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ABSTRACT:

Human listeners effortlessly identify salient sounds in their environments, yet the relationship between sound class
identity, auditory salience, and perceived importance in complex auditory scenes remains poorly understood. In this
study, we investigate these connections with scores derived from subject responses using a scoring mechanism,
combined with auditory salience and pupillometry data. By leveraging both psychophysical experiments as well as a
large-scale annotated dataset, our findings reveal biased responses and higher importance rankings for specific sound
classes, such as alarm sounds and speech, and highlight a consistent perceptual ordering of sounds based on their
identity. Salience judgments and pupillary responses further support this distinction, showing that the level of height-
ened arousal follows the same sound class order. The results underscore the influence of semantic mappings on both
bottom-up and top-down sensory processing, suggesting that sound identity plays a crucial role in shaping perceptual
judgment and neural responses. Despite dataset limitations, our findings offer insights into auditory scene analysis
and provide a novel framework for understanding how auditory perception prioritizes sounds based on both their

inherent properties and learned semantic associations. © 2025 Acoustical Society of America.
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I. INTRODUCTION

Auditory scene analysis seeks to transform the cacoph-
ony of everyday sounds into a manageable set of perceptual
tokens (auditory events) that can be treated as time bound
“objects” by the nervous system (Bizley et al., 2013;
Griffiths and Warren, 2004). In this work, we reserve the
term auditory event for any temporally bounded token
whose acoustic attributes (e.g., pitch, timbre, loudness, tem-
poral envelope) combine with higher level schemas that
encode its semantic identity and real-world source. Consider
an everyday manifestation of the classic phenomenon of the
cocktail-party problem (Bregman, 1990), a bustling café
during a lunch rush, a sharp, repetitive pattern of a mobile
phone ringtone is differentiated by its distinct spectral signa-
ture and abrupt onsets, and it is simultaneously categorized
as an “incoming call,” allowing it to emerge from overlap-
ping speech, clattering dishes, and background music.
Canonical grouping cues, such as common onset, harmonic-
ity, and spectral proximity, facilitate this segregation
(Darwin, 1997; Oh et al., 2022; Wagemans et al., 2012);
however, this process is not purely bottom-up. These
bottom-up Gestalt regularities operate in concert with
top-down category expectations and semantic knowledge so
that perceptual segmentation of auditory events is finely
tuned when acoustic evidence matches familiar schemas
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(e.g., telephone alert, mechanical hiss). This interaction
between signal-driven structure and semantic prediction moti-
vates the present investigation: do certain sound categories, by
virtue of their ecological or cognitive relevance, obtain privi-
leged perceptual status within complex auditory scenes?
Vision research provides a compelling precedent for such
biases. Not only do low level cues segment visual scenes into
objects, but systematic regularities also tilt attention toward
particular objects and positions. Spatial and semantic struc-
tures can accelerate the learning of face—scene associations,
facilitating rapid contextual predictions (Zhou and Geng,
2024). Positional regularities (e.g., the tendency for “object
tops” or scene “bottoms”) influence similarity judgments,
with strongest sensitivity near the scene center where fixations
cluster (Langley and McBeath, 2023; Odegaard et al., 2015).
Moreover, hierarchical preferences for faces and bodies
emerge in the first months of life and influence later atten-
tional development, pointing to an interplay of innate predis-
positions and experience (Bindemann et al., 2010; Frank
et al., 2014). In addition, complementary findings show that
canonical object configurations (e.g., a lamp above a table) are
recognized more efficiently than improbable ones, underscor-
ing the role of semantic priors in shaping perceptual gain.
These converging data highlight that object recognition is
influenced not only by segmentation rules, but also by endur-
ing biases that assign special status to certain visual categories
and their expected spatial relations. Crucially, quantitative
work by Spain (Spain and Perona, 2011) demonstrates that
observers rank the perceptual importance of scene elements
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by jointly weighing bottom-up salience and task-driven
semantic relevance, providing direct evidence that certain cat-
egories systematically receive priority. Together, these studies
indicate that object recognition is influenced not only by seg-
mentation rules, but also by enduring biases that assign special
status to particular visual categories and their expected spatial
relations.

Parallel phenomena appear in audition, although they
have been less thoroughly catalogued. Semantically congru-
ent warning beeps, coupled with visual hazard icons, shorten
reaction times and boost accuracy in audiovisual tasks, illus-
trating how meaning modulates auditory priority (Isherwood
and McKeown, 2017). In contrast, semantic incongruency
between a target sound and its background auditory scene
leads to more accurate identification, which highlights the
complex mechanisms underlying semantic association proc-
essing (Gygi and Shafiro, 2011). Electroencephalography and
functional magnetic resonance imaging (MRI) reveal that
neonates already display cortical tuning for melodic contour
and tonal harmony, implying that musical biases are present
before extensive cultural exposure (Perani et al., 2010). In
adults, neuroimaging shows partially segregated frontotempo-
ral networks for speech and for music that extend well
beyond primary auditory cortex and display distinct time
course dynamics (Koelsch, 2005; Leaver and Rauschecker,
2010; Norman-Haignere et al., 2015). Perceptually, speech
tends to “pop out” in multi-talker mixtures, whereas identi-
cally loud environmental sounds do not; a hallmark of privi-
leged processing. Yet, we still lack a systematic account of
how sound identity (e.g., speech, music, animal vocalizations)
modulates perceptual priority when multiple events compete
for attention in real scenes. Addressing this gap is the aim of
the present study, which asks whether listeners assign consis-
tent priorities to sound categories and how these priorities
map onto measurable salience and physiological indices.

To tackle this question, we invoke the broader construct
of salience, the stimulus driven conspicuity that funnels atten-
tional resources toward a perceptual locus. Salience is tradi-
tionally described as a fusion of an event’s physical attributes
with top-down biases rooted in meaning and context (Huang
and Elhilali, 2020; Kaya and Elhilali, 2017). Comparable
principles operate in vision, where edge and shape segrega-
tion bootstraps both low- and high-level object representa-
tions (Driver and Baylis, 1995; Hoffman and Singh, 1997). In
audition, loudness, spectrotemporal contrast, and abrupt
onsets confer a bottom-up pull, but semantic content (such as
spoken language, familiar melodies, biologically relevant
calls) can amplify or dampen the pull even when low level
energy is matched (Broderick er al., 2019; Kothinti and
Elhilali, 2023). Visual experiments demonstrate that text or
objects sharing semantic relationships attract gaze more
strongly than equally salient but unrelated items (Hwang
et al., 2011; Wang and Pomplun, 2012; Wu et al., 2014). By
analogy, speech and music may recruit dedicated cortical cir-
cuitry that endows them with an attentional advantage over
acoustically similar environmental sounds. Disentangling
these contributions is instrumental for developing predictive
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models of attention that go beyond energy-based detectors
and incorporate categorical knowledge. Essentially, salience
is not synonymous with importance. A flashing neon sign
may dominate visual attention while conveying little behav-
ioral relevance when compared with a dull but informative
traffic light in the driver’s periphery (Wang et al., 2010).
Vision studies demonstrate that object ranking reflects a
negotiated balance between low level salience and higher
order semantics, modulated by task goals, scene contexts, and
learned contingencies (de Haas et al., 2019; Nuthmann et al.,
2020; Schomaker et al., 2017; Wang et al, 2018).
Computational models that incorporate object—context inter-
actions outperform purely salience driven models in predict-
ing which items observers later recall or act upon (Tian et al.,
2022). Despite clear parallels between visual and auditory
scene analysis, the joint influence of acoustic salience and
semantic identity on perceived importance of auditory events
remains largely unexplored. Clarifying this relationship will
inform assistive listening technologies, automatic audio sum-
marization, and neuro-ergonomic design of warning systems,
all of which must decide which sounds merit priority.

