distances during ensonifica-
tion. The echoes from the suspended foliage overlapped
with the object echoes in both configurations, although
the close clutter condition results in a near complete
overlap between object and clutter echoes (Fig. 1). The
echoes resulting from the clutter created spectral

interference with the object echoes observable in the
power spectra of echoes in both close and far clutter
conditions (Fig. 5). When presented with close clutter
echoes, discrimination performance dropped for the
majority of object pairs, and average discrimination
performance was 70.7%, compared with 76.7% for the
no clutter condition. Far clutter condition echoes, on
average, produced higher accuracy discrimination than
baseline (no clutter) echoes, up to 82.6%. For several
object pairs, discrimination performance improved, but
not up to the level of No Clutter echoes. However, for
some object pairs, the inclusion of clutter in the record-
ing increases object discriminability above that of the
no clutter condition (Fig. 5; Supplemental Table S1).
Notably, the sphere in particular was improved by dis-
tant clutter. Comparing the spectral features of the ech-
oes with and without clutter suggests that both overall
echo amplitude and the location of spectral notches in
the echo profiles are altered by clutter at þ 10 and
þ 20 cm.

A B

C D

Figure 4. Frequency tuning in population I. A: example unit tuned to 50 kHz. B: example unit tuned to 25 kHz. C: tonotopy evidenced by best frequency
for neurons in population I (overlapping data points have been offset slightly to see all units). D: distribution of best frequencies for population I units
over the power spectrum of the echoes used for the playbacks.
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A Biomimetic Model of the Bat Midbrain Replicates the
Effect of Clutter on Discriminability by IC Neurons

Before exploring the effect of clutter echoes, we first re-
performed object discrimination with the computational
model using the same stimuli presented in neural recording
experiments. The modeling results are summarized in Fig. 6,
alongside the results from IC neurons. The results are marked
as orange for enhanced discriminability or blue for decreased
discriminability compared with no clutter conditions. Green
denotes no change or no value (e.g., diagonal elements). Mean
values were compared to quantify enhanced, decreased, or
no-change. Although the values for the neural and model dis-
crimination are different, we find the same trends with
respect to the effect of clutter on discrimination. In the no
clutter condition, IC neurons show themost accurate discrim-
ination between the cube and the small sphere, whereas the
computational model shows the highest discrimination accu-
racy between the cube and the cylinder. Still, both biological
and artificial neurons result in high discriminability (>80%)

for many pairwise comparisons. In the þ 20 cm clutter condi-
tion, IC and biomimetic model discrimination is enhanced for
all stimuli, except for the cube and cylinder. Consistent with
the neural recording results, small sphere biomimetic model
discrimination was significantly enhanced compared with the
no clutter condition. Although the computational model
showed less improvement following the introduction of clut-
ter than the neural data, the overall trends are similar. In the
þ 10 cm clutter condition, object discriminability is generally
decreased, except for the small dipole, which shows enhanced
discriminability in all stimulus pairings in the computational
model and only in pairings with the cylinder and large dipole
in the neural recording data.

Next, we explored the effect of clutter on discriminability
quantified in f-distance across multiple echo recordings
from the objects to control for effects caused by variations in
acoustic background noise. By bootstrapping with 16 sam-
ples of 20, f-distances of three different representati-
ons (computational model, IC neurons, and auditory
spectrogram) are summarized as mean and standard

A B

C D

Figure 5. Clutter affects object discrimination differentially based on distance. A: close clutter (þ 10 cm) impairs pairwise discrimination of all objects
compared with the no clutter condition. B: power spectra for echoes recorded with 10 cm clutter. C: far clutter (þ20 cm) interferes with discrimination
less than close clutter, and for some object pairs, improves discrimination over the no clutter condition. D: power spectra for echoes recorded with 20
cm clutter.
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deviation of 100 iterations (Table 2). The f-distances of
each representation are normalized by the value in the
no clutter condition. Note that the f-distance of IC neu-
rons was calculated with a single set of recordings (20
stimulus presentations) for each object echo. An audi-
tory spectrogram represents the time-frequency distri-
bution of stimulation along the cochlea. We used the
auditory spectrogram as an input to the computational
model. The f-distances between spectrograms suggest
that background clutter makes object discrimination
more difficult, even in the þ 20 cm clutter condition.
However, both IC neurons and the computational model
show that discriminability is enhanced in the far clutter
condition (þ 20 cm) and it is decreased when the clutter
is closer to the object (þ 10 cm). This analysis shows that
the enhancement effect of clutter is not an artifact of
single-neural recordings.

DISCUSSION

Humans and other animals must often detect, discrimi-
nate, and extract meaning from target sounds under noisy
conditions. A great deal of research has been devoted to
characterizing the spectral and temporal features of acoustic
stimuli that influence the perceptual organization of com-
plex sounds (29–33), but comparatively little attention has
been devoted to the neural basis of auditory figure-ground
segregation, the separation of salient target sounds from
overlapping and interfering noise (34, 35). In many other
species, such noise with temporal overlap would create a
backward masking effect that interferes with sonar object
discrimination. Here, we report the new discovery that
acoustic scattering from background clutter can increase
neural discrimination of sonar objects when object and clut-
ter echoes are separated in time.

Echolocating bats need not only detect sonar objects, such
as prey, and discriminate them from other sound sources
in the environment but also must separate targets from
background vegetation and other clutter. Our study
investigated the robustness of acoustic discrimination of
neurons in the bat IC, with the specific goal of identifying
principles governing sonar object representation and fig-
ure-ground segregation.

