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ABSTRACT:
Salience is the quality of a sensory signal that attracts involuntary attention in humans. While it primarily reflects

conspicuous physical attributes of a scene, our understanding of processes underlying what makes a certain object or

event salient remains limited. In the vision literature, experimental results, theoretical accounts, and large amounts

of eye-tracking data using rich stimuli have shed light on some of the underpinnings of visual salience in the brain.

In contrast, studies of auditory salience have lagged behind due to limitations in both experimental designs and stim-

ulus datasets used to probe the question of salience in complex everyday soundscapes. In this work, we deploy an

online platform to study salience using a dichotic listening paradigm with natural auditory stimuli. The study vali-

dates crowd-sourcing as a reliable platform to collect behavioral responses to auditory salience by comparing experi-

mental outcomes to findings acquired in a controlled laboratory setting. A model-based analysis demonstrates the

benefits of extending behavioral measures of salience to broader selection of auditory scenes and larger pools of sub-

jects. Overall, this effort extends our current knowledge of auditory salience in everyday soundscapes and highlights

the limitations of low-level acoustic attributes in capturing the richness of natural soundscapes.
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I. INTRODUCTION

In everyday life, a multitude of information-bearing

sources impinges on our senses that it is almost impossible

to process all the information at once with the same resolu-

tion. Attention plays a vital role in focusing perceptual and

cognitive resources in navigating the real-world (Driver,

2001). Attention can be employed voluntarily to perform a

task efficiently, such as paying attention to a particular indi-

vidual at a cocktail party (Cherry, 1953). This is an example

of top-down attention, where a listener’s goal orients her

perceptual and cognitive resources to facilitate listening to

the desired signal amidst other distractors (Baluch and Itti,

2011). In contrast, a source or stimulus can also capture our

attention because of its inherent properties, known as

salience; for instance, the sound of glass shattering, if some-

one drops a glass at the same party, would be a salient sound

that attracts our attention regardless of our state of cognitive

control or attentional focus. Salience presents itself in vari-

ous perceptual modalities; a flashing traffic sign on the road

(visual), a brewing smell of coffee (olfaction), and the ear-

lier example of glass breaking (auditory) are all salient but

in different ways. Understanding salience mechanisms pro-

vide insights not only into perceptual and cognitive systems

in the brain but also guides the development of technologies

that can more efficiently process information in real-life

scenarios.

The literature on sensory salience has varied greatly,

particularly in terms of appropriate experimental paradigms

best suited to shed light on underlying physical, neural, and

perceptual underpinnings of salience encoding in the brain.

In visual salience studies, gaze-tracking paradigms have

become a standard approach to track the eye movements of

a subject when presented with a static image or video in free

viewing tasks. In the absence of any task demands, the ten-

dency to fixate gaze on specific locations is guided by image

features which inform of salience attributes of both low-

level and high-level visual information in the image (Bruce

and Tsotsos, 2009; Judd et al., 2009; Zhao and Koch, 2013).

In contrast, in the auditory domain, there is no established

framework to study salience (Kaya and Elhilali, 2017).

Some experimental schemes examine auditory salience as

the ability of the stimulus to pop-out while the subject is

actively engaged in the task (Kaya et al., 2020; Southwell

et al., 2017), whereas others use attention tracking mecha-

nisms to measure salience continuously while subjects are

attending to the stimuli (Huang and Elhilali, 2017; Zhao

et al., 2019b). In addition, distractor paradigms are consid-

ered in some studies to probe attentional deployment in the

presence of distracting salient events (Petsas et al., 2016;

Southwell et al., 2017; Vachon et al., 2017); alternatively,

detection tasks collect feedback from subjects about their

judgments of event salience or relative salience after a
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stimulus is presented (Kaya and Elhilali, 2014; Kayser et al.,
2005). Ultimately, these tasks yield different outcomes in terms

of discrete versus continuous measures of salience over the

course of an entire acoustic signal. They also probe various

aspects related to auditory salience as it pertains to either the

encoding of specific events or entire scenes or its effect on

attentional deployment and perceptual or cognitive load neces-

sary to perform the specific task at hand. Given that sounds

unfold over time, it is advantageous to obtain a continuous tem-

poral measure of salience as humans interact with complex

soundscapes with dynamic attentional guidance based on the

attributes of the sound events in the scene.

In addition, measures of salience are heavily informed

and sometimes biased towards the choice of stimuli used in

the experiments. Early visual salience studies used abstract

shapes such as lines and polygons to identify effects of simi-

larity and differences in simple attributes like colors and

shapes (Treisman and Gelade, 1980). Salience models

developed based on these simplified stimuli often failed to

generalize to complex natural scenes (Itti and Koch, 2000;

Judd et al., 2009). In recent years, visual salience has been

more commonly explored using complex natural scenes

such as faces (Ramanathan et al., 2010), natural images

(Judd et al., 2009), and images with rich contextual informa-

tion (Jiang et al., 2015); hence resulting in richer and more

generalizable models and theories of visual salience. In the

auditory domain, synthetic or simulated data such as sequen-

ces of tones (Duangudom and Anderson, 2013) or odd-ball

musical sequences (Kaya and Elhilali, 2014) were used to

identify salience effects along known auditory attributes,

such as loudness, pitch, and timbre. Similarly, natural audi-

tory stimuli present more complexity when compared to

simulated data and require a higher level of control on the

biases introduced by familiarity, semantic information, as

well as sound context. Moreover, natural stimuli present an

additional challenge in terms of large variations or configu-

rations in which certain aspects of the scene can be pre-

sented. To eliminate some of these confounding factors

when probing general effects of auditory salience, it is

important to explore a large variety of natural scenes.