The present work therefore examines how listeners parse
dynamic acoustic scenes when salience, semantics, and
judged importance intersect. Across two laboratory experi-
ments, we continuously record frame-level overt responses,
subjective salience estimates and high temporal resolution
pupillometry while participants listen to naturalistic mixtures
recorded from everyday environments. Each mixture contains
temporally overlapping events drawn from diverse sources.
Additionally, on a trial-level scale, we introduce a data-
driven scoring framework that positions events along a per-
ceptual continuum based on sound identity. From the col-
lected measures, we test whether listeners’ trial-level
importance rankings, frame-level subjective salience judg-
ments, and pupil arousal converge along the continuum.
Hierarchical modeling allows us to disentangle shared vari-
ance due to low level acoustics from category-specific contri-
butions, revealing that certain sounds retain an importance
premium even when equivalent in loudness and temporal
position to competing sounds. By integrating perceptual and
physiological measures, our study aims to reveal how biases
toward specific sound categories shape object identification
and, ultimately, comprehension of complex auditory scenes.

II. METHODS
A. Audio stimuli

The audio stimuli used in this study are sourced from
the Google AudioSet (Google Inc., Mountain View, CA)
evaluation dataset and its subset, the detection and classifi-
cation of acoustic scenes and events (DCASE) challenge
Task 4a public set. This particular dataset is selected for a
few reasons: (1) the audio clips encompass diverse sound
classes within a single clip, (2) the audio clips are collected
from different YouTube (YouTube Inc., San Bruno, CA)
creators; hence, reflecting a wide range of recording setups,
(3) strong labels, which are sound class annotations with
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precise start and end time boundaries, are available through-
out the duration of the audio clips.

A total of 50 audio clips serve as our audio stimuli. In a
first identification experiment, the stimuli are extracted
directly from the dataset and are each 10 s long. In a second
salience experiment, the 10 s audio clips are extended to
their original samples from the initial YouTube sources and
set to 30 s duration. The stimuli have varying original sam-
pling rates ranging from 44.1 to 192 kHz. All stimuli are vol-
ume equalized using the Fast Forward Moving Picture
Experts Group (FFmpeg) EBU R128 loudness normalization
tool and then resampled at 44.1 kHz.

Each recording in the stimulus set includes at least one of
the 12 sound types of interest: (1) speech, (2) music, (3) cat,
(4) dog, (5) wild animals, (6) dishes, (7) frying, (8) alarm bell,
(9) electric shaver, (10) blender, (11) wind, and (12) running
water—following the initial annotation set in AudioSet. These
12 sound types are specifically chosen to span across the top
level sound types indicated by the AudioSet ontology, which
are the six aggregate sound classes: (1) speech, (2) music, (3)
animal, (4) domestic sounds, (5) alarm, and (6) natural sounds.
The analysis was conducted based on the six sound types.
However, some clips may contain additional sound classes
beyond the ones mentioned above. A more detailed description
of the stimuli is included in the Appendix.

B. Experimental procedure

For this study, two experiments are carried out following
a study protocol approved by the Johns Hopkins Institutional
Review Board (IRB). See Ethics Approval for details.

1. Event identification experiment

e Experimental setup: The first experiment is conducted in
a sound booth with soundproofing insulation under super-
vision of an experimenter. Subjects are seated in the
booth, and stimuli are presented with an ASUS Xonar
Essence STX sound card (ASUS Inc., Taipei, Taiwan)
over a pair of Sennheiser HD595 headphones (Sennheiser
electronic SE & Co. KG, Wedemark, Germany).

e Experimental paradigm: The experiment consists of 50 tri-
als and has a total duration of around 50 min. Each trial
presents the subject with a 10 s stereo audio stimulus while
they fixate on a crosshair displayed on a computer screen.
After each stimulus, the subject is presented with text boxes
containing all possible sound classes through a graphical
interface. Subjects are instructed to identify and rank sound
classes that stand out the most to them in a trial. The ranking
process is done by subjects arranging text boxes from top to
bottom using a drag-and-drop menu. In addition to subject
responses collected from the ranking interface, pupillometry
is tracked and recorded by an EyeLink 1000 eyetracking
camera (SR Research, Ltd., Oakville, ON, Canada) at a sam-
pling rate of 2000 Hz throughout the entire trial.

Participants: A total of 17 human subjects (nine male, seven

female, 1 non-binary/unspecified), average age of 27.4 years

(standard deviation 3.5 years), are recruited for the task.
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2. Auditory salience experiment

o Experimental setup: The second experiment is an online
study run on the Amazon Mechanical Turk (MTurk) plat-
form (Amazon Inc., Seattle, WA). The presentation of the
experiment is implemented using the jsPsych library (de
Leeuw, 2015). Subjects are instructed to use headphones
only. An auditory test is employed at the start of the
experiment. Testing sound clips are played on one side
each time, and subjects need to indicate which side a
sound is played. It requires a 100% accuracy to continue
to the experiment and serves to ensure the participants are
using headphones. Amazon Web Services (AWS)
(Amazon Inc., Seattle, WA) is used to host the experi-
ment, and the execution of the interface is enabled by the
psiTurk framework (Gureckis et al., 2016).

 Experimental paradigm: The experiment employs dichotic
listening following the procedure developed in Kothinti
et al. (2021). Each subject is presented with 15 stimulus
pairs drawn at random from the pool of 50 stimuli, without
repetition. In each trial, the computer screen is divided by
two vertical lines, segregating it into three distinct sections:
left, middle, and right. Subjects are instructed to listen to
both scenes simultaneously and indicate their attentional
focus by continuously moving the cursor. A training video
is played before trials to clarify the instructions. If the scene
played on the right captures the subject’s attention, subjects
move the cursor to the right. When subjects deem scenes in
both ears to be attention-grabbing or when there is no focus,
they keep the cursor in the middle of the screen.

* Participants: A total of 570 subjects (419 male, 145
female, six non-binary/unspecified) initially participated
in the study (average age 32.7 years, standard deviation
7.9 years). After a quality control analysis procedure
(elaborated below), 192 subjects are retained for further
analysis. A retention rate of ~ 33% is typical for this
online paradigm, given the high response noise as previ-
ously established in Kothinti et al. (2021).

