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ABSTRACT:
Human listeners effortlessly identify salient sounds in their environments, yet the relationship between sound class

identity, auditory salience, and perceived importance in complex auditory scenes remains poorly understood. In this

study, we investigate these connections with scores derived from subject responses using a scoring mechanism,

combined with auditory salience and pupillometry data. By leveraging both psychophysical experiments as well as a

large-scale annotated dataset, our findings reveal biased responses and higher importance rankings for specific sound

classes, such as alarm sounds and speech, and highlight a consistent perceptual ordering of sounds based on their

identity. Salience judgments and pupillary responses further support this distinction, showing that the level of height-

ened arousal follows the same sound class order. The results underscore the influence of semantic mappings on both

bottom-up and top-down sensory processing, suggesting that sound identity plays a crucial role in shaping perceptual

judgment and neural responses. Despite dataset limitations, our findings offer insights into auditory scene analysis

and provide a novel framework for understanding how auditory perception prioritizes sounds based on both their

inherent properties and learned semantic associations.VC 2025 Acoustical Society of America.
https://doi.org/10.1121/10.0039710
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I. INTRODUCTION

Auditory scene analysis seeks to transform the cacoph-

ony of everyday sounds into a manageable set of perceptual

tokens (auditory events) that can be treated as time bound

“objects” by the nervous system (Bizley et al., 2013;

Griffiths and Warren, 2004). In this work, we reserve the

term auditory event for any temporally bounded token

whose acoustic attributes (e.g., pitch, timbre, loudness, tem-

poral envelope) combine with higher level schemas that

encode its semantic identity and real-world source. Consider

an everyday manifestation of the classic phenomenon of the

cocktail-party problem (Bregman, 1990), a bustling caf�e
during a lunch rush, a sharp, repetitive pattern of a mobile

phone ringtone is differentiated by its distinct spectral signa-

ture and abrupt onsets, and it is simultaneously categorized

as an “incoming call,” allowing it to emerge from overlap-

ping speech, clattering dishes, and background music.

Canonical grouping cues, such as common onset, harmonic-

ity, and spectral proximity, facilitate this segregation

(Darwin, 1997; Oh et al., 2022; Wagemans et al., 2012);
however, this process is not purely bottom-up. These

bottom-up Gestalt regularities operate in concert with

top-down category expectations and semantic knowledge so

that perceptual segmentation of auditory events is finely

tuned when acoustic evidence matches familiar schemas

(e.g., telephone alert, mechanical hiss). This interaction

between signal-driven structure and semantic prediction moti-

vates the present investigation: do certain sound categories, by

virtue of their ecological or cognitive relevance, obtain privi-

leged perceptual status within complex auditory scenes?

Vision research provides a compelling precedent for such

biases. Not only do low level cues segment visual scenes into

objects, but systematic regularities also tilt attention toward

particular objects and positions. Spatial and semantic struc-

tures can accelerate the learning of face–scene associations,

facilitating rapid contextual predictions (Zhou and Geng,

2024). Positional regularities (e.g., the tendency for “object

tops” or scene “bottoms”) influence similarity judgments,

with strongest sensitivity near the scene center where fixations

cluster (Langley and McBeath, 2023; Odegaard et al., 2015).
Moreover, hierarchical preferences for faces and bodies

emerge in the first months of life and influence later atten-

tional development, pointing to an interplay of innate predis-

positions and experience (Bindemann et al., 2010; Frank

et al., 2014). In addition, complementary findings show that

canonical object configurations (e.g., a lamp above a table) are

recognized more efficiently than improbable ones, underscor-

ing the role of semantic priors in shaping perceptual gain.

These converging data highlight that object recognition is

influenced not only by segmentation rules, but also by endur-

ing biases that assign special status to certain visual categories

and their expected spatial relations. Crucially, quantitative

work by Spain (Spain and Perona, 2011) demonstrates that

observers rank the perceptual importance of scene elements
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by jointly weighing bottom-up salience and task-driven

semantic relevance, providing direct evidence that certain cat-

egories systematically receive priority. Together, these studies

indicate that object recognition is influenced not only by seg-

mentation rules, but also by enduring biases that assign special

status to particular visual categories and their expected spatial

relations.

Parallel phenomena appear in audition, although they

have been less thoroughly catalogued. Semantically congru-

ent warning beeps, coupled with visual hazard icons, shorten

reaction times and boost accuracy in audiovisual tasks, illus-

trating how meaning modulates auditory priority (Isherwood

and McKeown, 2017). In contrast, semantic incongruency

between a target sound and its background auditory scene

leads to more accurate identification, which highlights the

complex mechanisms underlying semantic association proc-

essing (Gygi and Shafiro, 2011). Electroencephalography and

functional magnetic resonance imaging (MRI) reveal that

neonates already display cortical tuning for melodic contour

and tonal harmony, implying that musical biases are present

before extensive cultural exposure (Perani et al., 2010). In
adults, neuroimaging shows partially segregated frontotempo-

ral networks for speech and for music that extend well

beyond primary auditory cortex and display distinct time

course dynamics (Koelsch, 2005; Leaver and Rauschecker,

2010; Norman-Haignere et al., 2015). Perceptually, speech
tends to “pop out” in multi-talker mixtures, whereas identi-

cally loud environmental sounds do not; a hallmark of privi-

leged processing. Yet, we still lack a systematic account of

how sound identity (e.g., speech, music, animal vocalizations)

modulates perceptual priority when multiple events compete

for attention in real scenes. Addressing this gap is the aim of

the present study, which asks whether listeners assign consis-

tent priorities to sound categories and how these priorities

map onto measurable salience and physiological indices.

To tackle this question, we invoke the broader construct

of salience, the stimulus driven conspicuity that funnels atten-

tional resources toward a perceptual locus. Salience is tradi-

tionally described as a fusion of an event’s physical attributes

with top-down biases rooted in meaning and context (Huang

and Elhilali, 2020; Kaya and Elhilali, 2017). Comparable

principles operate in vision, where edge and shape segrega-

tion bootstraps both low- and high-level object representa-

tions (Driver and Baylis, 1995; Hoffman and Singh, 1997). In

audition, loudness, spectrotemporal contrast, and abrupt

onsets confer a bottom-up pull, but semantic content (such as

spoken language, familiar melodies, biologically relevant

calls) can amplify or dampen the pull even when low level

energy is matched (Broderick et al., 2019; Kothinti and

Elhilali, 2023). Visual experiments demonstrate that text or

objects sharing semantic relationships attract gaze more

strongly than equally salient but unrelated items (Hwang

et al., 2011; Wang and Pomplun, 2012; Wu et al., 2014). By
analogy, speech and music may recruit dedicated cortical cir-

cuitry that endows them with an attentional advantage over

acoustically similar environmental sounds. Disentangling

these contributions is instrumental for developing predictive

models of attention that go beyond energy-based detectors

and incorporate categorical knowledge. Essentially, salience

is not synonymous with importance. A flashing neon sign

may dominate visual attention while conveying little behav-

ioral relevance when compared with a dull but informative

traffic light in the driver’s periphery (Wang et al., 2010).
Vision studies demonstrate that object ranking reflects a

negotiated balance between low level salience and higher

order semantics, modulated by task goals, scene contexts, and

learned contingencies (de Haas et al., 2019; Nuthmann et al.,
2020; Schomaker et al., 2017; Wang et al., 2018).