The experimental design and complexity of incorporat-

ing richer stimuli also raise challenges with regard to the

number of subjects and variability arising from pool selec-

tion (de Haas et al., 2019). Conventionally, salience experi-

ments are conducted in laboratory settings, which offer

control over the testing conditions and the quality of the

subject responses. However, laboratory experiments are

time-consuming and often lack subject diversity due to limi-

tations on both subject pool and size, which can bias the

study findings. In recent years, online platforms have

emerged as a medium for large-scale data collection, allow-

ing data acquisition and curation to grow in orders of magni-

tude [e.g., 14� 106 annotated images in ImageNet (Deng

et al., 2009), 5.8 thousand hours of audio in AudioSet

(Gemmeke et al., 2017)]. Crowd-sourcing has also been lev-

eraged more recently in several behavioral and psychophysi-

cal studies to not only overcome challenges with performing

such tests in the laboratory, but also to broaden access to a

larger pool of volunteers and cover more diversity in age,

race, and gender (Buhrmester et al., 2011; Buhrmester et al.,
2018). Nonetheless, relinquishing control and rigor of an

experimental setup in the lab under the scrutiny of the

researcher comes at the cost of questionable quality and

interpretability of the crowd-sourced results. Despite the

skepticism regarding online data collection, visual salience

studies have embraced crowd-sourcing as the defacto plat-

form for large-scale data collection over the years. In visual

salience studies, eye-tracking and visual search paradigms

are prevalent paradigms. While visual search paradigms

measure salience as an attribute of a target object in the

image, eye-tracking-based paradigms employ free-viewing
(Borji et al., 2013; Zhao and Koch, 2013) and track eye-

movement while the subject processes the image. Eye-

tracking paradigms provide a salience map of each image

and can be used to study natural images. Crowd-sourcing

has been extensively used to collect eye-tracking data by

using the web camera (webcam) at the side of the subject

(Huang et al., 2019; Kim et al., 2015; Xu et al., 2015) or

mouse-contingent paradigms (Gomez et al., 2017;

Lyudvichenko and Vatolin, 2019; Newman et al., 2020),

which emulate human visual exploration by tracking

the mouse movement. Several studies have compared

eye-tracking data on datasets collected in laboratory envi-

ronments with crowd-sourced data and reported that crowd-

sourced data match closely with traditional data collection

paradigms (Jiang et al., 2015; Rudoy et al., 2012). This con-

sistency has led to the deployment of crowd-sourcing for

large-scale salience data collection. SALICON (Jiang et al.,
2015) is an eye-tracking dataset collected using a mouse-

contingent paradigm for 10 000 images and is presently the

largest salience dataset. Several deep learning models have

been successfully trained on this dataset (Borji, 2021;

Cornia et al., 2018; Kruthiventi et al., 2017). By establish-

ing crowd-sourcing as a reliable framework for data collec-

tion, visual salience datasets have not only exponentially

grown in size, but also opened new avenues to developing

improved models for various downstream tasks including

objective video quality assessment (Le Meur et al., 2007)

and region of interest (ROI) identification in video (Rai

et al., 2016).

In comparison, scaling up auditory salience datasets

remains in its infancy. A recent salience study adopted

crowd-sourcing for salience judgment tasks (Zhao et al.,
2019a) and showed a strong agreement between the labora-

tory data and the crowd-sourced data. Still, several hurdles

remain in terms of scaling up the study of auditory salience,

both in terms of scope, size, and diversity of stimuli, as well

as the choice of paradigms that—at the very least—yield

temporal salience maps that can be leveraged to tie in multi-

scale representations of natural sounds (from low-level

acoustics to high-level semantics). It is therefore important

to scale studies of auditory salience to not only broaden the

scope and diversity of stimuli but also examine effects

across larger pools of subjects.
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The present study aims to provide insight into adopting

crowd-sourcing as the primary experimental platform for

auditory salience experiments. For this purpose, we adopt

the dichotic listening task used in an earlier study (Huang

and Elhilali, 2017) for a web-based crowd-sourcing plat-

form. The study sets out three main goals. First, it evaluates

the use of a crowd-sourcing platform to yield high-quality

salience measures using a dichotic listening paradigm.

Salience data collected in the laboratory in the previous study

[JHU-DNSS (Dichotic Natural Salience Soundscapes)] is

compared with data collected using the popular crowd-

sourcing platform Amazon Mechanical Turk (MTurk). To

establish consistency, a cross-platform comparison is per-

formed on responses from the two settings, as well as

salience models derived from the two platforms. Second, it

extends the selection of stimuli used previously (JHU-

DNSS) to encompass a wider collection of event types and

environments; particularly focusing on acoustically dense

scenes that cause more challenges of interpretability and

predictability for salience models. Third, it evaluates salience

responses derived from a larger and diverse pool of subjects

using data-driven salience models. The effect of larger

subject size on training and evaluating salience models

is assessed. Ultimately, the study aims to expand the

frontiers of auditory salience using larger datasets of com-

plex sounds.

II. METHODS

A. Behavioral procedure

Experimental setup: Behavioral data from an online

platform were collected using Amazon Mechanical Turk

(MTurk). The experiment was conducted using a web server

hosted on Amazon Web Services (AWS), and the interface

with AWS was enabled by the psiTurk framework

(Gureckis et al., 2016), which uploaded the experiment as

an MTurk Human Intelligence Task (HIT). Once the task

was posted, subjects were able to find the HIT, complete the

task, and receive payment without further interaction with

the experimenter. The experiment presentation was imple-

mented using the jsPsych library (de Leeuw, 2015). Crowd-

sourced participants were instructed to use headphones for

the task. Subjects were instructed to adjust the volume to a

comfortable level before beginning the experiment. A train-

ing phase was conducted to familiarize subjects with the

interface, check if the orientation of the headphones was

correct, and confirm that dichotic listening was achieved.

An optional break of 30 s was provided between trials. This

crowd-sourced data (referred to as crowd) was compared

against data previously collected in a booth in a laboratory

setting (referred to as booth), with subjects seated in a

soundproof booth and audio presented over Sennheiser

HD595 headphones, under close supervision by an experi-

menter (Huang and Elhilali, 2017).

Auditory stimuli: In total, 56 audio recordings of natural

scenes with a total duration of 112 min were used as stimuli

for behavioral data collection. These scenes included 16

scenes from the JHU-DNSS database previously used to col-

lect booth data. An additional 40 scenes (DNSS-Ext) were

selected to extend the DNSS dataset, both to a larger size

and greater variety of scenes. Scenes were chosen specifi-

cally to include more events of underrepresented classes in

the original database (e.g., animal sounds and non-speech

human vocalizations). In addition, scenes were chosen to

include mostly acoustically dense scenes, i.e., scenes with

continuous presence of one or more overlapping auditory

objects and fewer quieter moments. Those scenes were

found to have events that were difficult to predict from

acoustic models (Huang and Elhilali, 2017). All the 40 new

scenes were exactly two minutes in length and were taken

from the Freesound audio library (Freesound, 2021). All

auditory stimuli were sampled or resampled at 22 kHz with

32 bits per sample. Any stereo recordings were converted to

mono by taking the average of the two channels.

For data collection purposes, auditory stimuli were

divided into three blocks with 16 scenes from the original

study as one block (DNSS) and two subsets of 20 scenes

from the DNSS-Ext stimuli as two separate blocks. Table I

summarizes the scene breakup for DNSS and DNSS-Ext

blocks. More detailed description of the scenes is provided

in the Appendix. Scenes were subjectively labeled by the

experimenter as dense if there were one or more object pre-

sent throughout the scene and as sparse if there are multiple

segments of the audio without any acoustic energy.