C. Subject data analysis

All analyses are conducted across all participants in
both experiments. Repeating the analyses for gender groups
male and female shows no differences. There are not enough
participants in the other gender groups (non-binary/unspeci-
fied) for a conclusive statistical analysis.

1. Importance scores

For the event identification experiment, subjects iden-
tify sound classes in the order they find particularly salient
after each trial is complete. This process results in a ranked
choice matrix for each trial. Notably, the subjects’ choices
reflect a complex interaction among factors, such as bottom-
up salience, semantic biases, top-down recognition diffi-
culty, etc., that leads to the trial-level ranking decisions.
Adopting a procedure proposed by Spain and Perona (2011),
an importance score is generated by treating the ranking
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process as an urn problem without replacement. The process
of ball selection from the urn corresponds to the selection of
a certain sound class from the drag-and-drop interface. The
importance score of a given sound class in a given trial
is therefore defined as the probability of the ball being
drawn first.

Following the urn model, the probability of sound class
i from K total classes is defined as P(S;) with the constraint

XK:P(SI') =1,

Vie {1, K}.

ey
P(Sl‘) <1

Given that the importance scores are essentially proba-
bilities P(S;), solving for the importance scores of sound
classes in a single trial is equivalent to solving a maximum
likelihood problem defined by the likelihood function

L= ﬂ ﬁ P(S{m,n}|S{m71,n}’s{m72,n}’ ”.’S{l,n}), )

n=1m=1

where N is the number of subjects, M, is the number of
ranked objects chosen by subject n, and SU""} is the sound
class ranked m by subject n and takes the value S} = §;
for some i.

Here, because we are drawing without replacement, the
probability (St |stm=tnk sty s equal to

P(s{m,n}|s{m71,n}’ . 7S{l,n})

0 if St} ¢ {S{lv"}’,._,S{m*L"}},

P S{m,n}
_ % otherwise.

1= "P(stm)
i=1

Finally, the importance score for each sound class is
defined as the maximum likelihood estimator (MLE) of the
likelihood function defined in Egs. (2) and (3) using sub-
jects’ responses, under constraints set in Eq. (1). Given that
the defined likelihood function is not convex, Basin-hopping
in conjunction with sequential least squares programming
(SLSQP) in the Python scipy optimize module are used to
find the global minimum for the MLE estimation. Different
analyses of the optimization procedure using the loss func-
tion and Monte Carlo methods confirm that stable global
maxima of the importance score are achieved. Based on
empirical testing, optimization results after 8000 iterations
of basin hopping are taken as the final importance scores
used for further analysis. An example of computed impor-
tance scores for one trial derived from subjects’ ranking
responses is shown in Fig. 1, bottom right panel.

2. Labeling scores from a public dataset

In order to extend the importance score analysis to a
wider set of acoustic stimuli and to verify the validity of the
derived importance scores, we analyze identification results
from a public dataset. The multi-annotator estimated strong
labels (MAESTRO) dataset consists of complex auditory
scene recordings capturing different acoustic scenes and is
annotated to estimate a soft label that reflects the divergence
in judgments between multiple annotators. The dataset con-
tains real-life recordings of everyday scenes that are anno-
tated by two expert annotators and synthetic scenes
generated with randomly placed auditory events annotated
through MTurk. The procedure for deriving soft labels from
raw annotations is described in Martin-Morato and Mesaros
(2023). For the current study, we analyze 250min of
MAESTRO scenes that contain sound events determined to
match the six general classes identified in the event identifi-

(3)  cation experiment, using the mapping in Table 1.
Auditory Stimulus of One Trial Sound Event Identification
) Subject 1 | | Subject 2
Audio Rank 1 Speech Alarm
— > Rank 2 Alarm Speech
Strong Alarm - - Rank 3 Music
Label Speech
Salience Measure & Pupillometry Data Importance Scores
0.55
Salience W 0.44
Pupil
Dilation
0 2 4 6 8 10 001 O
! i« Natural f Domestic
Time (sec) Speech Alarm Music Sounds Animal Sounds

FIG. 1. An overview of experimental paradigms and data. Top left depicts a typical audio stimulus for one trial along with timestamps of sound events
(strong labels) provided in the DCASE dataset. Bottom left depicts subjects’ salience judgment obtained from an online experiment and pupil dilation mea-
sured concurrently with the sound identification experiment. Top right represents typical class identification and ranking reported by different subjects.
Bottom right illustrates output of the importance score optimization analysis based on subjects’ ranked responses.
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TABLE I. Sound class mapping from the MAESTRO dataset to this study.

MAESTRO sound class Class grouping
Siren Alarm
People talking Speech
Announcement Speech
Bird singing Animal
Dog barking Animal
Street music Music

Cutlery and dishes Domestic sounds

Coffee machine Domestic sounds
Door opens/closes Domestic sounds
Furniture dragging

Wind blowing

Domestic sounds
Natural sounds

3. Analysis of identification scores

Both importance and labeling scores provide a distribu-
tion of judgments for each sound class over a [0, 1] support,
reflecting its perceived importance and priority. In order to
compare class-specific distributions for each of these mea-
sures, the probability density function for each class is esti-
mated using kernel density estimation (KDE) with a
Gaussian kernel to estimate the distribution density with 100
bins over the support. Next, the Wasserstein distance (Earth
mover’s distance) using the squared Euclidean distance as
the cost function is used to compare pairs of class-specific
distributions in order to capture differences in distribution
shape. This metric is chosen because it penalizes large dif-
ferences between distributions and captures subtle changes
in the shape of the distributions. Pairwise comparisons
between the distributions of the six classes are then com-
bined using dendrograms to analyze the hierarchical rela-
tionships between them (Frades and Matthiesen, 2010;
Wierzchon and Klopotek, 2018). The dendrogram analysis
is constrained using an optimal leaf ordering (OLO) with a
condition that maximizes the sum of similarity between
every leaf and all other leaves in the adjacent cluster. This
procedure allows us to identify groupings of sound classes
and assess similarities in these groupings in order to pin-
point whether some sound classes tend to generate percep-
tual responses that are more similar to each other. More
importantly, the procedure enables us to compare grouping
across the two measures explored in this study: importance
scores derived from the event identification experiment and
labeling scores obtained from the MAESTRO dataset.

To verify the statistical significance and stability of
the hierarchical grouping, we employ bootstrapping as a
resampling technique. A total of 75% of the data from each
class-specific distribution are systematically resampled, and
hierarchical clustering is reapplied to generate a dendrogram
using OLO. This procedure is repeated for 1000 iterations.
Kendall’s tau is then computed between the original and
each of the bootstrap-generated dendrograms in order to
evaluate the consistency in the ordering of clusters across
different bootstrap runs. A bias correction of Kendall’s tau
is computed to account for bias introduced due to the small
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sample size. Confidence intervals of corrected tau values are
then evaluated.