Computational models that incorporate object–context inter-

actions outperform purely salience driven models in predict-

ing which items observers later recall or act upon (Tian et al.,
2022). Despite clear parallels between visual and auditory

scene analysis, the joint influence of acoustic salience and

semantic identity on perceived importance of auditory events

remains largely unexplored. Clarifying this relationship will

inform assistive listening technologies, automatic audio sum-

marization, and neuro-ergonomic design of warning systems,

all of which must decide which sounds merit priority.

The present work therefore examines how listeners parse

dynamic acoustic scenes when salience, semantics, and

judged importance intersect. Across two laboratory experi-

ments, we continuously record frame-level overt responses,

subjective salience estimates and high temporal resolution

pupillometry while participants listen to naturalistic mixtures

recorded from everyday environments. Each mixture contains

temporally overlapping events drawn from diverse sources.

Additionally, on a trial-level scale, we introduce a data-

driven scoring framework that positions events along a per-

ceptual continuum based on sound identity. From the col-

lected measures, we test whether listeners’ trial-level

importance rankings, frame-level subjective salience judg-

ments, and pupil arousal converge along the continuum.

Hierarchical modeling allows us to disentangle shared vari-

ance due to low level acoustics from category-specific contri-

butions, revealing that certain sounds retain an importance

premium even when equivalent in loudness and temporal

position to competing sounds. By integrating perceptual and

physiological measures, our study aims to reveal how biases

toward specific sound categories shape object identification

and, ultimately, comprehension of complex auditory scenes.

II. METHODS

A. Audio stimuli

The audio stimuli used in this study are sourced from

the Google AudioSet (Google Inc., Mountain View, CA)

evaluation dataset and its subset, the detection and classifi-

cation of acoustic scenes and events (DCASE) challenge

Task 4a public set. This particular dataset is selected for a

few reasons: (1) the audio clips encompass diverse sound

classes within a single clip, (2) the audio clips are collected

from different YouTube (YouTube Inc., San Bruno, CA)

creators; hence, reflecting a wide range of recording setups,

(3) strong labels, which are sound class annotations with
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precise start and end time boundaries, are available through-

out the duration of the audio clips.

A total of 50 audio clips serve as our audio stimuli. In a

first identification experiment, the stimuli are extracted

directly from the dataset and are each 10 s long. In a second

salience experiment, the 10 s audio clips are extended to

their original samples from the initial YouTube sources and

set to 30 s duration. The stimuli have varying original sam-

pling rates ranging from 44.1 to 192 kHz. All stimuli are vol-

ume equalized using the Fast Forward Moving Picture

Experts Group (FFmpeg) EBU R128 loudness normalization

tool and then resampled at 44.1 kHz.

Each recording in the stimulus set includes at least one of

the 12 sound types of interest: (1) speech, (2) music, (3) cat,

(4) dog, (5) wild animals, (6) dishes, (7) frying, (8) alarm bell,

(9) electric shaver, (10) blender, (11) wind, and (12) running

water—following the initial annotation set in AudioSet. These

12 sound types are specifically chosen to span across the top

level sound types indicated by the AudioSet ontology, which

are the six aggregate sound classes: (1) speech, (2) music, (3)

animal, (4) domestic sounds, (5) alarm, and (6) natural sounds.

The analysis was conducted based on the six sound types.

However, some clips may contain additional sound classes

beyond the ones mentioned above. A more detailed description

of the stimuli is included in the Appendix.

B. Experimental procedure

For this study, two experiments are carried out following

a study protocol approved by the Johns Hopkins Institutional

Review Board (IRB). See Ethics Approval for details.

1. Event identification experiment

• Experimental setup: The first experiment is conducted in

a sound booth with soundproofing insulation under super-

vision of an experimenter. Subjects are seated in the

booth, and stimuli are presented with an ASUS Xonar

Essence STX sound card (ASUS Inc., Taipei, Taiwan)

over a pair of Sennheiser HD595 headphones (Sennheiser

electronic SE & Co. KG, Wedemark, Germany).
• Experimental paradigm: The experiment consists of 50 tri-

als and has a total duration of around 50 min. Each trial

presents the subject with a 10 s stereo audio stimulus while

they fixate on a crosshair displayed on a computer screen.

After each stimulus, the subject is presented with text boxes

containing all possible sound classes through a graphical

interface. Subjects are instructed to identify and rank sound

classes that stand out the most to them in a trial. The ranking

process is done by subjects arranging text boxes from top to

bottom using a drag-and-drop menu. In addition to subject

responses collected from the ranking interface, pupillometry

is tracked and recorded by an EyeLink 1000 eyetracking

camera (SR Research, Ltd., Oakville, ON, Canada) at a sam-

pling rate of 2000Hz throughout the entire trial.
• Participants: A total of 17 human subjects (nine male, seven

female, 1 non-binary/unspecified), average age of 27.4 years

(standard deviation 3.5 years), are recruited for the task.

2. Auditory salience experiment

• Experimental setup: The second experiment is an online

study run on the Amazon Mechanical Turk (MTurk) plat-

form (Amazon Inc., Seattle, WA). The presentation of the

experiment is implemented using the jsPsych library (de

Leeuw, 2015). Subjects are instructed to use headphones

only. An auditory test is employed at the start of the

experiment. Testing sound clips are played on one side

each time, and subjects need to indicate which side a

sound is played. It requires a 100% accuracy to continue

to the experiment and serves to ensure the participants are

using headphones. Amazon Web Services (AWS)

(Amazon Inc., Seattle, WA) is used to host the experi-

ment, and the execution of the interface is enabled by the

psiTurk framework (Gureckis et al., 2016).
• Experimental paradigm: The experiment employs dichotic

listening following the procedure developed in Kothinti

et al. (2021). Each subject is presented with 15 stimulus

pairs drawn at random from the pool of 50 stimuli, without

repetition. In each trial, the computer screen is divided by

two vertical lines, segregating it into three distinct sections:

left, middle, and right. Subjects are instructed to listen to

both scenes simultaneously and indicate their attentional

focus by continuously moving the cursor. A training video

is played before trials to clarify the instructions. If the scene

played on the right captures the subject’s attention, subjects

move the cursor to the right. When subjects deem scenes in

both ears to be attention-grabbing or when there is no focus,

they keep the cursor in the middle of the screen.
• Participants: A total of 570 subjects (419 male, 145

female, six non-binary/unspecified) initially participated

in the study (average age 32.7 years, standard deviation

7.9 years). After a quality control analysis procedure

(elaborated below), 192 subjects are retained for further

analysis. A retention rate of � 33% is typical for this

online paradigm, given the high response noise as previ-

ously established in Kothinti et al. (2021).

C. Subject data analysis

All analyses are conducted across all participants in

both experiments. Repeating the analyses for gender groups

male and female shows no differences. There are not enough

participants in the other gender groups (non-binary/unspeci-

fied) for a conclusive statistical analysis.