Behavioral paradigm: Following the same procedure

adopted to collect booth data [see Huang and Elhilali

(2017)], online participants were presented with two audi-

tory scenes dichotically. Subjects listened concurrently to

both scenes, one delivered to each ear, and indicated their

attentional focus continuously by positioning their cursor on

the screen. They were instructed to move their cursor to the

right side of the screen when the scene played in the right

ear grabbed their attention, and vice versa when attending to

the scene in their left ear. When attending to both scenes or

neither of them, subjects were instructed to keep their cursor

in the center of the screen. Participants were instructed to

move the cursor as soon as they noticed that their attention

had shifted, and vertical lines divided the screens into sec-

tions to delineate the three response areas (left, right, and

middle).

Each scene was paired with different opposing scenes

across subjects and trials, and the responses from all the tri-

als were averaged to get the mean salience measure of the

scene over time across subjects and opposing scenes

(Fig. 1). Each experiment consisted of 10 trials, during

which two scenes from a block of scenes were chosen ran-

domly without replacement which ensured that a subject

TABLE I. Description and grouping of the scenes used in the study.

Set # Blocks # Scenes Duration # Dense

DNSS 1 16 1.13–2.22 10

DNSS-Ext 2 40 2.00 40
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listens to each scene only once. Experiments were designed

such that each scene is paired on average with 18 different

scenes, and a specific pair of scenes repeated once in every

18 subjects on average. This procedure aligns with the pro-

cedure used for booth data. Subjects spent 30 min of experi-

mental time on average excluding the breaks in both

laboratory and crowd-sourced settings.

Participants: In this study, a total of 275 subjects (154

male, 110 female, 11 non-binary/unspecified) with average

age of 36.4 years (standard deviation¼ 12.8 years) were

recruited as part of crowd data. Subjects were asked to report

the languages they speak, their dominant hand, and whether

they have normal hearing. Subjects were compensated for the

task after data collection following a study protocol approved

by the Johns Hopkins Institutional Review Board (IRB).

Subjects for data collection in the sound-booth were

recruited on the university campus. Booth data consisted of

responses from 50 subjects (16 male, 34 female) with average

age of 21.8 years (std dev¼ 3.8 years). Subject populations in

booth were significantly younger and comprised of higher

percentage of female participants when compared to crowd.

B. Behavioral data analysis

Data quality control: Subject responses in both crowd
and booth data were analyzed based on the speed of cursor

movement or switching rate across the three positions in the

screen (left, right, middle). The average rate of attentional

switches (a shift of attention from one scene to the other)

was used as a criterion to flag trials with outlier behavior.

Trials with disproportionately large (above 1/s) or small

(0.025/s) switches were considered outliers and removed

from further analysis. Subjects with more than half of the

trials flagged as anomalous were identified as outlier sub-

jects and were excluded from further data analysis.

Defining salient events: A continuous salience measure

was defined as the fraction of subjects listening to a given

scene at any given time, averaged across many subjects and

competing scenes, as shown in Fig. 1, bottom middle panel.

For each scene in a trial, subject responses were mapped to

1 for subjects listening to the scene and 0 for subjects listen-

ing to the opposite scene or neither scenes nor both scenes

(quantitatively and qualitatively similar results were

obtained if responses to the center of the screen and opposite

scene were differentiated). An average response curve called

average behavioral salience was obtained by taking the aver-

age of subject responses for each scene.

Onsets of salient events were defined as peaks in the

slope of the average behavioral salience curve. These events

were moments in the scenes when a large number of sub-

jects began attending to that particular scene, regardless of

the contents of any opposing scene. To identify peak

FIG. 1. Salience measurement paradigm. Two scenes were dichotically presented, and subjects indicated continuously which scene they were attending to at

any given time. Three example trials are shown in the figure with the same scene (scene 4) being paired with different opposing scenes. The middle panel

shows responses for the example trials. Responses were averaged across subjects to achieve a salience measure called average behavioral salience as shown

in the bottom-most panel.
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locations, the salience curve for each scene was first

smoothed with three equally weighted moving average oper-

ations of duration 1.5 s. Then a peak-detection method was

applied to find timestamps of local maxima in the first-order

difference of the smoothed salience curve. A fixed duration

of 1 s was subtracted from the peak timestamps to obtain

salient event onsets. This adjustment was done to account

for subject reaction times. 1 s was found to be a typical time

difference between a peak in loudness change and the next

salient onset in both booth and crowd datasets [see Huang

and Elhilali (2017) for details].

The strength of each event was computed as a sum of

two factors: (1) height of the local maximum of the 1st order

derivative of salience, which measures temporal agreement

among subjects, and (2) maximum salience within 4 s after

the event scaled by 75th percentile of slopes, which reflects

absolute consensus irrespective of time. Events identified

using this procedure were sorted based on salience strength,

and the top 50% events were chosen as the final events. This

additional pruning was performed to remove small peaks

that can arise because of noise in behavioral responses.

Reaction times: Reaction times were computed for each

subject by comparing individual subject responses to the

onset of salient events (event onsets are defined as the time

when the “average subject” responded with 1 s subtracted

for nominal reaction time). A subject was considered to

have responded to a salient event if they moved towards the

particular scene between 0.5 and 1.5 s after the event onset.

The difference between the event timestamp and the time

when the individual subject moved the mouse towards the

scene was considered as the event reaction time.

Behavioral response consistency: A subset of the crowd
data (only matching DNSS stimuli) was compared to booth
data, to check for consistency across platforms on the same

stimuli using two metrics: correlation and subject-wise F-

scores. (1) Correlations were defined for individual scenes.

These were computed as sample Pearson correlation

between the average behavioral salience of matched scenes

from crowd and booth by assuming average behavioral

salience at different time-points as samples; then correlation

coefficients were averaged across scenes. (2) F-scores were

computed for individual subjects. Instances, when the sub-

ject moved towards a given scene, were identified as events

detected by that subject; reference salient events were

derived from the average behavioral salience of the remain-

ing subjects for that scene (following the procedure to derive

salient events described earlier). A detection analysis was

performed to evaluate the subject’s detected events against

reference events. Matched detections (within 1 s) were con-

sidered as hits. Reference events without a close-by detected

event (within 1 s) were considered false negatives, and

detected events without any close-by reference event were

considered false positives. F-score was computed as a har-

monic mean of precision and recall with appropriate flooring

(Mesaros et al., 2010). These two metrics were chosen

because they reflect different aspects of consistency across

platforms: The correlation metric indicated how well the

average behavioral salience profiles from booth and crowd
match; while subject-wise F-scores indicated how well a

subject agreed with the average behavioral salience around

salient moments in a scene and hence reflected a level of

uniformity in subjects’ responses in both platforms.