4. Inter-subject agreement from the identification
experiment

To evaluate the inter-subject agreement of reported clas-
ses in the identification experiment, subject responses for each
trial are arranged into binary matrices for each class (1 when a
class has been selected by a subject in a trial; O otherwise). A
Hamming distance is used as a measure of similarity across
pairs of binary sequences comparing all possible pairs of sub-
jects. The distance values are normalized (ranging from O to 1)
by the length of the response vector and reflect the ratio of dis-
agreement. This analysis yields a class-specific distribution of
distances whose mean is compared to two baseline measures.
First, a random binary matrix is generated from a fair
Bernoulli distribution coin toss representing random selection
of sound classes. Pairs of distance are computed 136 (unique
pairs between 17 subjects) times to form a class-agnostic base-
line of random responses. Second, for each class, a randomly
shuffled binary matrix is generated, and pairs of distances are
computed 136 times. Naturally for a normalized measure, clas-
ses with fewer occurrences (e.g., alarms) result in different
baselines compared to frequently occurring classes.

To further assess the inter-subject agreement trends
across classes, a bootstrapping procedure is used to examine
higher-order moments of distance distributions. For each
class and each bootstrapping round, half trials are selected at
random, and the average inter-subject distribution across
subjects is evaluated. Each bootstrapping distribution yields
a variance, skewness, and kurtosis measures that are com-
piled across 500 iterations. Quantitatively similar results are
obtained with different percentage of trials selected.

5. Button press response from the identification
experiment

In addition to class identity, response times are also ana-
lyzed using the timestamp when a sound class text-box is
clicked. By averaging the number of button clicks per class
across trials, it is evident that subjects generally click only once
per trial when a sound class is deemed present (speech = 1.11
clicks / trial, music = 1.07 clicks / trial, animal = 1.14 clicks /
trial, domestic sounds = 1.10 clicks / trial, alarm = 1.13 clicks /
trial, natural sounds = 1.17 clicks / trial]. Therefore, only the
first instance of clicking for a sound class within a trial is taken
into account for further analysis to eliminate noise from acci-
dental clicking. Due to potential variability from hardware and
user factors, button press timing provides a coarse rather than
precise temporal measure. Still, it is analyzed in the current
study for statistical significance that reflects correlations with
independently computed importance scores.

6. Salience measure from the auditory salience
experiment

Similar to the importance scores, subjects’ responses
obtained from the auditory salience experiments capture the
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intrinsic dynamics between bottom-up and top-down fac-
tors. However, these responses operate on a more local,
frame-level scale, in contrast to the more global, trial-level
perspective of the importance scores.

First, they are analyzed for quality control to flag outlier
subjects and trials based on extreme behaviors following the
steps proposed by Kothinti et al. (2021). Subjects with out-
lier behavior based on switching rate between left and right
side and erratic cursor behavior are excluded from further
analysis. Next, dichotic responses to left/right-ear atten-
tional engagement are recorded as binary sequences. A
value of 1 represents the subject focusing on a given scene,
while O represents attention to the opposite scene or neither
scene. By averaging the binary sequences across all sub-
jects, a temporal salience measure is generated for the par-
ticular scene.

Salience judgments, defined as the temporal salience
measure averaged across subjects, near the onset of each
sound event (based on AudioSet’s strong labels) are ana-
lyzed over 1.5s post onset. Since the identification experi-
ment only flags presence or absence of a sound class for
each trial, only one windowed response, with the greatest
absolute slope value, is chosen per sound class per trial to
account for the maximal response induced by a specific
sound class. The time-aligned salience curves are then
derived for each sound class and a linear fit is used to derive
linear slope values from 100 rounds of 30-sample bootstrap-
ping curves.

For comparison, a reference curve is established.
Sample windowed responses lasting 1.5 s are collected pre-
ceding event onsets, specifically where no other sound class
onsets occur 3 s before these onsets. This ensures non-
interference from preceding sound events.

The relationship between the trial-level importance
scores and the frame-level salience measure is also investi-
gated. Three values are extracted for Pearson’s correlation
test against the importance scores across all sound classes.
These three values are: response maximum, response mean,
and response change. Same as the sound event alignment
just described, a 1.5 s windowed response with the greatest
absolute slope value is chosen per sound class per trial to
extract the values. The response maximum is defined as the
single maximum value inside the windowed response. The
response mean is computed by averaging response values
inside the windowed response. Third, the response change is
defined as the absolute slope value to capture the provoca-
tion rate (either direction). Over the 50 trials, there are 75
pairs of values for each response measure against the impor-
tance scores. A Pearson’s correlation analysis is conducted,
and the significance is further verified with 100 rounds of
37-sample bootstrapping.

D. Pupillometry data analysis from the identification
experiment

Following the procedure proposed by Kret and Sjak-
Shie (2019), pupillometry data collected during the event
identification experiment is preprocessed through four steps:
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First, intervals with discontinuities longer than 75 ms, likely
linked to blinking, are identified. Samples near the disconti-
nuities (£50 ms) are removed. Second, only gaps measuring
less than 250 ms are filled using linear interpolation. Third,
the samples are detrended and z-score normalized. Last, the
curves are smoothed using a fifth-order Butterworth low-
pass filter (with 4 Hz cutoff).

Similar to the analysis of subjective salience judgments,
pupillary responses near the onset of each sound event are
analyzed over a 1.5 s post event onset. Time-aligned pupill-
ometry curves are derived for each sound class and a logistic
function fit is employed to capture the spontaneous nature of
pupil dilations. Growth rate values from the logistic fit are
computed from 100 runs of bootstrapping curves. Given that
pupillometry data results in missing samples for some sub-
jects, bootstrapping is conducted at each time point, gather-
ing half of the available samples. A reference curve is also
computed away from the onset of any sound class following
the same procedure as salience judgments.

E. Acoustic attribute analysis

To investigate the influence of acoustic properties on
importance judgments, distributions of 16 acoustic attributes
are obtained for each sound class. These attributes are
extracted after mapping the acoustic waveform into a time-
frequency auditory spectrograms at a frame rate of 125 Hz
with a biomimetic model (Wang and Shamma, 1994). They
form a comprehensive collection that covers common tem-
poral and spectral properties of an audio signal and have
been frequently used in studies of auditory salience and per-
ception of complex acoustic scenes (Huang and Elhilali,
2017; Kothinti and Elhilali, 2023; McMullin et al., 2024).

* Loudness (LD) is the average energy in envelopes com-
puted on 28 bark frequency bands (Zwicker et al., 1991).

* Raw energy (RE) is the energy values computed from the
spectrogram bands.

* Energy rates (ER) is the energy from spectrotemporal
modulation decomposition.

* Pitch (P) is the pitch value determined based on template
matching as demonstrated in the optimum processor
method (Goldstein, 1973).

* Harmonicity (H) is the measure of the strength of voicing

and represents the match between spectral slices and their

matched pitch templates.

Brightness (BR) is the spectral centroid at each temporal

slice.

Bandwidth (BW) is the spectral spread around spectral

centroid, computed as the average of the absolute differ-

ence between the spectral centroid and frequencies with
magnitude spectrum as the weights.