1. Importance scores

For the event identification experiment, subjects iden-

tify sound classes in the order they find particularly salient

after each trial is complete. This process results in a ranked

choice matrix for each trial. Notably, the subjects’ choices

reflect a complex interaction among factors, such as bottom-

up salience, semantic biases, top-down recognition diffi-

culty, etc., that leads to the trial-level ranking decisions.

Adopting a procedure proposed by Spain and Perona (2011),

an importance score is generated by treating the ranking
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process as an urn problem without replacement. The process

of ball selection from the urn corresponds to the selection of

a certain sound class from the drag-and-drop interface. The

importance score of a given sound class in a given trial

is therefore defined as the probability of the ball being

drawn first.

Following the urn model, the probability of sound class

i from K total classes is defined as PðSiÞ with the constraint
XK
i¼1

PðSiÞ ¼ 1;

PðSiÞ < 1 8i 2 1; � � � ;Kf g:

8>><
>>:

(1)

Given that the importance scores are essentially proba-

bilities PðSiÞ, solving for the importance scores of sound

classes in a single trial is equivalent to solving a maximum

likelihood problem defined by the likelihood function

L ¼
YN
n¼1

YMn

m¼1

PðS m;nf gjS m�1;nf g; S m�2;nf g;…; S 1;nf gÞ; (2)

where N is the number of subjects, Mn is the number of

ranked objects chosen by subject n, and S m;nf g is the sound

class ranked m by subject n and takes the value S m;nf g ¼ Si
for some i.

Here, because we are drawing without replacement, the

probability PðS m;nf gjS m�1;nf g;…; S 1;nf gÞ is equal to

PðS m;nf gjS m�1;nf g; � � � ;S 1;nf gÞ

¼
0 if S m;nf g 2 S 1;nf g;…;S m�1;nf g� �

;
PðS m;nf gÞ

1�
Xm�1

i¼1

PðS i;nf gÞ
otherwise:

8>>>><
>>>>:

(3)

Finally, the importance score for each sound class is

defined as the maximum likelihood estimator (MLE) of the

likelihood function defined in Eqs. (2) and (3) using sub-

jects’ responses, under constraints set in Eq. (1). Given that

the defined likelihood function is not convex, Basin-hopping

in conjunction with sequential least squares programming

(SLSQP) in the Python scipy optimize module are used to

find the global minimum for the MLE estimation. Different

analyses of the optimization procedure using the loss func-

tion and Monte Carlo methods confirm that stable global

maxima of the importance score are achieved. Based on

empirical testing, optimization results after 8000 iterations

of basin hopping are taken as the final importance scores

used for further analysis. An example of computed impor-

tance scores for one trial derived from subjects’ ranking

responses is shown in Fig. 1, bottom right panel.

2. Labeling scores from a public dataset

In order to extend the importance score analysis to a

wider set of acoustic stimuli and to verify the validity of the

derived importance scores, we analyze identification results

from a public dataset. The multi-annotator estimated strong

labels (MAESTRO) dataset consists of complex auditory

scene recordings capturing different acoustic scenes and is

annotated to estimate a soft label that reflects the divergence

in judgments between multiple annotators. The dataset con-

tains real-life recordings of everyday scenes that are anno-

tated by two expert annotators and synthetic scenes

generated with randomly placed auditory events annotated

through MTurk. The procedure for deriving soft labels from

raw annotations is described in Martin-Morato and Mesaros

(2023). For the current study, we analyze 250min of

MAESTRO scenes that contain sound events determined to

match the six general classes identified in the event identifi-

cation experiment, using the mapping in Table I.

FIG. 1. An overview of experimental paradigms and data. Top left depicts a typical audio stimulus for one trial along with timestamps of sound events

(strong labels) provided in the DCASE dataset. Bottom left depicts subjects’ salience judgment obtained from an online experiment and pupil dilation mea-

sured concurrently with the sound identification experiment. Top right represents typical class identification and ranking reported by different subjects.

Bottom right illustrates output of the importance score optimization analysis based on subjects’ ranked responses.
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3. Analysis of identification scores

Both importance and labeling scores provide a distribu-

tion of judgments for each sound class over a [0, 1] support,

reflecting its perceived importance and priority. In order to

compare class-specific distributions for each of these mea-

sures, the probability density function for each class is esti-

mated using kernel density estimation (KDE) with a

Gaussian kernel to estimate the distribution density with 100

bins over the support. Next, the Wasserstein distance (Earth

mover’s distance) using the squared Euclidean distance as

the cost function is used to compare pairs of class-specific

distributions in order to capture differences in distribution

shape. This metric is chosen because it penalizes large dif-

ferences between distributions and captures subtle changes

in the shape of the distributions. Pairwise comparisons

between the distributions of the six classes are then com-

bined using dendrograms to analyze the hierarchical rela-

tionships between them (Frades and Matthiesen, 2010;

Wierzcho�n and Kłopotek, 2018). The dendrogram analysis

is constrained using an optimal leaf ordering (OLO) with a

condition that maximizes the sum of similarity between

every leaf and all other leaves in the adjacent cluster. This

procedure allows us to identify groupings of sound classes

and assess similarities in these groupings in order to pin-

point whether some sound classes tend to generate percep-

tual responses that are more similar to each other. More

importantly, the procedure enables us to compare grouping

across the two measures explored in this study: importance

scores derived from the event identification experiment and

labeling scores obtained from the MAESTRO dataset.

To verify the statistical significance and stability of

the hierarchical grouping, we employ bootstrapping as a

resampling technique. A total of 75% of the data from each

class-specific distribution are systematically resampled, and

hierarchical clustering is reapplied to generate a dendrogram

using OLO. This procedure is repeated for 1000 iterations.

Kendall’s tau is then computed between the original and

each of the bootstrap-generated dendrograms in order to

evaluate the consistency in the ordering of clusters across

different bootstrap runs. A bias correction of Kendall’s tau

is computed to account for bias introduced due to the small

sample size. Confidence intervals of corrected tau values are

then evaluated.

4. Inter-subject agreement from the identification
experiment

To evaluate the inter-subject agreement of reported clas-

ses in the identification experiment, subject responses for each

trial are arranged into binary matrices for each class (1 when a

class has been selected by a subject in a trial; 0 otherwise). A

Hamming distance is used as a measure of similarity across

pairs of binary sequences comparing all possible pairs of sub-

jects. The distance values are normalized (ranging from 0 to 1)

by the length of the response vector and reflect the ratio of dis-

agreement. This analysis yields a class-specific distribution of

distances whose mean is compared to two baseline measures.

First, a random binary matrix is generated from a fair

Bernoulli distribution coin toss representing random selection

of sound classes. Pairs of distance are computed 136 (unique

pairs between 17 subjects) times to form a class-agnostic base-

line of random responses. Second, for each class, a randomly

shuffled binary matrix is generated, and pairs of distances are

computed 136 times. Naturally for a normalized measure, clas-

ses with fewer occurrences (e.g., alarms) result in different

baselines compared to frequently occurring classes.