Effect of subject size: The number of online subjects

recruited for the study can affect variability in the data. The

interobserver agreement on events from crowd was evalu-

ated as a function of number of subjects. It quantified how

well subjects agreed with salient events derived from the

average behavioral salience of all the subjects in crowd
data. This analysis was performed on the DNSS scenes only

since these scenes were tested in both booth and crowd set-

tings. To evaluate interobserver agreement, scenes were

divided into segments of 1 s with 75% overlap, and each

segment was labeled 1 or 0 based on whether a salient event

was present in the segment or not, respectively. The percent-

age of subjects who switched their attention within each seg-

ment was used as the detection signal. Hits and false alarms

were computed with different threshold levels. The area

under the ROC curve (AUROC) (Fawcett, 2006) was com-

puted as a concise metric of detection performance. A simi-

lar analysis was performed on the booth data using the

entire booth subject pool and used as benchmark for the

crowd data. Along with the booth interobserver AUROC, a

chance-level benchmark was computed by shuffling the

dataset to form randomized datasets. For each scene,

responses from the crowd data were sampled without

replacement from the pool of responses from all subjects

and scenes. Interobserver agreement in terms of AUROC

was computed for the shuffled dataset by finding salient

events from the average behavioral salience computed from

the shuffled dataset and performing the detection analysis

from the individual responses as described above. This pro-

cedure was repeated 50 times each for various subsample

sizes. The AUROC values produced in this way indicated a

chance level interobserver agreement.

C. Acoustic analysis

Feature analysis: A set of eleven acoustic features that

capture a wide range of spectral, temporal, and spectro-

temporal attributes of auditory scenes were used to analyze

acoustic markers of auditory salience. All spectral features

were computed by first converting the audio waveform x(t) to

an auditory spectrogram y(t, f) using the biomimetic model of

Wang and Shamma (1994) using a frame rate of 125 Hz.

(1) Loudness (LD) was derived by taking the average of

envelopes computed on 28 bark frequency bands

(Zwicker et al., 1991) in the range [250 Hz, 12 kHz] with

critical bands matching mammalian auditory periphery.

(2) Pitch (P) was computed using the optimum processor

method (Goldstein, 1973), where each spectral slice

was matched with a set of pre-computed pitch tem-

plates and the fundamental frequency was determined

from the best template using maximum likelihood

estimation.
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(3) Harmonicity (H) was derived as a measure of the

degree of match between each spectral slice and the

matched pitch template.

(4) Brightness (BR), or spectral centroid, was computed as

the weighted average of frequencies with the power

spectrum at each time [yðt; f Þ2] as weights.

(5) Bandwidth (BW) was computed as an average of the

absolute difference between the spectral centroid and

frequencies, weighted by the magnitude spectrum.

(6) Irregularity (IR) measures jaggedness in the spectrum

and was computed as a sum of squares of the differ-

ence between consecutive spectral magnitudes divided

by the sum of squares of spectral magnitudes.

(7) Flatness (FL) was computed as a ratio of geometric

mean to the arithmetic mean of spectral magnitudes.

(8) Average slow temporal modulations (or low rates -LR)

were computed using the NSL toolbox (Chi et al.,
2005) by decomposing spectrogram y(t, f) into tempo-

ral modulations z(t, r) for r 2 ½1; 20�Hz, then averaging

the energy across modulation filter outputs.

(9) Average fast temporal modulations [or high rates

(HR)] were computed similarly as above, by averaging

energy in temporal filters r 2 ½20; 100�Hz. This aver-

age energy is commensurate with a measure of rough-

ness previously found to correlate with aversion to

auditory events (Arnal et al., 2019).

(10) Rate centroid (RC) was computed as the centroid of

temporal modulations over the range r 2 ½1; 32�Hz.

(11) Scale centroid (SC) was computed similarly to rate by

first decomposing the spectrogram y(t, f) into spectral

modulations w(t, s) for s 2 ½0:25; 8� cyc/oct and then

taking the centroid.

These features were chosen to span a wide range of

potentially relevant acoustic attributes, including many that

have been found to be predictors of salience in prior studies.

Temporal and spectral modulations were part of the auditory

salience map model by Kayser et al. (2005). Contrasts in loud-

ness and pitch were demonstrated to be salient by Kaya and

Elhilali (2014), and Tordini et al. (2015) found that less bright

sounds were more likely to be in the foreground. While the

remaining features were not studied in the context of auditory

salience prior to the original study, they were recognized to be

useful for various audio applications (Al�ıas et al., 2016).

All features were resampled to have a uniform sampling

time of 64 ms. They were normalized to have zero mean and

unit variance. To analyze the dependencies across these fea-

tures, Pearson correlations were computed for DNSS and

DNSS-Ext scenes for each pair of features. Changes in fea-

tures around events were analyzed to appraise the contribu-

tion of specific acoustic features in the event salience. The

change in an acoustic feature was computed as the differ-

ence between the average value of the feature in two 0.5 s

intervals: one starting at 0.5 s after event onset and one start-

ing 1 s before event onset.

Acoustic prediction of events: A model to predict salient

events was developed based on the acoustic analysis. The

model operates in a segment-wise manner where each scene

was first split into segments of 1 s with an overlap of 0.75 s,

and each segment was assigned a label 1 if an event was pre-

sent in the segment or 0 if no event was present in the seg-

ment. A change detection based approach was used on the

acoustic features for event prediction. For each feature,

peaks in the slope of the feature were assumed to be pre-

dicted events for the feature-derived salient events. Events

predicted across features were converted to segment-level

binary predictions and combined using the linear discrimi-

nant analysis (LDA) method (Fisher, 1935). The LDA

weights signified how individual acoustic features contrib-

uted to predictions of salience of the scene. Segment-level

salient event labels were used as class assignments, and

feature-based predictions were used as inputs to the LDA

procedure. LDA model parameters were trained and tested

with non-overlapping subsets of the data using 10-fold

cross-validation. During an evaluation with the held-out set,

LDA output was binarized with different thresholds and

compared with the labels to compute hits and false alarms at

each threshold level. Area under the receiver operating char-

acteristic curve (AUROC) was used as a summary statistic to

compare different LDA model performances. While the

detection methodology has similarities to sound event detec-

tion [e.g., DCASE 2017 (Mesaros et al., 2019)], the formula-

tion in this work predicts the onsets derived from behavioral

salience as opposed to just acoustics. This methodology was

adopted to highlight how the acoustic dimensions were driv-

ing the salience by using a data-driven approach.