Irregularity (IR) is a measure of jaggedness in the spec-

trum, computed as a sum of squares of the spectral magni-

tude difference between consecutive spectral bins and
divided by the sum of squares of all spectral magnitudes.

Flatness (FL) represents the flatness in the spectrum

and is calculated as the geometric mean of spectral
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magnitudes divided by the arithmetic mean of spectral

magnitudes.

Average slow temporal modulations, or low rates (LR) is

the average energy in frequencies <20 Hz.

Average fast temporal modulations, or high rates (HR) is

the average energy in frequencies >20Hz and measures

roughness.

Rate centroid (RC) is computed as the centroid of tempo-

ral modulations for frequencies <32 Hz.

e Rate maximum (RM) is the maximum energy value

across all rates.

Absolute rate centroid (ARC) is the rate centroid calcu-

lated with the magnitude of rate in the weighted average.

Scale centroid (SC) is the scale centroid computed from

spectral modulations.

* Scale maximum (SM) is the maximum energy value
across all scales.

The analysis is repeated for both stimuli used for the
event identification experiment as well as the MAESTRO
dataset. Audio waveforms from both datasets are analyzed
for segments that align with a strong label for each of the
classes. Mean values over time for each acoustic attribute
and each sound class are computed, and then compared to
the importance scores and identification scores for the
experimental and MAESTRO datasets, respectively. Both
within and across group correlations between importance
and acoustic attributes are examined using Kendall’s tau. A
total of 500 rounds of permutation are utilized as null
hypothesis to validate statistical significance.

lll. RESULTS

A. Identification scores reveal a consistent perceptual
ranking of sound classes

The ranked choice of sound classes in the identifica-
tion experiment results in importance scores that reflect
the weight or priority that listeners give to each sound
class (see Methods). Importance scores vary between 0
and 1 reflecting low to high ranking for a given sound class
across scenes and subjects. By visually examining the
importance distributions across classes, Fig. 2(A) (left)
reveals that some classes, such as alarm, speech, and to
some extent animal, are fairly uniform with heavy tails on
both ends and a pronounced density near 1 suggesting that
likelihood of identification of these events is generally
consistent and prioritized among listeners. Other classes,
particularly domestic and natural sounds, tend to be unim-
odal and skewed towards zero, suggesting less priority by
listeners to report or identify these classes. In contrast,
music appears to be fairly bimodal likely owing to the per-
ception of music as both an important presence in a scene
as well as a background element. The same analysis is rep-
licated in the large-scale dataset MAESTRO based on
cross-subject soft label identifications (total 250 min of
audio compared to 8.3min in the identification experi-
ment). Figure 2(A) (right) shows generally similar trends
as identification-based importance scores; although the
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alarm, speech, and animal classes are not very uniform but
have heavier tails on both ends. The domestic and natural
sound classes lack density near 1.

To quantitatively explore similarities of labeling dis-
tributions across sound classes, hierarchical clustering is
implemented using dendrograms  with  pairwise
Wasserstein distances [Fig. 2(B), left]. The trends of iden-
tification scores reveal that alarm and speech have closely
related importance distributions, different from animal and
music, which themselves are clustered separately from
domestic sounds and natural sounds. The clustering proce-
dure uses OLO that minimizes total distance between adja-
cent leaves along the dendrogram. Hence, it reveals a
gradual arrangement of distribution shapes among the
six sound classes. A bootstrapping procedure over 1000
iterations confirms that the progression of response
types among sound classes is statistically significant (bias-
corrected Kendall’s tau, p =0). When the importance
scores are separated based on gender, no statistical signifi-
cance is detected. The same analysis is repeated for the
MAESTRO dataset and results in identical dendrogram
clustering [Fig. 2(B), right]. The MAESTRO groupings are
also statistically significant (bias-corrected Kendall’s T,
p = 0.0085).

B. Inter-subject agreement supports the same
perceptual sound class ordering

While the importance scores examine ranked choices
across listeners in the identification experiment, inter-
subject agreement probes consistency in reported scores.
Analysis of subject responses between pairs of subjects
reveals high agreement among subjects for all classes
[Fig. 2(C), red boxes). The inter-subject agreement (mea-
sured as a Hamming distance) is significantly lower than a
baseline model of random responses from a fair coin toss
process (light gray box) [unpaired #-test with alarm (#-stat
=727, p ~ 107'7%), speech (r-stat =55.9, p ~ 10~1°%), ani-
mal (r-stat=63.1, p~107'9), music (r-stat=67.1,
p ~ 107179, domestic sounds (t-stat=62.8, p ~ 107'93),
and natural sounds (¢t-stat =43.4, p ~ 10’124)]. Furthermore,
a class-specific random floor (dark gray boxes) also shows
that subjects’ responses are statistically lower than this base-
line [unpaired t-test with alarm (r-stat =34.7, p ~ 107101,
speech (t-stat=56.8, p =~ 10’152), animal (z-stat =62.8,
p~ 10_163), music (z-stat=58.8, p ~ 10_156), domestic
sounds (t-stat=35.9, p ~ 107'%%), and natural sounds (¢-stat
=317, p= 10_93)]. The class-specific random baseline
varies as it reflects the differences in number of occurrences
across classes.

A one-way analysis of variance (ANOVA) on inter-
subject agreement shows a statistical significant difference in
distribution means across the six classes (p ~ 107°7).
Looking closely at the shape of the agreement distributions
themselves reveals consistent trends across classes, captured
by higher moments of the distributions. Second, third, and
fourth moments corresponding to the variance, skewness, and
kurtosis of the agreement of subject responses across trials are
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FIG. 2. (A) Left: Importance score distributions and KDE fits grouped by sound class. Right: Labeling score distributions and KDE fits grouped by sound class.
(B) Left: Hierarchical clustering dendrogram based on the importance scores. Right: Hierarchical clustering dendrogram based on the labeling scores. (C) Top:
Normalized Hamming distance distribution comparing subjects’ responses with class-specific and fixed noise floor sequences. Bottom: Bootstrapped results of
the variance, skewness, and kurtosis of response consistency, arranged by sound class following the same order as on the top. (D) Left: Salience mean curves
with bootstrapping (Black dashed lines represent edges of the 95% confidence interval.). Right: Bootstrapped slope mean values arranged by sound class follow-
ing the same order as on the left. (E) Left: Pupil dilation mean curves with bootstrapping (black dashed lines represent edges of the 95% confidence interval.)
Right: Bootstrapped growth rate mean values from bootstrapping arranged by sound class following the same order as on the left.

obtained using a bootstrapping procedure [Fig. 2(C), bottom].
Examining the second moment shows a gradual increase in
variance suggesting a smaller spread of response variability
across subjects for sounds, such as alarm, speech, and wider
spread for natural or domestic sounds (linear regression fit,
adjusted R? = 0.28,F = 1180,p ~ 1072'7).  The third
moment reveals higher positive skewness for natural or
domestic sounds, indicating lower across-subject agreement
relative to alarm or speech sounds (adjusted R? = 0.34,
F = 1580, p ~ 1072'7). The fourth moment again shows the
same linear trend, confirming a heavier tail, higher percentage
of outlier subject responses, for natural or domestic sounds
relative to alarm or speech sounds (adjusted R? =0.12,
F =400,p ~ 107%).