To further assess the inter-subject agreement trends

across classes, a bootstrapping procedure is used to examine

higher-order moments of distance distributions. For each

class and each bootstrapping round, half trials are selected at

random, and the average inter-subject distribution across

subjects is evaluated. Each bootstrapping distribution yields

a variance, skewness, and kurtosis measures that are com-

piled across 500 iterations. Quantitatively similar results are

obtained with different percentage of trials selected.

5. Button press response from the identification
experiment

In addition to class identity, response times are also ana-

lyzed using the timestamp when a sound class text-box is

clicked. By averaging the number of button clicks per class

across trials, it is evident that subjects generally click only once

per trial when a sound class is deemed present (speech¼ 1.11

clicks / trial, music¼ 1.07 clicks / trial, animal¼ 1.14 clicks /

trial, domestic sounds¼ 1.10 clicks / trial, alarm¼ 1.13 clicks /

trial, natural sounds¼ 1.17 clicks / trial]. Therefore, only the

first instance of clicking for a sound class within a trial is taken

into account for further analysis to eliminate noise from acci-

dental clicking. Due to potential variability from hardware and

user factors, button press timing provides a coarse rather than

precise temporal measure. Still, it is analyzed in the current

study for statistical significance that reflects correlations with

independently computed importance scores.

6. Salience measure from the auditory salience
experiment

Similar to the importance scores, subjects’ responses

obtained from the auditory salience experiments capture the

TABLE I. Sound class mapping from the MAESTRO dataset to this study.

MAESTRO sound class Class grouping

Siren Alarm

People talking Speech

Announcement Speech

Bird singing Animal

Dog barking Animal

Street music Music

Cutlery and dishes Domestic sounds

Coffee machine Domestic sounds

Door opens/closes Domestic sounds

Furniture dragging Domestic sounds

Wind blowing Natural sounds
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intrinsic dynamics between bottom-up and top-down fac-

tors. However, these responses operate on a more local,

frame-level scale, in contrast to the more global, trial-level

perspective of the importance scores.

First, they are analyzed for quality control to flag outlier

subjects and trials based on extreme behaviors following the

steps proposed by Kothinti et al. (2021). Subjects with out-

lier behavior based on switching rate between left and right

side and erratic cursor behavior are excluded from further

analysis. Next, dichotic responses to left/right-ear atten-

tional engagement are recorded as binary sequences. A

value of 1 represents the subject focusing on a given scene,

while 0 represents attention to the opposite scene or neither

scene. By averaging the binary sequences across all sub-

jects, a temporal salience measure is generated for the par-

ticular scene.

Salience judgments, defined as the temporal salience

measure averaged across subjects, near the onset of each

sound event (based on AudioSet’s strong labels) are ana-

lyzed over 1.5 s post onset. Since the identification experi-

ment only flags presence or absence of a sound class for

each trial, only one windowed response, with the greatest

absolute slope value, is chosen per sound class per trial to

account for the maximal response induced by a specific

sound class. The time-aligned salience curves are then

derived for each sound class and a linear fit is used to derive

linear slope values from 100 rounds of 30-sample bootstrap-

ping curves.

For comparison, a reference curve is established.

Sample windowed responses lasting 1.5 s are collected pre-

ceding event onsets, specifically where no other sound class

onsets occur 3 s before these onsets. This ensures non-

interference from preceding sound events.

The relationship between the trial-level importance

scores and the frame-level salience measure is also investi-

gated. Three values are extracted for Pearson’s correlation

test against the importance scores across all sound classes.

These three values are: response maximum, response mean,

and response change. Same as the sound event alignment

just described, a 1.5 s windowed response with the greatest

absolute slope value is chosen per sound class per trial to

extract the values. The response maximum is defined as the

single maximum value inside the windowed response. The

response mean is computed by averaging response values

inside the windowed response. Third, the response change is

defined as the absolute slope value to capture the provoca-

tion rate (either direction). Over the 50 trials, there are 75

pairs of values for each response measure against the impor-

tance scores. A Pearson’s correlation analysis is conducted,

and the significance is further verified with 100 rounds of

37-sample bootstrapping.

D. Pupillometry data analysis from the identification
experiment

Following the procedure proposed by Kret and Sjak-

Shie (2019), pupillometry data collected during the event

identification experiment is preprocessed through four steps:

First, intervals with discontinuities longer than 75 ms, likely

linked to blinking, are identified. Samples near the disconti-

nuities (650 ms) are removed. Second, only gaps measuring

less than 250 ms are filled using linear interpolation. Third,

the samples are detrended and z-score normalized. Last, the

curves are smoothed using a fifth-order Butterworth low-

pass filter (with 4Hz cutoff).

Similar to the analysis of subjective salience judgments,

pupillary responses near the onset of each sound event are

analyzed over a 1.5 s post event onset. Time-aligned pupill-

ometry curves are derived for each sound class and a logistic

function fit is employed to capture the spontaneous nature of

pupil dilations. Growth rate values from the logistic fit are

computed from 100 runs of bootstrapping curves. Given that

pupillometry data results in missing samples for some sub-

jects, bootstrapping is conducted at each time point, gather-

ing half of the available samples. A reference curve is also

computed away from the onset of any sound class following

the same procedure as salience judgments.

E. Acoustic attribute analysis

To investigate the influence of acoustic properties on

importance judgments, distributions of 16 acoustic attributes

are obtained for each sound class. These attributes are

extracted after mapping the acoustic waveform into a time-

frequency auditory spectrograms at a frame rate of 125Hz

with a biomimetic model (Wang and Shamma, 1994). They

form a comprehensive collection that covers common tem-

poral and spectral properties of an audio signal and have

been frequently used in studies of auditory salience and per-

ception of complex acoustic scenes (Huang and Elhilali,

2017; Kothinti and Elhilali, 2023; McMullin et al., 2024).

• Loudness (LD) is the average energy in envelopes com-

puted on 28 bark frequency bands (Zwicker et al., 1991).
• Raw energy (RE) is the energy values computed from the

spectrogram bands.
• Energy rates (ER) is the energy from spectrotemporal

modulation decomposition.
• Pitch (P) is the pitch value determined based on template

matching as demonstrated in the optimum processor

method (Goldstein, 1973).
• Harmonicity (H) is the measure of the strength of voicing

and represents the match between spectral slices and their

matched pitch templates.
• Brightness (BR) is the spectral centroid at each temporal

slice.
• Bandwidth (BW) is the spectral spread around spectral

centroid, computed as the average of the absolute differ-

ence between the spectral centroid and frequencies with

magnitude spectrum as the weights.
• Irregularity (IR) is a measure of jaggedness in the spec-

trum, computed as a sum of squares of the spectral magni-

tude difference between consecutive spectral bins and

divided by the sum of squares of all spectral magnitudes.
• Flatness (FL) represents the flatness in the spectrum

and is calculated as the geometric mean of spectral
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magnitudes divided by the arithmetic mean of spectral

magnitudes.
• Average slow temporal modulations, or low rates (LR) is

the average energy in frequencies �20Hz.
• Average fast temporal modulations, or high rates (HR) is

the average energy in frequencies �20Hz and measures

roughness.
• Rate centroid (RC) is computed as the centroid of tempo-

ral modulations for frequencies �32Hz.
• Rate maximum (RM) is the maximum energy value

across all rates.
• Absolute rate centroid (ARC) is the rate centroid calcu-

lated with the magnitude of rate in the weighted average.
• Scale centroid (SC) is the scale centroid computed from

spectral modulations.
• Scale maximum (SM) is the maximum energy value

across all scales.