Data augmentation: Two different sets of LDA models

were trained using booth and crowd data for DNSS scenes

and were evaluated with held-out sets from both the plat-

forms to examine the compatibility of LDA models from

one platform to the other. To understand the benefits of

larger data, additional models were trained using varying

amounts of added training data and again evaluated on held-

out sets. For this analysis, booth and crowd subject data for

matched DNSS scenes were combined. The total data were

randomly sampled 100 times for each training data size to

capture variations in the data.

III. RESULTS

A. Behavioral results

Analysis of behavioral responses across subjects compar-

ing booth and crowd data reveals slightly different patterns of

switching rate before any outlier analysis [Fig. 2(A) and 2(B)].

The median switching rate of booth (0.32 switches per second)

was found to be higher than crowd (0.17 switches per second)

[Wilcoxon rank-sum test (Wilcoxon, 1945), p¼ 2e� 61].

Trials with disproportionately large [Fig. 2(C), top] or small

[Fig. 2(C), middle] number of attentional switches were

excluded from further analysis. Within the crowd data,

roughly 6% of trials (upper 2 percentile, lower 4 percentile)

had either a high or a low rate of attentional switches. Overall,

12 of 275 subjects were identified as outlier subjects and all

the trials from these subjects were removed. Removing outlier

trials increased the median switching rate in crowd to
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0.19 switches per second. For booth data, no subjects were

considered as outliers as their switching patterns remained

largely within the nominal switching rates.

We also analyzed average reaction times under both

experimental paradigms. Figure 2(D) shows reaction time

distributions for booth and crowd with median, 25th and 75th

percentiles for the DNSS scenes. Reaction times from both

paradigms followed a normal distribution [Kolmogorov-

Smirnov test (Massey, 1951), p(booth)¼ 0.64, p(crowd)

¼ 0.47] and were not significantly different from each other

[two sample t-test, t(138)¼ –1.69, p¼ 0.09].

To further explore similarities and differences between

booth and crowd data, a three-way ANOVA on reaction time

was performed using age (<25 and � 25), platform (booth
and crowd), and gender (male and female). Subjects without

gender information (four subjects who listened to the DNSS

scenes only) were removed for this analysis. As shown in

Table II, none of the factors or interactions were found to be

statistically significant. No effect of platform indicated that

both paradigms had subject responses with similar latencies.

The effect of age and interaction between age and platform

were found to be contributing the most to the differences in

reaction times than other factors. These age effects (and

interaction between age and platform) were primarily caused

by imbalances in subject ages in the two paradigms with most

subjects from booth being younger (92% of subjects with age

<25) than crowd (12% of subjects with age <25). To under-

stand the effect of age further, subjects from booth and crowd
were grouped based on subject age to balance the age distribu-

tions more evenly [Fig. 2(D)]. There were no differences

between the young-age (<25) and middle-age (�25 and �55)

groups [two-sample t-test, tð128Þ ¼ �1:51, p¼ 0.09], and the

middle-age and old-age (>55) groups [two-sample t-test,

FIG. 2. (Color online) (A) Distribution of the number of switches across trials in the sound booth data. 4% of trials had a low switch rate, while 0% of trials

had a high switch rate. (B) Distribution of the number of switches across trials in the Mechanical Turk data. 4% of trials had a low switch rate while 2% of

trials had a high switch rate. (C) Example responses that exhibited low, regular, and high numbers of attentional switches between scenes. Trials with low or

high switches were excluded from the analysis. (D) Box plot of subject reaction times with median, 25th and 75th percentiles for DNSS scenes from booth
and crowd data. (E) Reaction times from combined booth and crowd data divided by subject age. Error bars represent 61 standard error and significant dif-

ferences are indicated by stars.

TABLE II. ANOVA results for subject-wise F-scores and reaction times.

Three factors considered were Age (>25, �25), Gender (male, female), and

Platform (booth, crowd).

Reaction times F-scores

Factor df Mean. Sq. F p Mean. Sq. F p

Age 1 0.0076 2.28 0.13 0.0009 0.23 0.63

Platform 1 0.0006 0.19 0.66 0.0000 0.01 0.93

Gender 1 0.0000 0 0.99 0.0079 1.94 0.17

Age�Platform 1 0.0079 2.35 0.13 0.0000 0.02 0.90

Age�Gender 1 0.0001 0.05 0.83 0.0008 0.19 0.66

Platform�Gender 1 0.0008 0.24 0.63 0.003 0.76 0.38
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tð88Þ ¼ �1:56, p¼ 0.12]; however, the old-age group had

slower reaction times [one-sided t-test, tð58Þ ¼ �2:62,

p¼ 0.015] compared to the younger group.

Next, salience responses across platforms from the

same DNSS auditory scenes were compared. Correlations

between average behavioral salience from booth and crowd
revealed a strong agreement between the behavioral data

under both testing paradigms (average Pearson correlation

q¼ 0.69 across all scenes; p� 1e�3 for each DNSS scene).

Figure 3(A) depicts a spectrogram of a sample scene over-

laid on average behavioral salience from booth and crowd
data in response to the same scene. While responses were

rather noisy given the subjective and continuous behavioral

feedback by subjects throughout the trial, there was a

remarkable accord in general patterns between the two

responses, revealing increased engagement of subjects with

the scene at specific moments in time (regardless of the

opposite scene or platform). Given the perceptual difference

between scenes based on their acoustic transience, we fur-

ther explored the correlation between booth and crowd aver-

age behavioral salience separately for dense and sparse

DNSS scenes. Sparse scenes tended to give rise to more dis-

tinct objects and resulted in higher correlations (average cor-

relation across scenes, q¼ 0.79), while denser scenes were

more perceptually continual resulting in noisier (less dis-

tinct) reactions from subjects, though there was still statisti-

cal agreement in responses between booth and crowd data

(average correlation across scenes, q¼ 0.64).

In addition to agreement between booth and crowd data

in average behavioral salience, inter-subject agreement

based on salient event onsets also revealed a consistent con-

currence across behavioral paradigms on average, albeit

with higher variance for the crowd-sourced data. Subject-

wise F-scores were computed as a measure of agreement

between each subject’s switching pattern and salient event

onsets computed from the average behavioral salience for

the same behavioral paradigm (crowd or booth, see Sec. II).