C. Changes in salience judgments follow the identical
perceptual ordering of sound classes

Subjects’ salience judgments reflect the degree to which
sound events stand out and attract attention within a scene.
Figure 2(D) shows a significant increase in salience relative
to a baseline salience (defined away from onsets of any
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identifiable sound events) near onset of sound events (defined
by the strong labels provided in the AudioSet database). As
shown by bootstrapping, the salience slope is systematically
positive and varies across sound classes [alarm =0.0673
(0.0610, 0.0709); speech =0.0399 (0.0375, 0.0457); animal-
=0.0328 (0.0160, 0.0372); music = 0.0168 (0.0134, 0.0246);
domestic  sounds =0.0067 (0.0004, 0.0111); natural
sounds = 0.0171 (0.0069, 0.0217), where each number repre-
sents the mean slope value (5% percentile, 95% percentile)].
For sound classes, such as alarm and speech sounds with
higher positive slope values, it indicates that attention is
drawn more rapidly because of them. As comparison, the
baseline salience away from event onsets has a flat slope of
—0.0071 (—0.0223, 0.0088). Comparing the slopes across
the six sound classes reveals a linearly decreasing trend
following the same perceptual ordering of sound classes
as mentioned in Secs. III A and III B sections (linear regres-
sion fit, adjusted R*> = 0.77,F = 1953,p ~ 10~'*°). Gender
analysis with the same ordering of sound classes reveals sta-
tistical significance for both males and females (male,
adjusted R? =0.29,F =252,p ~ 107¥; female, adjusted
R> =0.31,F =266,p ~ 107°).
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D. Pupillometry curve growth rate at sound class
onsets displays similar sound-class—-specific
behavior

Sound-class—dependent behavior is also observed when
pupillometry curves are time aligned at the sound event
onsets. The pupillometry mean curves and logistic function
curve fits are shown in Fig. 2(E) and reveal a steeper
increase in growth rate for certain sounds, such as the alarm

and speech [alarm =0.0232 (0.0194, 0.0279); speech-
=0.0103 (0.0098, 0.0107); animal=0.0087 (0.0082,
0.0092); music=0.0042 (0.0036, 0.0048); domestic

sounds = 0.0057 (0.0053, 0.0061); natural sounds=0.0051
(0.0046, 0.0056), where each number represents the growth
rate mean (5% percentile, 95% percentile)]. Similar to
behavior salience, this indicates that alarm and speech
sounds cause more rapid pupil dilation. In comparison, the
baseline pupillometry curve away from event onsets is
nearly flat and does not approximate or fit well with a logis-
tic function. The right panel shows the growth rate mean
obtained through bootstrapping (linear regression fit,
adjusted R? =0.65,F = 1123,p ~ 107"%%).  Similar to
salience judgments, pupillometry provides biomarker evi-
dence of a graded response to different sound classes.
However, males or females pupillometry data alone do not
show significance for the particular ordering of sound clas-
ses (male, adjusted R? = 0.004, F = 3.20,p = 0.07; female,
adjusted R?> = —0.001,F = 0.15,p = 0.70). By inspection,
multiple outlier growth rate values lead to the test results,
which is likely caused by the missing pupillometry data and
limited number of subjects.

E. Perceptual importance is strongly correlated with
reaction time

During the ranking process of the event identification
trials, subjects’ button response is also biased by the identi-
ties of the specific sound classes. A one-way ANOVA test
shows that there is significant difference (p = 0.006) among
the reaction time mean of the six sound classes. Specifically,
from the longest to the shortest button press time mean, we
have domestic sounds {4.62 s [standard deviation (std)=
2.03]}, followed by natural sounds [4.58 (std =1.89) sec],
alarm [3.98 (std =2.22) sec], speech [3.65 (std =1.33) sec],
animal [3.46 (std =1.31) sec], and music [3.18 (std =1.09)
sec]. Further analysis with a post hoc Tukey’s honestly sig-
nificant difference (HSD) test confirms that only two pairs
of the sound classes possess significantly different reaction
time mean: music/domestic sounds (p = 0.047) and music/
natural sounds (p = 0.014). The rest of the sound classes
have statistically similar reaction time mean among
themselves.

Furthermore, a correlation analysis comparing button
response time and importance scores shows a negative corre-
lation across sound classes (r = —0.59, p = 107'%). The
correlation remains significant when considering male and
female subjects separately (male, r = —0.23, p = 0.007;
female, r = —0.40, p ~ 1077). The observation implies that
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it takes the subjects a longer time to press a button when a
sound event is deemed less important in a given trial. This is
illustrated in Fig. 3(A) (left). A separate verification with tail
samples removed (importance score < 0.05) again confirms
a significant correlation (r = —0.62, p ~ 107'?). In addi-
tion, examining the correlation value per sound class
shows that all sound classes exhibit similar significant corre-
lation statistics. [alarm (r = —0.73, p = 0.03), speech
(r=-0.68, p~107%, animal (r= —0.68, p~ 104,
music (r = —0.66, p ~ 10~*), domestic sounds (r = —0.52,
p = 0.05), and natural sounds (r = —0.55, p = 0.003)].

The relationship between response time and importance
score does not address whether there is a relationship
between the sound class selected first and its subsequent
highest ranking. Alternatively, it is possible that sound clas-
ses are identified later but still assigned a high ranking.
Analyzing the sound class first selected and the one ranked
highest by each participant in each trial reveals that, on
average, 89% of the cases, subjects opt for a sound class
first if they rank it on top of the others. Similar high
ratios are observed across all sound classes (alarm =92%,
speech=91%, animal=87%, music=92%, domestic
sounds = 84%, and natural sounds = 88%).

F. Duration correlates positively with how important
subjects perceive a sound class

One of the open questions is whether event duration or
position influences importance scores reported by listeners.
Using strong labels derived from the original DCASE data-
set, we explore the correlation between the importance score
and these properties. Overall, sound duration reveals a sta-
tistically significant correlation (r = 0.37, p = 0.0004). The
relationship is verified with tail samples removed (sound
duration >9s) (r =0.45, p =0.0001). The correlation
remains significant when considering genders separately
(male, r = 0.28, p = 0.007; female, r = 0.42, p ~ 1075). In
contrast, the sound position does not show any correlation
with importance scores [Figs. 3(B) and 3(C)]. This is
assessed by considering the position of the first occurrence
of a sound class (r = —0.07, p = 0.50) or the last occur-
rence (r =0.16, p = 0.14). Gender analysis again shows
agreeing results both considering the first occurrence (male,
r=—0.01, p = 0.93; female, r = —0.17, p = 0.11) and the
last occurrence (male, r=20.19, p=0.07; female,
r=—0.06, p = 0.61).