The analysis is repeated for both stimuli used for the

event identification experiment as well as the MAESTRO

dataset. Audio waveforms from both datasets are analyzed

for segments that align with a strong label for each of the

classes. Mean values over time for each acoustic attribute

and each sound class are computed, and then compared to

the importance scores and identification scores for the

experimental and MAESTRO datasets, respectively. Both

within and across group correlations between importance

and acoustic attributes are examined using Kendall’s tau. A

total of 500 rounds of permutation are utilized as null

hypothesis to validate statistical significance.

III. RESULTS

A. Identification scores reveal a consistent perceptual
ranking of sound classes

The ranked choice of sound classes in the identifica-

tion experiment results in importance scores that reflect

the weight or priority that listeners give to each sound

class (see Methods). Importance scores vary between 0

and 1 reflecting low to high ranking for a given sound class

across scenes and subjects. By visually examining the

importance distributions across classes, Fig. 2(A) (left)

reveals that some classes, such as alarm, speech, and to

some extent animal, are fairly uniform with heavy tails on

both ends and a pronounced density near 1 suggesting that

likelihood of identification of these events is generally

consistent and prioritized among listeners. Other classes,

particularly domestic and natural sounds, tend to be unim-

odal and skewed towards zero, suggesting less priority by

listeners to report or identify these classes. In contrast,

music appears to be fairly bimodal likely owing to the per-

ception of music as both an important presence in a scene

as well as a background element. The same analysis is rep-

licated in the large-scale dataset MAESTRO based on

cross-subject soft label identifications (total 250min of

audio compared to 8.3min in the identification experi-

ment). Figure 2(A) (right) shows generally similar trends

as identification-based importance scores; although the

alarm, speech, and animal classes are not very uniform but

have heavier tails on both ends. The domestic and natural

sound classes lack density near 1.

To quantitatively explore similarities of labeling dis-

tributions across sound classes, hierarchical clustering is

implemented using dendrograms with pairwise

Wasserstein distances [Fig. 2(B), left]. The trends of iden-

tification scores reveal that alarm and speech have closely

related importance distributions, different from animal and

music, which themselves are clustered separately from

domestic sounds and natural sounds. The clustering proce-

dure uses OLO that minimizes total distance between adja-

cent leaves along the dendrogram. Hence, it reveals a

gradual arrangement of distribution shapes among the

six sound classes. A bootstrapping procedure over 1000

iterations confirms that the progression of response

types among sound classes is statistically significant (bias-

corrected Kendall’s tau, p ¼ 0). When the importance

scores are separated based on gender, no statistical signifi-

cance is detected. The same analysis is repeated for the

MAESTRO dataset and results in identical dendrogram

clustering [Fig. 2(B), right]. The MAESTRO groupings are

also statistically significant (bias-corrected Kendall’s s,
p ¼ 0:0085).

B. Inter-subject agreement supports the same
perceptual sound class ordering

While the importance scores examine ranked choices

across listeners in the identification experiment, inter-

subject agreement probes consistency in reported scores.

Analysis of subject responses between pairs of subjects

reveals high agreement among subjects for all classes

[Fig. 2(C), red boxes). The inter-subject agreement (mea-

sured as a Hamming distance) is significantly lower than a

baseline model of random responses from a fair coin toss

process (light gray box) [unpaired t-test with alarm (t-stat
¼ 72.7, p � 10�179), speech (t-stat¼ 55.9, p � 10�150), ani-

mal (t-stat¼ 63.1, p � 10�163), music (t-stat¼ 67.1,

p � 10�170), domestic sounds (t-stat¼ 62.8, p � 10�163),

and natural sounds (t-stat¼ 43.4, p � 10�124)]. Furthermore,

a class-specific random floor (dark gray boxes) also shows

that subjects’ responses are statistically lower than this base-

line [unpaired t-test with alarm (t-stat¼ 34.7, p � 10�101),

speech (t-stat¼ 56.8, p � 10�152), animal (t-stat¼ 62.8,

p � 10�163), music (t-stat¼ 58.8, p � 10�156), domestic

sounds (t-stat¼ 35.9, p � 10�105), and natural sounds (t-stat
¼ 31.7, p � 10�93)]. The class-specific random baseline

varies as it reflects the differences in number of occurrences

across classes.

A one-way analysis of variance (ANOVA) on inter-

subject agreement shows a statistical significant difference in

distribution means across the six classes (p � 10�30).

Looking closely at the shape of the agreement distributions

themselves reveals consistent trends across classes, captured

by higher moments of the distributions. Second, third, and

fourth moments corresponding to the variance, skewness, and

kurtosis of the agreement of subject responses across trials are
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obtained using a bootstrapping procedure [Fig. 2(C), bottom].

Examining the second moment shows a gradual increase in

variance suggesting a smaller spread of response variability

across subjects for sounds, such as alarm, speech, and wider

spread for natural or domestic sounds (linear regression fit,

adjusted R2 ¼ 0:28;F ¼ 1180; p � 10�217). The third

moment reveals higher positive skewness for natural or

domestic sounds, indicating lower across-subject agreement

relative to alarm or speech sounds (adjusted R2 ¼ 0:34;
F ¼ 1580; p � 10�217). The fourth moment again shows the

same linear trend, confirming a heavier tail, higher percentage

of outlier subject responses, for natural or domestic sounds

relative to alarm or speech sounds (adjusted R2 ¼ 0:12;
F ¼ 400; p � 10�83).

C. Changes in salience judgments follow the identical
perceptual ordering of sound classes

Subjects’ salience judgments reflect the degree to which

sound events stand out and attract attention within a scene.

Figure 2(D) shows a significant increase in salience relative

to a baseline salience (defined away from onsets of any

identifiable sound events) near onset of sound events (defined

by the strong labels provided in the AudioSet database). As

shown by bootstrapping, the salience slope is systematically

positive and varies across sound classes [alarm¼ 0.0673

(0.0610, 0.0709); speech¼ 0.0399 (0.0375, 0.0457); animal-

¼ 0.0328 (0.0160, 0.0372); music¼ 0.0168 (0.0134, 0.0246);

domestic sounds¼ 0.0067 (0.0004, 0.0111); natural

sounds¼ 0.0171 (0.0069, 0.0217), where each number repre-

sents the mean slope value (5% percentile, 95% percentile)].

For sound classes, such as alarm and speech sounds with

higher positive slope values, it indicates that attention is

drawn more rapidly because of them. As comparison, the

baseline salience away from event onsets has a flat slope of

�0.0071 (�0.0223, 0.0088). Comparing the slopes across

the six sound classes reveals a linearly decreasing trend

following the same perceptual ordering of sound classes

as mentioned in Secs. III A and III B sections (linear regres-

sion fit, adjusted R2 ¼ 0:77;F ¼ 1953; p � 10�190). Gender

analysis with the same ordering of sound classes reveals sta-

tistical significance for both males and females (male,

adjusted R2 ¼ 0:29;F ¼ 252; p � 10�47; female, adjusted

R2 ¼ 0:31;F ¼ 266; p � 10�50).