A Kolmogorov-Smirnov test was used to confirm that the

distributions were indeed normal since F-score is a harmonic

mean of recall and precision (Massey, 1951). Subject-wise F-

scores for booth (p¼ 0.99) and crowd (p¼ 0.93) using the

DNSS scenes were found to follow a normal distribution. A

two-sample t-test between subject-wise F-scores for booth
and crowd showed no statistically significant difference

between the two groups [t(136)¼ 1.30, p¼ 0.2]. Differences

in variance in the F-scores for the two groups were also not

found to be statistically significant [F(49, 87)¼ 0.6, p¼ 0.06]

with higher variance observed in crowd (std¼ 0.07) when

compared to booth (std¼ 0.05) [Fig. 4(A)].

To explore factors contributing to differences in

salience responses between the booth and crowd paradigms,

a three-way ANOVA was performed using age, platform,

and gender as the factors where all factors were defined in a

similar way as for reaction times. Although none of the fac-

tors or interactions were significant (Table II), gender and

age seemed to have a stronger influence on the F-scores than

platform, which suggests that the observed differences in

F-scores were due to differences in populations and not due

to differences in data collection platform. Effects of age on

F-scores in the combined booth and crowd data are shown

in Fig. 4(B). Subjects from booth and crowd were combined

together and then grouped into three groups: young-age

(<25 years), middle-age (25–55) and old-age (>55). The

analysis showed no significant differences among age

groups. Marginally significant differences were found

between younger participants and middle age groups [two-

sample t-test, t(128)¼ 1.94, p¼ 0.05] [Fig. 4(B)]; while no

significant difference were observed between young and old

groups [t(58)¼ 1.51, p¼ 0.13] and middle and older age

groups [t(88)¼ 0.50, p¼ 0.62].

Next, we leveraged the crowd-sourced paradigm to

examine the effect of subject quantity and used a measure of

interobserver AUROC to quantify consistency across sub-

jects as a function of the number of subjects (see Sec. II).

Focusing on the DNSS scenes (for which there is a baseline

in booth data), Fig. 5 shows that the interobserver AUROC

increases systematically with the inclusion of more subjects,

confirming increased consistency between subjects in terms

FIG. 3. (Color online) Correlation between booth and crowd responses for DNSS scenes with an example. (A) Spectrogram of an example scene with booth,

crowd average behavioral salience overlaid on the spectrogram. (B) Correlation between booth and crowd responses for DNSS scenes with sparse and dense
breakup. Error bars depict 61 SEM.
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of behavioral salience judgments. Furthermore, the analysis

of the crowd data showed that reaching the level of consis-

tency observed in booth data required N¼ 60 subjects,

which is slightly more than N¼ 50 subjects used in the

booth (Fig. 5, red line). This increasing trend in interob-

server AUROC was also observed with DNSS-Ext scenes in

crowd data, although the absolute values of AUROC were

lower than for DNSS scenes. Chance level interobserver

AUROC (Fig. 5, green line) was found to be lower than the

booth and crowd interobserver AUROC and remained con-

stant with increasing number of subjects. This difference

supported our claim that a high interobserver AUROC indi-

cated a high agreement across the subjects and the increase

in AUROC was a systematic effect.

B. Acoustic features

Next, we examined the relationship between behavioral

responses to salient events and changes in the acoustic

structure of the scenes themselves. Figure 6(A) quantifies

changes in eleven spectral and temporal acoustic dimensions

(see Sec. II) around the salient events. In the first analysis,

we compared acoustic changes around salient events in

booth versus events in crowd data in the same DNSS scenes.

Pair-wise two-sample t-tests for each acoustic dimension

showed no significant differences between booth and crowd
feature changes for DNSS across all features [bandwidth:

t(418)¼ –0.4, p¼ 0.70, loudness: t(418)¼ 0.3, p¼ 0.76,

pitch: t(418)¼ –0.5, p¼ 0.64, brightness: t(418)¼ –0.5,

p¼ 0.62, harmonicity: t(418)¼ 0.0, p¼ 0.99, flatness:

t(418)¼ –0.0, p¼ 0.99, irregularity: t(418)¼ –0.5, p¼ 0.61,

rate: t(418)¼ –0.0, p¼ 0.99, scale: t(418)¼ 1.74, p¼ 0.09,

high-rate: t(418)¼ 0.85, p¼ 0.40, low-rate: t(418)¼ 0.54,

p¼ 0.59]. For each dataset, we noted that loudness, bright-

ness, harmonicity, high-rate, and low-rate had significant

positive changes while scale had significant negative

changes around events [one-sample t-test, for booth,

loudness: t(192)¼ 11.0, p¼ 6e�22, pitch: t(192)¼ 2.8,

FIG. 4. (Color online) Subjectwise F-scores indicating agreement of subjects with extracted events. Stars indicate significant differences between groups.

Error bars depict 61 SEM. (A) F-scores for booth and crowd subjects for matched scenes. (B) Combined F-scores from booth and crowd divided by age

group.

FIG. 5. (Color online) Variability as function of number of subjects for the crowd data captured by interobserver ROC for booth (DNSS and DNSS-dense)

and crowd (DNSS and DNSS-Ext scenes). Benchmark variability was calculated using data from all subjects in the booth condition. A chance-level interob-

server AUROC computed from shuffled responses is shown for comparison purposes. Error bars represent standard errors across 50 trials of subsampling.
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p¼ 0.01, brightness: t(192)¼ 4.8, p ¼ 1e�3, harmonicity:

t(192)¼ 6.4, p¼ 1e�9, high-rate: t(192)¼ 11.0, p ¼ 4e�22,

low-rate: t(192)¼ 10.5, p¼ 1e�20, scale: t(192)¼ –2.5,

p¼ 0.01, for crowd, loudness: t(226)¼ 11.8, p ¼ 3e�25,

pitch: t(226)¼ 4.2, p¼ 4e�5, brightness: t(226)¼ 6.2,

p¼ 3e�9, harmonicity: t(226)¼ 7.7, p¼ 4e�13, high-rate:

t(226)¼ 11.1, p¼ 3e�22, low-rate: t(226)¼ 10.9, p¼ 1e�22,

scale: t(226)¼ –3.9, p¼ 8e�4]. Bandwidth was the only

feature which was found to have significant positive changes

for the crowd events [t(226)¼ 2.7, p¼ 0.01], whereas for

the booth events the changes in bandwidth were not statisti-

cally significant [t(192)¼ 1.9, p¼ 0.06]. These results sug-

gested that subjects under both experimental paradigms

(booth and crowd) were reacting to prominent variations

along the same acoustic dimensions of the scenes, driven by

loudness and mostly spectral attributes.