G. Discrepancy between strong labels and human
subject labels exists only for few trials

While a portion of this study relies on the belief that the
strong label annotations available from the public AudioSet
database are reliable and accurate, validation is needed. The
subject responses and corresponding importance scores are
compared against the strong labels in order to quantify their
inconsistency—defined as the discrepancy score. In this
context, a trial’s discrepancy score is computed as the cumu-
lative sum of the importance scores for sound classes
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reported by more than half of the subjects (importance score V. DISCUSSION

> 1079) but are omitted from the strong labels. As depicted
in Fig. 4, among the 50 trials, only five surpass a discrep-
ancy score of 0.5. Among these five trials, the music sound
class emerges as the primary contributor to the observed
disparities.

Moreover, upon examining the ratio of events reported
by subjects but are absent in strong labels, natural sounds
(38.5%), music (33.3%), and animal (15.0%) sound classes
are the only ones among the six sound classes that show
non-zero percentages of discrepancy occurrences. Given
that discrepancy is limited to only few classes and few trials
(~24%), we reason that strong labels are reliable for any
follow-up analyses.

H. Acoustic profiles of individual sound classes do
not reflect statistical bias that drives perceptual
importance

While the analysis reported here suggests the existence
of perceptual discrimination towards sound classes and their
prominence, it leaves open the possibility that effects are
driven by acoustic properties of sound events in addition/or
in lieu of their semantic labels. To explore both possibilities,
a within and across-group correlation is explored. This anal-
ysis is repeated for both the experimental stimuli and the
MAESTRO dataset where correlation analyses between
acoustic profiles and perceptual importance/soft labels are
examined. Within and across-class analysis with samples
spanning of all sound events reveal no significant correlation
between perceptual importance and any of the acoustic attri-
bute (Kendall’s tau with permutation test, p > 0.05).
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In this article, we explore how human auditory percep-
tion is shaped by sound event identity in complex, naturalis-
tic acoustic scenes. The study introduces an importance
scoring framework that quantifies listeners’ subjective judg-
ments about which sound events are most perceptually
prominent. These scores are analyzed alongside auditory
salience estimates, pupillometry data, and cross-validation
using the MAESTRO dataset. Together, these measures
reveal systematic biases in how listeners prioritize sound
categories, providing new insights into the cognitive and
perceptual structure of auditory scene analysis.

Clear patterns emerge in how sound classes are treated
perceptually. Alarms and speech sounds tend to receive
higher importance scores, with distributions that are heavy-
tailed toward high ranking [Fig. 2(A)]. In contrast, domestic
and natural sounds are more often ranked low in importance,
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FIG. 4. Discrepancy score breakdown by trial and sound class.
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with unimodal distributions skewed toward zero. Music and
animal sounds show intermediate profiles indicating
context-dependent variability. These trends are echoed in
the MAESTRO dataset, which uses a different annotation
approach but yields consistent category-level differences.
Hierarchical clustering of these distributions reveals the
same optimal grouping across both datasets [Fig. 2(B)].

An interesting observation arises for the music class,
which yields a notable bimodal distribution, likely reflecting
its unique functional ambiguity within everyday auditory
environments. Unlike alarm or speech sounds, which are typi-
cally associated with clear behavioral affordances (e.g.,
action, comprehension, or response), music serves a wide
range of purposes from focal entertainment to passive ambi-
ance; and listeners adjust their perceptual engagement accord-
ingly. In many environments, music is deliberately relegated
to the background to facilitate other tasks—for example, in
retail stores, waiting rooms, or elevators. In such contexts, lis-
teners implicitly treat music as a non-informative, non-urgent
auditory stream that helps shape mood or reduce perceived
silence, but not one that requires immediate cognitive resour-
ces. This is supported by studies showing that background
music is often semantically “deprioritized” and easily filtered
out unless it is disruptive or unusually salient (Kampfe et al.,
2011). Music can be effectively ignored under dual-task con-
ditions or when listeners focus on more goal-relevant stimuli
(Dalton and Fraenkel, 2012). This capacity to fade into the
perceptual background may be partly due to its predictable
structure, which allows the auditory system to allocate mini-
mal attention for tracking it (Kidd ez al., 2005). On the other
hand, music can function as a central feature of a scene—
especially when it carries intentional communicative, social,
or emotional content. For example, in a concert hall, film
soundtrack, or ritual setting, music is not only salient but
expected to be meaningful and affectively rich.
Neuroscientific studies show that music under these condi-
tions engages specialized networks including auditory, motor,
and limbic regions, and may even synchronize across listeners
at the neural level (Zatorre et al., 2007; Koelsch, 2014).
Furthermore, musical expectancy and familiarity can modu-
late how prominently music is perceived in complex scenes
(Tillmann, 2012). Thus, the bimodal nature of importance
scores in our data reflects this functional duality of music
sounds.

Effects of privileged treatment, or biased responses,
toward some sound classes are also evident in the consistency
of listener judgments. Alarm and speech sounds elicit highly
consistent responses across participants, with low variance
and narrower distributions. In contrast, domestic and natural
sounds show more variable and less predictable response pat-
terns, with distributions that are skewed and heavy-tailed.
Music and animal sounds again fall between these extremes,
consistent with their flexible contextual roles in auditory
scenes. These findings suggest that sound identity plays a
central role in structuring perceptual judgments.

Crucially, these patterns cannot be explained solely by
recognizability. While recognizing a sound is likely a
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prerequisite for judging its importance, our findings go
beyond this baseline. First, our analysis focuses not only on
whether a sound is reported, but on the order in which it is
reported at the end of each trial. If recognition alone gov-
erned reporting behavior, one might expect variability in
order or recency-based effects. Instead, we observe consis-
tent response rankings across participants, with specific cat-
egories, such as speech and alarm sounds, systematically
prioritized. This suggests that listeners do more than simply
recognize events; they rank them according to perceived rel-
evance. Second, we validate these findings using an inde-
pendent dataset (MAESTRO) featuring a different stimulus
set and real-time annotation methodology, which yields con-
vergent category-level effects. Third, participant responses
align closely with strong labels from the AudioSet corpus,
indicating that the majority of sound events were correctly
identified. These results argue against a recognizability-
based account and support the view that importance judg-
ments reflect structured perceptual biases linked to event
identity and salience, rather than mere identification
success.

Pupillometry data provide physiological support for this
interpretation. Sound categories, such as speech and alarm
sounds, in contrast to natural and domestic sounds, elicit ear-
lier and larger pupil dilations; a known marker of increased
cognitive effort and attentional engagement. Prior work has
shown that pupil size tracks listening effort, task difficulty,
and emotional shifts (Bradley et al., 2008; Kahneman and
Beatty, 1966; Liao et al., 2016; Porter et al., 2007). These
responses, while involuntary, align well with the category-
level patterns observed in importance and salience ratings,
suggesting that certain sound types engage greater mental
resources even in passive or non-instructed contexts.