FIG. 2. (A) Left: Importance score distributions and KDE fits grouped by sound class. Right: Labeling score distributions and KDE fits grouped by sound class.

(B) Left: Hierarchical clustering dendrogram based on the importance scores. Right: Hierarchical clustering dendrogram based on the labeling scores. (C) Top:

Normalized Hamming distance distribution comparing subjects’ responses with class-specific and fixed noise floor sequences. Bottom: Bootstrapped results of

the variance, skewness, and kurtosis of response consistency, arranged by sound class following the same order as on the top. (D) Left: Salience mean curves

with bootstrapping (Black dashed lines represent edges of the 95% confidence interval.). Right: Bootstrapped slope mean values arranged by sound class follow-

ing the same order as on the left. (E) Left: Pupil dilation mean curves with bootstrapping (black dashed lines represent edges of the 95% confidence interval.)

Right: Bootstrapped growth rate mean values from bootstrapping arranged by sound class following the same order as on the left.
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D. Pupillometry curve growth rate at sound class
onsets displays similar sound-class–specific
behavior

Sound-class–dependent behavior is also observed when

pupillometry curves are time aligned at the sound event

onsets. The pupillometry mean curves and logistic function

curve fits are shown in Fig. 2(E) and reveal a steeper

increase in growth rate for certain sounds, such as the alarm

and speech [alarm¼ 0.0232 (0.0194, 0.0279); speech-

¼ 0.0103 (0.0098, 0.0107); animal¼ 0.0087 (0.0082,

0.0092); music¼ 0.0042 (0.0036, 0.0048); domestic

sounds¼ 0.0057 (0.0053, 0.0061); natural sounds¼ 0.0051

(0.0046, 0.0056), where each number represents the growth

rate mean (5% percentile, 95% percentile)]. Similar to

behavior salience, this indicates that alarm and speech

sounds cause more rapid pupil dilation. In comparison, the

baseline pupillometry curve away from event onsets is

nearly flat and does not approximate or fit well with a logis-

tic function. The right panel shows the growth rate mean

obtained through bootstrapping (linear regression fit,

adjusted R2 ¼ 0:65;F ¼ 1123; p � 10�139). Similar to

salience judgments, pupillometry provides biomarker evi-

dence of a graded response to different sound classes.

However, males or females pupillometry data alone do not

show significance for the particular ordering of sound clas-

ses (male, adjusted R2 ¼ 0:004;F ¼ 3:20; p ¼ 0:07; female,

adjusted R2 ¼ �0:001;F ¼ 0:15; p ¼ 0:70). By inspection,

multiple outlier growth rate values lead to the test results,

which is likely caused by the missing pupillometry data and

limited number of subjects.

E. Perceptual importance is strongly correlated with
reaction time

During the ranking process of the event identification

trials, subjects’ button response is also biased by the identi-

ties of the specific sound classes. A one-way ANOVA test

shows that there is significant difference (p ¼ 0:006) among

the reaction time mean of the six sound classes. Specifically,

from the longest to the shortest button press time mean, we

have domestic sounds f4.62 s [standard deviation (std)¼
2.03]g, followed by natural sounds [4.58 (std¼ 1.89) sec],

alarm [3.98 (std¼ 2.22) sec], speech [3.65 (std¼ 1.33) sec],

animal [3.46 (std¼ 1.31) sec], and music [3.18 (std¼ 1.09)

sec]. Further analysis with a post hoc Tukey’s honestly sig-

nificant difference (HSD) test confirms that only two pairs

of the sound classes possess significantly different reaction

time mean: music/domestic sounds (p ¼ 0:047) and music/

natural sounds (p ¼ 0:014). The rest of the sound classes

have statistically similar reaction time mean among

themselves.

Furthermore, a correlation analysis comparing button

response time and importance scores shows a negative corre-

lation across sound classes (r ¼ �0:59; p � 10�14). The

correlation remains significant when considering male and

female subjects separately (male, r ¼ �0:23; p ¼ 0:007;
female, r ¼ �0:40; p � 10�7). The observation implies that

it takes the subjects a longer time to press a button when a

sound event is deemed less important in a given trial. This is

illustrated in Fig. 3(A) (left). A separate verification with tail

samples removed (importance score< 0.05) again confirms

a significant correlation (r ¼ �0:62; p � 10�12). In addi-

tion, examining the correlation value per sound class

shows that all sound classes exhibit similar significant corre-

lation statistics. [alarm (r ¼ �0:73; p ¼ 0:03), speech

(r ¼ �0:68; p � 10�6), animal (r ¼ �0:68; p � 10�4),

music (r ¼ �0:66; p � 10�4), domestic sounds (r ¼ �0:52;
p ¼ 0:05), and natural sounds (r ¼ �0:55; p ¼ 0:003)].

The relationship between response time and importance

score does not address whether there is a relationship

between the sound class selected first and its subsequent

highest ranking. Alternatively, it is possible that sound clas-

ses are identified later but still assigned a high ranking.

Analyzing the sound class first selected and the one ranked

highest by each participant in each trial reveals that, on

average, 89% of the cases, subjects opt for a sound class

first if they rank it on top of the others. Similar high

ratios are observed across all sound classes (alarm¼ 92%,

speech¼ 91%, animal¼ 87%, music¼ 92%, domestic

sounds¼ 84%, and natural sounds¼ 88%).

F. Duration correlates positively with how important
subjects perceive a sound class

One of the open questions is whether event duration or

position influences importance scores reported by listeners.

Using strong labels derived from the original DCASE data-

set, we explore the correlation between the importance score

and these properties. Overall, sound duration reveals a sta-

tistically significant correlation (r ¼ 0:37; p ¼ 0:0004). The
relationship is verified with tail samples removed (sound

duration> 9 s) (r ¼ 0:45; p ¼ 0:0001). The correlation

remains significant when considering genders separately

(male, r ¼ 0:28; p ¼ 0:007; female, r ¼ 0:42; p � 10�5). In

contrast, the sound position does not show any correlation

with importance scores [Figs. 3(B) and 3(C)]. This is

assessed by considering the position of the first occurrence

of a sound class (r ¼ �0:07; p ¼ 0:50) or the last occur-

rence (r ¼ 0:16; p ¼ 0:14). Gender analysis again shows

agreeing results both considering the first occurrence (male,

r ¼ �0:01; p ¼ 0:93; female, r ¼ �0:17; p ¼ 0:11) and the

last occurrence (male, r ¼ 0:19; p ¼ 0:07; female,

r ¼ �0:06; p ¼ 0:61).