Taking advantage of the expanded variety of scenes

tested in the crowd paradigm, we compared the effect of

changes in acoustic attributes near salient onsets for DNSS-

Ext scenes in the crowd data [Fig. 6(A)]. A one-sample t-

test showed that loudness [t(554)¼ 16.9, p¼ 3e�52], pitch

[t(554)¼ 6.2, p¼ 6e�10], brightness [t(554)¼ 5.9,

p¼ 4e�9], harmonicity [t(554)¼ 14.0, p¼ 1e�38], irregu-

larity [t(554)¼ 3.2, p¼ 1e�3], high-rate [t(554)¼ 20.4,

p¼ 1e-69], low-rate [t(554)¼ 19.9, p¼ 2e�67] had signifi-

cant positive changes while flatness [t(554)¼ –6.2,

p¼ 1e�9] and scale [t(554)¼ –6.5, p¼ 2e�10] had signifi-

cant negative changes around DNSS-Ext events. A two-

sample t-test showed changes in bandwidth [t(780)¼ 2.03,

p¼ 0.04] and flatness [t(780)¼ 2.9, p¼ 3e�3] were signifi-

cantly different across DNSS and DNSS-Ext scenes.

It is important to note that the acoustic dimensions

explored in this study are not necessarily independent of

each other, and there exist strong correlations between sev-

eral features as shown in Fig. 6(B). For example, loudness is

strongly correlated to harmonicity (q¼ 0.44, p¼ 6e�3),

high-rate (q¼ 0.73, p¼ 5e-48), and low-rate features

(q¼ 0.69, p¼ 5e�70) while flatness is correlated to bright-

ness (q¼ 0.49, p¼ 0.01).

The differences between DNSS and DNSS-Ext were

largely driven by the variety of scene composition in each

dataset. As noted earlier, the DNSS-Ext scenes consisted of

a higher percentage of human vocalizations and device

sounds. An example DNSS-Ext scene with a large change in

flatness is shown in Fig. 6(D). This particular scene had a

telephone ring event with some speech events in the back-

ground. A sharp dip in flatness can be observed when the

ring happens due to the tone-like nature of the ring. This dip

also coincided with an increase in loudness near t ¼ 25 s, as

well as an increase in spectral irregularity [Fig. 6(D), bottom

panels]. An example scene with a telephone ring from a

DNSS scene is shown in Fig. 6(C) for comparison. The ring

FIG. 6. (Color online) (A) Acoustic feature change averaged across events, compared between sound booth and crowd for DNSS and DNSS-Ext scenes. All

features are z-score normalized. Error bars represent 61 standard error. (B) Correlations across features computed as Pearson correlation. (C) Example seg-

ment from one of the DNSS stimuli. (D) Example segment from one of the DNSS-Ext stimuli. (Top) Time-frequency spectrum of the signal, with a descrip-

tion of the scene in text and salient events marked by the vertical lines in red. Flatness, loudness, irregularity are shown in the bottom panels for the

corresponding scenes.
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is of a different nature with a different frequency profile

which caused a smaller dip in spectral flatness and not a pro-

nounced change in irregularity [Fig. 6(C), bottom panels].

C. Event prediction

With the consistency between booth and crowd data

established with various characterizations based on behav-

ioral data and acoustic changes, salience models derived

from both platforms are expected to be compatible with

each other. To confirm this, a salience computational model

of event prediction based on acoustic changes was evaluated

in a cross-platform manner (see Sec. II for model details).

Models were trained separately on booth and crowd data for

DNSS scenes and tested on held-out sets from both plat-

forms using tenfold cross-validation. Table III shows the

performance of the models, quantified using the AUROC.

No significant differences were observed on paired t-tests on

cross-validation folds for both models tested on crowd data

[t(9)¼ –1.3, p¼ 0.33] and booth [t(9)¼ 1.0, p¼ 0.22].

With access to a larger scene dataset with a bigger pool

of behavioral responses, we quantified the effect of addi-

tional data on acoustic predictions in an incremental man-

ner. This analysis examined the hypothesis that

computational salience models would benefit from larger

databases (with more diverse scenes) that become possible

with crowd-sourced methods. Using AUROC as a

performance measure, Fig. 7(A) shows the effect of data

augmentation with different amounts of training data on the

detection performance. The evaluation is performed with

10-folds of test sets (11 min each) and for each test fold,

training data is sampled from the remaining folds in steps of

10 min. Figure 7(A) (right y axis) shows a normalized

AUROC for each fold in cross-validation, where the

AUROC with 10 min of training data were used as the

denominator. For each increment in the training data, a

paired t-test was performed on the AUROC for the 10-folds

to test if the performance improvement is significant. The

analysis revealed a statistically significant increase

(p < 0.05) in performance with the inclusion of additional

data up to 70 min [Fig. 7(A), left y axis] and the improve-

ments were not statistically significant after 70 min. The

model with 100 min improves AUROC by 1% relative to the

10 min model. Figure 7(B) shows the impact of the DNSS-

Ext data on performance improvements with receiver oper-

ating characteristic (ROC) curves compared to a model

trained on DNSS data only. Interobserver ROC serves as an

upper limit on the achievable detection performance. As the

figure indicates, higher amounts of data led to better detec-

tion performance.

IV. DISCUSSION

In this study, we presented a detailed analysis of

salience data for natural scenes, collected on a crowd-

sourcing platform, using a dichotic listening paradigm. This

work focused on three main goals: establishing the validity

of dichotic listening in a crowd-sourcing platform as a reli-

able marker of auditory salience in complex natural scenes;

expanding the existing salience dataset to more diverse

scenes; and validating the benefits of large scale salience

datasets to develop accurate salience models. As previously

examined in several earlier studies, there is a close synergy

between acoustic attributes of a sound stimulus and its

TABLE III. Cross-modal AUROC averaged across tenfold cross-validation.

Models were trained using DNSS scenes in booth and crowd data and tested

on the held out sets from booth and crowd data from the same scenes.

Standard error across 10 folds is indicated with 6 sign.

Test data

Train data Booth Crowd

Booth 0.759 6 0.027 0.753 6 0.037

Crowd 0.753 6 0.027 0.757 6 0.038

FIG. 7. (Color online) (A) Event detection performance in terms of AUROC from incremental data augmentation. On the left y axis, the average AUROC of

the 10-folds is plotted with each increment step and statistically significant improvements indicated with an asterisk. On the right y axis, each line represents

a cross-validation fold and AUROC for each augmentation step is divided by the AUROC with 10 min of training data to obtain a normalized AUROC mea-

sure. All 56 scenes were used for this evaluation. (B) ROC with models trained on DNSS and DNSS-total when compared with the interobserver perfor-

mance which can be considered an upper-bound to the detection performance.
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perceptual salience. The acoustic analysis presented in Fig.