In baseline recordings, we show that a population of IC
neurons reveal distinct response profiles to echoes from dif-
ferent objects. The frequency tuning of the neurons to pure
tones did not fully account for the differential responses. In
other words, even though the content of the echoes from the

Table 2. The enhancement by clutter has been repro-
duced in simulation with a biomimetic model for multiple
echo recordings

Feature No Clutter 20 cm Clutter 10 cm Clutter

Computational model 1.00 1.2811 ± 0.0454 0.7744 ±0.0230
IC neurons	 1.00 1.1137 ± 0.1370 0.9235 ±0.1242
Spectrogram 1.00 0.8742 ±0.2153 0.8666 ±0.2404

IC, inferior colliculus. 	Performed with a single recording per
each object.
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Figure 6. Pairwise discrimination rates using a biomemetic model matches inferior colliculus (IC) neurons. Comparing discrimination accuracy between
IC neurons (top) and artificial neurons (bottom) in three clutter conditions: No Clutter, 10 cm, and 20 cm shows similar trends: decreased discrimination
accuracy in close clutter conditions, and enhanced accuracy in far clutter conditions. Cyl, cylinder; LD, large dipole; SD: small dipole; SS, small sphere.
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sonar objects differed in energy across spectral bands, fre-
quency tuning alone could not fully explain sonar object dis-
crimination. We posit there are neurons in the inferior
colliculus that exhibit nonlinear feature selectivity that con-
tributes to sonar object discrimination.

When we presented echoes from sonar objects in the pres-
ence of clutter, neural discrimination depended on the spatio-
temporal separation of the sonar object and background clutter
echoes. When the clutter was very close to the object (10 cm)
and echoes temporally overlapped, discrimination perform-
ance of the classifier decreased. This could be explained by
backward masking (35), in which the detection or discrimina-
tion of a target sound is reduced when followed by noise, as it
would be the case for the target echoes followed by clutter ech-
oes. Spectral interference created by constructive and destruc-
tive interference between overlapping echoes could also play a
role in this reduction in discrimination. These physical interac-
tions from temporally overlapping echoes could result in target
echoes insufficiently different from each other to evoke distinct
responses from the neurons. However, when the clutter was
further behind the object (20 cm), clutter and target echoes
only partially overlapped, and the classifier’s discrimination
accuracy based on neural responses to some objects improved
markedly. Due to the increased temporal separation of the tar-
get and clutter echoes, the effect of spectral interference is less-
ened, compared with the close clutter condition, but not
eliminated entirely. The power spectra of the object echoes
with distant clutter showed frequency signatures for each
object that are diminished when the clutter was in close prox-
imity. These findings were also replicated using a biomimetic
model of the bat auditory midbrain. We conclude that back-
ground clutter echoes can yield additional spectrotemporal in-
formation that modulates the responses of IC neurons,
contributing to object discrimination. We hypothesize that dis-
tant clutter returns acoustic reflections from the backside of
the target object, providing additional information about object
identity and 3-D shape.

Another potential mechanism to explain the effect we
report could be stochastic resonance, whereby the signal:
noise ratio (SNR) of the object echo is increased by the addi-
tion of background noise created by the clutter echoes.
Classically, stochastic resonance is achieved whenwhite noise
is added to a target stimulus, which intermittently amplifies
the target’s SNR (36). In the case of the background clutter
used in our experiment, clutter echoes interacting with the
target echoes could serve to amplify acoustic energy that car-
ries information about the object, providing the auditory sys-
tem with enough signal to amplify acoustic features that
enable discrimination of target echoes. Stochastic resonance
has been described across different sensory modalities,
including mechanoreception, electroreception, vision, and
audition (36). For example, in the paddlefish, it was shown
that populations of plankton produce electrical noise that
enhances signals processed by the electroreceptors and allows
for increased success in the detection and capture of the prey
(37). In humans, psychophysical experiments showed that the
addition of white noise (at optimal noise levels) improved the
detection of pure tones, but noise at higher levels produced a
masking effect (38). The two hypotheses described in the pre-
vious two paragraphs (spectral interference and stochastic
resonance) are not necessarily mutually exclusive in the

interpretation of our findings. It is possible that the detection
of new spectral features created through interference is
enhanced by the increased energy of high-intensity clutter
echoes.

We propose that the overarching explanation for increased
discriminability of target echoes in clutter is the result of
“acoustic mirroring,” by which additional information about
objects can be gleaned from secondary reflections that arise
through reverberation with the surfaces of 3-D targets. This
suggests that bats could obtain information from the complex
spectral interactions, which may enhance object echo signa-
tures. Future behavioral experiments will be necessary to fully
test this hypothesis, both to determine whether the changes in
object representations we observe in the study can be used by
bats for object discrimination, and to fully explore the extent to
which secondary reflections can be leveraged by bats to explore
hidden object faces and features. The acoustic features and
interactions we speculate on here will also be fully explored
computationally to understand the processes by which acous-
tic interactions frommultiple reflecting surfaces produce infor-
mation that can be detected and discriminated by the bat
auditory system. This study sought to explore the effect of
acoustic clutter on sonar object discrimination by neurons in
the IC of the big brown bat. We made the surprising discovery
that clutter can enhance the discriminability of sonar targets
based on neural responses, but this effect is constrained by the
spatiotemporal overlap between target and clutter echoes. This
finding contributes to the understanding of sonar object repre-
sentation, figure-ground segregation, and more broadly the
neural encoding of complex acoustic stimuli.

SUPPLEMENTAL DATA
Supplemental Figs. S1 and S2 and Table S1, including discrimi-

nation analyses for populations II and III, and variance analysis of
power spectra: https://doi.org/10.6084/m9.figshare.14639856.
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