Additional findings link importance to behavioral dynam-
ics. Reaction times correlate with importance ratings: highly
ranked sounds tend to be reported earlier. This mirrors sen-
sory prioritization in other modalities, such as rapid visual
saccades toward faces (Crouzet et al., 2010) or fast olfactory
responses to biologically relevant odors (Boesveldt et al.,
2010). Our data also show that sound duration plays a role:
longer events, regardless of when they occur, are more likely
to be judged important. This aligns with prior research sug-
gesting that temporally persistent sounds are more easily seg-
regated from the background and integrated into scene
perception (Bregman, 1990; Seifritz et al., 2002).

Taken together, these findings suggest that listeners
implicitly rank sound events based on both their acoustic
prominence and their semantic or communicative relevance.
This pattern points toward an emergent perceptual structure
that may help explain how complex scenes are parsed and
understood.

We propose that this structure can be conceptualized as
a perceptual continuum—one that reflects the degree to
which a sound category conveys communicative or behav-
iorally relevant information. At one end of this continuum
are sounds, such as alarms and speech, which are consis-
tently prioritized, elicit stronger physiological responses,
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and are reported with high consistency. At the other end are
domestic and natural sounds, which are less often selected
as prominent and show more variable responses. Music and
animal sounds occupy an intermediate space. This gradient
of perceived importance suggests an emergent division
between perceptually foregrounded and backgrounded

TABLE II. Detailed description of the auditory stimuli.

sounds—not imposed by the task, but revealed through con-
sistent listener behavior and cross-modal markers.

This foreground/background distinction becomes espe-
cially compelling when considering salience and pupillome-
try data. Sound categories that are consistently treated as
foreground are also those that attract more attention and

Stimulus ID Sound classes present (strong labels) Text description

1 Speech, animal, natural sounds, others A male and a female speaking while sailing
2 Speech, animal, others Animal quacking with a male speaking

3 Speech, animal Dog barking with a male speaking

4 Domestic sounds Electric shaver with background music

5 Natural sounds, others Boat sailing

6 Speech, animal A female speaking with cow mooing

7 Domestic sounds, natural sounds A person washing dishes

8 Music, others Dancing music in Spanish

9 Speech, alarm Male speaking and ringing a bell

10 Speech, domestic sounds Male speaking and using a blender

11 Speech, music Male speaking with background music

12 Speech, alarm Male speaking with a phone ringing

13 Speech, music, others Sports game broadcast

14 Animal, music Dog whining with background music

15 Music, others Male beatboxing

16 Alarm Distant alarm sound

17 Alarm, animal Dog whining to an alarm sound

18 Animal, speech Female speaking and a cat chirping

19 Animal, natural sounds Water flowing with distant dog barking

20 Animal Distant dog barking

21 Animal, speech Male speaking with dog barking

22 Speech, domestic sounds Male speaking and using a blender

23 Speech, domestic sounds Female speaking with pots clashing

24 Speech, domestic sounds Female speaking and using a blender

25 Speech, animal Female speaking with a cat meowing and a background music
26 Natural sounds Water flowing with a background music

27 Speech, music, others Music ending and a male speaking

28 Natural sounds Water flowing with birds chirping

29 Alarm School bell ringing

30 Alarm Distant alarm sound

31 Speech, domestic sounds Electric shaver and a male speaking

32 Speech, alarm Male speaking and a doorbell ringing

33 Speech, animal Female speaking and a cat meowing

34 Animal Dog barking

35 Speech, music, animal, others A movie trailer with dog barking, male narration, and background music
36 Speech, music, others Television (TV) show with male speaking and female singing
37 None Music playing with unknown animal chirping
38 Speech, domestic sounds Multiple people speaking with dishes clashing
39 Speech, Domestic Sounds Female speaking with pots, dishes clashing
40 Speech, Domestic Sounds Male speaking with dishes clashing

41 Music, others Female singing and guitar playing

42 Speech, animal Male speaking with birds cawing

43 Animal, natural sounds Dog barking with water dripping

44 Music Instrument playing with background music
45 Animal, music, others Bird chirping with background beats

46 Speech, natural sounds Water flowing and female speaking

47 Speech, animal, music Birds chirping with male speaking and background music
48 Speech, domestic sounds Food frying with male speaking and background music
49 Speech, animal Female speaking and dog barking

50 Speech, animal, others Female speaking with deer bleating
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cognitive resources. This finding aligns with prior studies
showing that attentional capture in audition depends on a
sound’s novelty, emotional content, and learned associations
(Parmentier et al., 2010; Bonmassar et al., 2020). Our
results extend this literature by demonstrating that identity-
driven foregrounding occurs even in rich, naturalistic scenes
and across multiple measurement modalities.

Despite these findings, key caveats and limitations must
be acknowledged. First, the sample size of the dataset curated
for this study is limited. A total of 500s of experimental data
and 1500 s of crowd-sourced salience data are collected, com-
plemented by 14992 s from MAESTRO. Scene durations are
brief (105s), constrained by AudioSet labeling. This limits our
ability to assess long-term dynamics, such as habituation and
event-boundary effects. The use of six root categories from
the AudioSet ontology (Gemmeke et al., 2017) provides a
useful structure, but may mask contextual nuances—for
example, speech might be expected in a café but intrusive in a
concert hall. Our current framework captures broad trends,
while future work could explore more context-sensitive and
fine-grained classifications.

Nonetheless, the convergence of behavioral, physiologi-
cal, and computational evidence presented here supports a
strong conclusion: sound identity plays a decisive role in
how auditory scenes are parsed and prioritized. The pro-
posed importance score offers a novel tool for quantifying
perceptual prominence in contextually rich environments.
Combined with salience models and pupillometry, it reveals
a structured continuum of perceptual weighting that helps
explain how listeners navigate complex auditory scenes.
These findings highlight the interplay of top-down expecta-
tions and bottom-up acoustic attributes in real-world listen-
ing and open new avenues for modeling attention and
importance in multi-source auditory environments.
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APPENDIX

Among the fifty, 10 s stimuli used in the event identifi-
cation experiment, 14 of them contain sounds other than the
six sound classes [total duration=108s, duration mean
(std) =7.7 (2.8) s]. The variability among the six sound clas-
ses is as listed: alarm [contained in seven stimuli, total
duration =43 s, duration mean (std)=6.2 (3.2) s], speech
[contained in 30 stimuli, total duration=111s, duration
mean (std) =3.7 (2.4) s], animal [contained in 20 stimuli,
total duration=72s, duration mean (std)=3.6 (2.8) s],
music [contained in 12 stimuli, total duration =93s, dura-
tion mean (std) =7.8 (3.3) s], domestic sounds [contained in
11 stimuli, total duration=>51s, duration mean (std) =4.6
(3.1) s], natural sounds [contained in eight stimuli, total
duration = 68 s, duration mean (std) = 8.5 (2.9) s].

Table II is a detailed description of the 10 s auditory
stimuli used in the event identification experiment.
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