G. Discrepancy between strong labels and human
subject labels exists only for few trials

While a portion of this study relies on the belief that the

strong label annotations available from the public AudioSet

database are reliable and accurate, validation is needed. The

subject responses and corresponding importance scores are

compared against the strong labels in order to quantify their

inconsistency—defined as the discrepancy score. In this

context, a trial’s discrepancy score is computed as the cumu-

lative sum of the importance scores for sound classes
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reported by more than half of the subjects (importance score

> 10�5) but are omitted from the strong labels. As depicted

in Fig. 4, among the 50 trials, only five surpass a discrep-

ancy score of 0.5. Among these five trials, the music sound

class emerges as the primary contributor to the observed

disparities.

Moreover, upon examining the ratio of events reported

by subjects but are absent in strong labels, natural sounds

(38.5%), music (33.3%), and animal (15.0%) sound classes

are the only ones among the six sound classes that show

non-zero percentages of discrepancy occurrences. Given

that discrepancy is limited to only few classes and few trials

(� 24%), we reason that strong labels are reliable for any

follow-up analyses.

H. Acoustic profiles of individual sound classes do
not reflect statistical bias that drives perceptual
importance

While the analysis reported here suggests the existence

of perceptual discrimination towards sound classes and their

prominence, it leaves open the possibility that effects are

driven by acoustic properties of sound events in addition/or

in lieu of their semantic labels. To explore both possibilities,

a within and across-group correlation is explored. This anal-

ysis is repeated for both the experimental stimuli and the

MAESTRO dataset where correlation analyses between

acoustic profiles and perceptual importance/soft labels are

examined. Within and across-class analysis with samples

spanning of all sound events reveal no significant correlation

between perceptual importance and any of the acoustic attri-

bute (Kendall’s tau with permutation test, p > 0:05).

IV. DISCUSSION

In this article, we explore how human auditory percep-

tion is shaped by sound event identity in complex, naturalis-

tic acoustic scenes. The study introduces an importance

scoring framework that quantifies listeners’ subjective judg-

ments about which sound events are most perceptually

prominent. These scores are analyzed alongside auditory

salience estimates, pupillometry data, and cross-validation

using the MAESTRO dataset. Together, these measures

reveal systematic biases in how listeners prioritize sound

categories, providing new insights into the cognitive and

perceptual structure of auditory scene analysis.

Clear patterns emerge in how sound classes are treated

perceptually. Alarms and speech sounds tend to receive

higher importance scores, with distributions that are heavy-

tailed toward high ranking [Fig. 2(A)]. In contrast, domestic

and natural sounds are more often ranked low in importance,

FIG. 3. (A) Left: Button response time

plotted against the importance scores

across all trials and sound classes.

Right: The ratio of the number of times

a sound class is ranked top against the

number of times a sound class is

selected first. (B) Sound durations plot-

ted against the importance scores

across all trials and sound classes. (C)

Left: Sound positions of the first sound

events plotted against the importance

scores across all trials and sound clas-

ses. Right: Sound positions of the last

sound events plotted against the impor-

tance scores across all trials and sound

classes.

FIG. 4. Discrepancy score breakdown by trial and sound class.
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with unimodal distributions skewed toward zero. Music and

animal sounds show intermediate profiles indicating

context-dependent variability. These trends are echoed in

the MAESTRO dataset, which uses a different annotation

approach but yields consistent category-level differences.

Hierarchical clustering of these distributions reveals the

same optimal grouping across both datasets [Fig. 2(B)].

An interesting observation arises for the music class,

which yields a notable bimodal distribution, likely reflecting

its unique functional ambiguity within everyday auditory

environments. Unlike alarm or speech sounds, which are typi-

cally associated with clear behavioral affordances (e.g.,

action, comprehension, or response), music serves a wide

range of purposes from focal entertainment to passive ambi-

ance; and listeners adjust their perceptual engagement accord-

ingly. In many environments, music is deliberately relegated

to the background to facilitate other tasks—for example, in

retail stores, waiting rooms, or elevators. In such contexts, lis-

teners implicitly treat music as a non-informative, non-urgent

auditory stream that helps shape mood or reduce perceived

silence, but not one that requires immediate cognitive resour-

ces. This is supported by studies showing that background

music is often semantically “deprioritized” and easily filtered

out unless it is disruptive or unusually salient (K€ampfe et al.,
2011). Music can be effectively ignored under dual-task con-

ditions or when listeners focus on more goal-relevant stimuli

(Dalton and Fraenkel, 2012). This capacity to fade into the

perceptual background may be partly due to its predictable

structure, which allows the auditory system to allocate mini-

mal attention for tracking it (Kidd et al., 2005). On the other

hand, music can function as a central feature of a scene—

especially when it carries intentional communicative, social,

or emotional content. For example, in a concert hall, film

soundtrack, or ritual setting, music is not only salient but

expected to be meaningful and affectively rich.

Neuroscientific studies show that music under these condi-

tions engages specialized networks including auditory, motor,

and limbic regions, and may even synchronize across listeners

at the neural level (Zatorre et al., 2007; Koelsch, 2014).

Furthermore, musical expectancy and familiarity can modu-

late how prominently music is perceived in complex scenes

(Tillmann, 2012). Thus, the bimodal nature of importance

scores in our data reflects this functional duality of music

sounds.

Effects of privileged treatment, or biased responses,

toward some sound classes are also evident in the consistency

of listener judgments. Alarm and speech sounds elicit highly

consistent responses across participants, with low variance

and narrower distributions. In contrast, domestic and natural

sounds show more variable and less predictable response pat-

terns, with distributions that are skewed and heavy-tailed.

Music and animal sounds again fall between these extremes,

consistent with their flexible contextual roles in auditory

scenes. These findings suggest that sound identity plays a

central role in structuring perceptual judgments.

Crucially, these patterns cannot be explained solely by

recognizability. While recognizing a sound is likely a

prerequisite for judging its importance, our findings go

beyond this baseline. First, our analysis focuses not only on

whether a sound is reported, but on the order in which it is

reported at the end of each trial. If recognition alone gov-

erned reporting behavior, one might expect variability in

order or recency-based effects. Instead, we observe consis-

tent response rankings across participants, with specific cat-

egories, such as speech and alarm sounds, systematically

prioritized. This suggests that listeners do more than simply

recognize events; they rank them according to perceived rel-

evance. Second, we validate these findings using an inde-

pendent dataset (MAESTRO) featuring a different stimulus

set and real-time annotation methodology, which yields con-

vergent category-level effects. Third, participant responses

align closely with strong labels from the AudioSet corpus,

indicating that the majority of sound events were correctly

identified. These results argue against a recognizability-

based account and support the view that importance judg-

ments reflect structured perceptual biases linked to event

identity and salience, rather than mere identification

success.

Pupillometry data provide physiological support for this

interpretation. Sound categories, such as speech and alarm

sounds, in contrast to natural and domestic sounds, elicit ear-

lier and larger pupil dilations; a known marker of increased

cognitive effort and attentional engagement. Prior work has

shown that pupil size tracks listening effort, task difficulty,

and emotional shifts (Bradley et al., 2008; Kahneman and

Beatty, 1966; Liao et al., 2016; Porter et al., 2007). These
responses, while involuntary, align well with the category-

level patterns observed in importance and salience ratings,

suggesting that certain sound types engage greater mental

resources even in passive or non-instructed contexts.