6(A) shows that key acoustic attributes like loudness, pitch,

and harmonicity, which were previously shown to drive

salience (Kaya and Elhilali, 2014; Tordini et al., 2015;

Tordini et al., 2013), have statistically significant changes

around event onsets from both the booth and crowd data.

This result indicates that any large changes in these features

induce a consistent attention shift in subjects even under

dichotic listening. This observation is consistent with previ-

ous research in salience that hypothesized that violation of

expectation or variations in time along key attributes of the

signal give rise to salient events (R€oer et al., 2014; Vachon

et al., 2017). In the current work, these effects are confirmed

in a larger and more diverse pool of subjects with the crowd
data and provide further support for using dichotic listening

for salience data collection. Moreover, the analysis pre-

sented here extends the investigation of acoustic attributes

to include rate-specific energies (high rates HR and low

rates LR) which are found to have significant changes

around the salient events. The higher modulation energies

(>20 Hz) represent roughness in the audio signal, and the

contribution from high-rate towards salient events coincides

with the known effects of roughness on salience (Arnal

et al., 2019). On the other end of the modulation spectrum,

lower modulation energies (<20 Hz) are commensurate with

dynamics in the audio signal (e.g., syllabic rate in speech)

and play an important role not only in intelligibility and per-

ception of natural sounds (Ding et al., 2017; Elhilali, 2019;

Elliott and Theunissen, 2009) but are found here to be

important markers of auditory salience.

While changes in key acoustic attributes tend to draw

the attentional focus of listeners, we note that variability and

richness of everyday soundscapes do also result in differ-

ences of effects across different scene subsets, as noted with

features such as flatness or irregularity. These variations

could only be addressed with an expansion of scene datasets

to an even larger size. Furthermore, the exploration of

acoustic effects has to be carefully appraised as changes in

acoustic attributes are heavily interdependent. As shown in

Fig. 6(B), there are strong correlations across the feature

dimensions, and the contribution of features to events is

affected by these inter-dependencies. Earlier behavioral and

neural recordings have shown a great deal of nonlinear inter-

actions between features such as pitch and timbre (Allen

and Oxenham, 2014; Melara and Marks, 1990; Walker

et al., 2011) that underlie the perception of integrated audi-

tory objects. Such interdependence has also been reported in

perceptual and neural measurements of auditory salience

(Kaya et al., 2020) where nonlinear interactions between

acoustic attributes like pitch, intensity, and timbre cause

interdependent responses to changes in individual dimen-

sions. Given these multiplexed relationships, it is important

to nuance judgments of which acoustic features are critical

for salience perception and infer that no one feature can

operate on its own as the main driver of sound conspicuity.

In line with our initial goal, the study establishes strong

parallels between laboratory and online data. Similar to

some of the crowd-sourced visual salience studies (Jiang

et al., 2015; Rudoy et al., 2012), a comprehensive compari-

son of the data from booth and crowd sets using various

metrics is performed to justify the adoption of the crowd-

sourcing platform. Correlations of the average behavioral

salience between booth and crowd data indicate consider-

able agreement across platforms [Fig. 3(B)]. Under the

assumptions of normal distribution, this approach is similar

to the divergence measures used in Rudoy et al. (2012). We

also establish similarities across the booth and crowd plat-

forms in terms of inter-subject variability. This variability is

first quantified using subject-wise F-scores which measured

variability within the platform around the salient events. We

observe no statistically significant differences in average

F-scores and variance in F-scores. Further breakdown of the

differences in F-scores across reveals that age and gender

are the main contributors to the small differences observed

in crowd data (Table II). These are subject-specific factors

that point to the diversity in the crowd data. The diversity of

subjects guarantees an unbiased measure of salience, which

is of utmost importance when developing datasets that can

be used for salience models. In addition, interobserver

agreement is used as a secondary measure of variability. As

shown in Fig. 5, crowd data achieves the same interobserver

AUROC as booth data with a slightly higher number of sub-

jects and there is an increasing trend in AUROC with the

number of subjects, which shows the necessity for a larger

number of subjects to reduce variance in salience data. The

analysis with interobserver agreement serves as validation

of using a larger pool of subjects and can also be used as a

guiding principle to choose the number of subjects for a

required level of variance in data.

While it is relatively easier to collect crowd-sourced

data from a large number of subjects, quality control is a

concern that prevents the deployment for behavioral experi-

ments (Br€uhlmann et al., 2020; Kan and Drummey, 2018)

on crowd-sourcing platforms. In this work, we use switching

rates of subject responses as a quality measure of the subject

data. A similar quality control strategy was used in

BubbleView (Kim et al., 2017), a visual exploration para-

digm used for visual salience. Since the dichotic salience

experiment inherently does not have a ground truth, it is dif-

ficult to inject control trials within the experiment, as is the

case with some of the crowd-sourcing paradigms in visual

salience (Othman et al., 2017). While the switching rate

analysis is done post-experiment in this study, it is possible

to inform subjects when their switching rates fall outside the

acceptable range. Another aspect related to the timing of

subject response is the reaction times of the subjects.

Although there are no significant differences in average

reaction times across platforms [Fig. 2(D)], ANOVA on

reaction times indicates that the age of the subjects can con-

tribute (though not significant) more than the platform

(Table II).

Advantages of having large amounts of data were dem-

onstrated by several visual salience models that leverage

deep learning methods (Jiang et al., 2015; Kruthiventi et al.,
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2017). These models were trained on crowd-sourced data

and were found to generalize well to eye-fixation bench-

marks. In recent years, there have been numerous studies

that leveraged principles of auditory salience for audio event

detection application (Kothinti et al., 2019; Podwinska

et al., 2019). But none of these studies employed any behav-

ioral data as part of the salience models, which could be

partly attributed to the lack of large-scale salience data. In

this work, we demonstrate the advantage of an extended

auditory salience database; and consistent improvements

from data augmentation support the rationale to scale the

data collection over crowd-sourcing platforms. The perfor-

mance of acoustic prediction is significantly improved by

adding more data to the training set [Fig. 7(A)]. While these

models are by no means comparable in size to deep learning

models of visual salience, the improvement shown with

added data is an encouraging outcome. There is a significant

gap between the performance of the salience model and the

inter-observer agreement which serves as an upper-bound

on detection performance [Fig. 7(B)]. This difference could

be because of the higher-level stimulus attributes such as

scene semantics that could directly impact salience or modu-

late the importance given to different acoustic dimensions.

We believe this gap could be bridged by studying a larger

variety of scenes with complex semantics such as speech

and music.
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APPENDIX

The details of the soundscapes used as part of the study

are listed in Table IV.
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