Additional findings link importance to behavioral dynam-

ics. Reaction times correlate with importance ratings: highly

ranked sounds tend to be reported earlier. This mirrors sen-

sory prioritization in other modalities, such as rapid visual

saccades toward faces (Crouzet et al., 2010) or fast olfactory
responses to biologically relevant odors (Boesveldt et al.,
2010). Our data also show that sound duration plays a role:

longer events, regardless of when they occur, are more likely

to be judged important. This aligns with prior research sug-

gesting that temporally persistent sounds are more easily seg-

regated from the background and integrated into scene

perception (Bregman, 1990; Seifritz et al., 2002).
Taken together, these findings suggest that listeners

implicitly rank sound events based on both their acoustic

prominence and their semantic or communicative relevance.

This pattern points toward an emergent perceptual structure

that may help explain how complex scenes are parsed and

understood.

We propose that this structure can be conceptualized as

a perceptual continuum—one that reflects the degree to

which a sound category conveys communicative or behav-

iorally relevant information. At one end of this continuum

are sounds, such as alarms and speech, which are consis-

tently prioritized, elicit stronger physiological responses,
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and are reported with high consistency. At the other end are

domestic and natural sounds, which are less often selected

as prominent and show more variable responses. Music and

animal sounds occupy an intermediate space. This gradient

of perceived importance suggests an emergent division

between perceptually foregrounded and backgrounded

sounds—not imposed by the task, but revealed through con-

sistent listener behavior and cross-modal markers.

This foreground/background distinction becomes espe-

cially compelling when considering salience and pupillome-

try data. Sound categories that are consistently treated as

foreground are also those that attract more attention and

TABLE II. Detailed description of the auditory stimuli.

Stimulus ID Sound classes present (strong labels) Text description

1 Speech, animal, natural sounds, others A male and a female speaking while sailing

2 Speech, animal, others Animal quacking with a male speaking

3 Speech, animal Dog barking with a male speaking

4 Domestic sounds Electric shaver with background music

5 Natural sounds, others Boat sailing

6 Speech, animal A female speaking with cow mooing

7 Domestic sounds, natural sounds A person washing dishes

8 Music, others Dancing music in Spanish

9 Speech, alarm Male speaking and ringing a bell

10 Speech, domestic sounds Male speaking and using a blender

11 Speech, music Male speaking with background music

12 Speech, alarm Male speaking with a phone ringing

13 Speech, music, others Sports game broadcast

14 Animal, music Dog whining with background music

15 Music, others Male beatboxing

16 Alarm Distant alarm sound

17 Alarm, animal Dog whining to an alarm sound

18 Animal, speech Female speaking and a cat chirping

19 Animal, natural sounds Water flowing with distant dog barking

20 Animal Distant dog barking

21 Animal, speech Male speaking with dog barking

22 Speech, domestic sounds Male speaking and using a blender

23 Speech, domestic sounds Female speaking with pots clashing

24 Speech, domestic sounds Female speaking and using a blender

25 Speech, animal Female speaking with a cat meowing and a background music

26 Natural sounds Water flowing with a background music

27 Speech, music, others Music ending and a male speaking

28 Natural sounds Water flowing with birds chirping

29 Alarm School bell ringing

30 Alarm Distant alarm sound

31 Speech, domestic sounds Electric shaver and a male speaking

32 Speech, alarm Male speaking and a doorbell ringing

33 Speech, animal Female speaking and a cat meowing

34 Animal Dog barking

35 Speech, music, animal, others A movie trailer with dog barking, male narration, and background music

36 Speech, music, others Television (TV) show with male speaking and female singing

37 None Music playing with unknown animal chirping

38 Speech, domestic sounds Multiple people speaking with dishes clashing

39 Speech, Domestic Sounds Female speaking with pots, dishes clashing

40 Speech, Domestic Sounds Male speaking with dishes clashing

41 Music, others Female singing and guitar playing

42 Speech, animal Male speaking with birds cawing

43 Animal, natural sounds Dog barking with water dripping

44 Music Instrument playing with background music

45 Animal, music, others Bird chirping with background beats

46 Speech, natural sounds Water flowing and female speaking

47 Speech, animal, music Birds chirping with male speaking and background music

48 Speech, domestic sounds Food frying with male speaking and background music

49 Speech, animal Female speaking and dog barking

50 Speech, animal, others Female speaking with deer bleating
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cognitive resources. This finding aligns with prior studies

showing that attentional capture in audition depends on a

sound’s novelty, emotional content, and learned associations

(Parmentier et al., 2010; Bonmassar et al., 2020). Our

results extend this literature by demonstrating that identity-

driven foregrounding occurs even in rich, naturalistic scenes

and across multiple measurement modalities.

Despite these findings, key caveats and limitations must

be acknowledged. First, the sample size of the dataset curated

for this study is limited. A total of 500 s of experimental data

and 1500 s of crowd-sourced salience data are collected, com-

plemented by 14 992 s from MAESTRO. Scene durations are

brief (10 s), constrained by AudioSet labeling. This limits our

ability to assess long-term dynamics, such as habituation and

event-boundary effects. The use of six root categories from

the AudioSet ontology (Gemmeke et al., 2017) provides a

useful structure, but may mask contextual nuances—for

example, speech might be expected in a caf�e but intrusive in a
concert hall. Our current framework captures broad trends,

while future work could explore more context-sensitive and

fine-grained classifications.

Nonetheless, the convergence of behavioral, physiologi-

cal, and computational evidence presented here supports a

strong conclusion: sound identity plays a decisive role in

how auditory scenes are parsed and prioritized. The pro-

posed importance score offers a novel tool for quantifying

perceptual prominence in contextually rich environments.

Combined with salience models and pupillometry, it reveals

a structured continuum of perceptual weighting that helps

explain how listeners navigate complex auditory scenes.

These findings highlight the interplay of top-down expecta-

tions and bottom-up acoustic attributes in real-world listen-

ing and open new avenues for modeling attention and

importance in multi-source auditory environments.
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APPENDIX

Among the fifty, 10 s stimuli used in the event identifi-

cation experiment, 14 of them contain sounds other than the

six sound classes [total duration¼ 108 s, duration mean

(std)¼ 7.7 (2.8) s]. The variability among the six sound clas-

ses is as listed: alarm [contained in seven stimuli, total

duration¼ 43 s, duration mean (std)¼ 6.2 (3.2) s], speech

[contained in 30 stimuli, total duration¼ 111 s, duration

mean (std)¼ 3.7 (2.4) s], animal [contained in 20 stimuli,

total duration¼ 72 s, duration mean (std)¼ 3.6 (2.8) s],

music [contained in 12 stimuli, total duration¼ 93 s, dura-

tion mean (std)¼ 7.8 (3.3) s], domestic sounds [contained in

11 stimuli, total duration¼ 51 s, duration mean (std)¼ 4.6

(3.1) s], natural sounds [contained in eight stimuli, total

duration¼ 68 s, duration mean (std)¼ 8.5 (2.9) s].

Table II is a detailed description of the 10 s auditory

stimuli used in the event identification experiment.
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