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Salience describes the phenomenon by which an object stands out from a scene. While its

underlying processes are extensively studied in vision, mechanisms of auditory salience remain

largely unknown. Previous studies have used well-controlled auditory scenes to shed light on

some of the acoustic attributes that drive the salience of sound events. Unfortunately, the use of

constrained stimuli in addition to a lack of well-established benchmarks of salience judgments

hampers the development of comprehensive theories of sensory-driven auditory attention. The

present study explores auditory salience in a set of dynamic natural scenes. A behavioral mea-

sure of salience is collected by having human volunteers listen to two concurrent scenes and

indicate continuously which one attracts their attention. By using natural scenes, the study takes

a data-driven rather than experimenter-driven approach to exploring the parameters of auditory

salience. The findings indicate that the space of auditory salience is multidimensional (spanning

loudness, pitch, spectral shape, as well as other acoustic attributes), nonlinear and highly

context-dependent. Importantly, the results indicate that contextual information about the entire

scene over both short and long scales needs to be considered in order to properly account for

perceptual judgments of salience. VC 2017 Acoustical Society of America.

[http://dx.doi.org/10.1121/1.4979055]

[AKCL] Pages: 2163–2176

I. INTRODUCTION

Attention is at the center of any study of sensory infor-

mation processing in the brain.1 It describes mechanisms by

which the brain focuses both sensory and cognitive resources

on important elements in the stimulus.2 Intuitively, the brain

has to sort through the flood of sensory information imping-

ing on its senses at every instance and put the spotlight on a

fraction of this information that is relevant to a behavioral

goal. For instance, carrying a conversation in a crowded res-

taurant requires focusing on a specific voice to isolate it

from a sea of competing voices, noises, and other back-

ground sounds. It is common in the literature to employ the

term attention to refer to “voluntary attention” or “top-down

attention” that is directed to a target of interest.3

A complementary aspect to these processes is bottom-

up attention, also called salience or saliency, which describes

qualities of the stimulus that attract our attention and make

certain elements in the scene stand out relative to others.4

This form of attention is referred to as bottom-up since it is

stimulus-driven and fully determined by attributes of the

stimulus and its context. In many respects, salience is invol-

untary and not dictated by behavioral goals. A fire alarm will

attract our attention regardless of whether we wish to ignore

it or not. While salience is compulsory, it is modulated by

top-down attention. As such, the study of salience alone

away from influences of top-down attention is a challenging

endeavor.

Much of what we know today about salience in terms

of neural correlates, perceptual qualities, and theoretical

principles comes from vision studies.5,6 When an object has

a different color, size, or orientation relative to neighboring

objects, it stands out more, making it easier to detect.

Behavioral paradigms such as visual search or eye tracking

tasks are commonly used to investigate the exact perceptual

underpinnings of visual salience.7–10 This rich body of work

has resulted in numerous resources such as standard data-

bases which enable researchers to probe progress in the field

by working collectively to replicate human behavior in

response to different datasets such as still natural images,

faces, animate vs inanimate objects, videos, etc.11 Using

common references not only contributes to our understand-

ing of salience in the brain, but has tremendous impact on

computer vision applications ranging from robotics to medi-

cal imaging and surveillance systems.12,13

In contrast, the study of salience in audition remains in

its infancy (see Ref. 14). A number of issues are hampering

progress in studies of auditory salience. First, there is a lack

of agreed upon behavioral paradigms that truly probe the

involuntary, stimulus-driven nature of salience. Most pub-

lished studies used a detection paradigm where a salient

object is embedded in a background scene, and subjects are

asked to detect whether a salient event is present or not; or to

compare two scenes and detect or match salience levels

across the two scenes.15–18 In these setups, salient events area)Electronic mail: mounya@jhu.edu
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determined by an experimenter based on a clear distinction

from the background scene. As such, their timing provides a

ground truth against which accompanying models are tested,

and the relevance of various features is assessed. While quite

valuable, this approach confines the analysis of salient

features and sound events to predetermined hypotheses

assumed in the study. A complementary approach favored in

other studies used annotation where listeners are asked to

mark timing of salient events in a continuous recording.19

This paradigm puts less emphasis on a choice of events

determined by an experimenter, and adopts a more stimulus-

driven approach that polls responses across subjects to deter-

mine salience. Still, this approach presents its own limitation

in terms of controlling top-down and cognitive factors since

listeners are presented with a single scene whose context

might bias their judgment of stimulus-driven salience. A

different direction favored in other bodies of work focuses

on the “distraction” effect induced by auditory salience of

sound events or patterns.20,21 This approach takes into

account effects of attentional load through the use of com-

peting tasks, but it has yet to provide a broad canvassing of

the acoustic features that render certain sound events more

salient than others.

A related challenge to the study of auditory salience is a

lack of standard datasets and stimulus baselines that guide

the development of theoretical frameworks and explain why

certain sound events stand out in a soundscape. Of the few

studies conducted on auditory salience, most have used well-

controlled stimuli, like simple tones22 or short natural

recordings in controlled uniform backgrounds.15,17,18 A few

studies incorporated more rich natural scenes using record-

ings from the BU Radio News Corpus23 and the AMI

Corpus.19 Still, both of the latter databases consist of scenes

with relatively homogeneous compositions, both in terms of

audio class (mostly speech interspersed with other sounds)

and density (mostly sparse with rare instances of overlapping

sound objects). The lack of a diverse and realistic selection

of natural soundscapes in the literature results in a narrow

view of what drives salience in audition. In turn, theoretical

frameworks developed to model empirical data remain lim-

ited in scope and fail to generalize beyond the contexts for

which they were developed.14

The current study aims to break this barrier and offer a

baseline database for auditory salience from an unconstrained

choice of stimuli. This collection includes a variety of com-

plex natural scenes, which were selected with a goal of repre-

senting as many types of real world scenarios as possible.

The database was not developed as underlying paradigm to

accompany a specific model. Rather, it was designed to chal-

lenge existing models of auditory salience and stimulate

investigations into improved theories of auditory salience.

The sound dataset and its accompanying behavioral measures

are intended for public use by the research community and

can be obtained by contacting the corresponding author.

The experimental paradigm collected behavioral

responses from human volunteers while listening to two com-

peting natural scenes, one in each ear. Subjects indicated con-

tinuously which scene attracted their attention. This paradigm

was chosen to address some of the limitations of existing

approaches in studies of auditory salience. Salience judgments

are determined by the scenes themselves with no prearranged

placement of specific events or salience ground truth.

Moreover, employing two competing scenes in a dichotic set-

ting disperses effects of top-down attention and allows salient

events to attract listeners’ attention in a stimulus-driven fash-

ion; hence expanding on the previously used annotation para-

digm used by Kim et al.19 Still, studying salience using these

sustained natural scenes comes with many limitations and

challenges. First, it is impossible to fully nullify the effects of

voluntary attention in this paradigm. Subjects are actively and

continuously indicating scenes that attract their attention. To

mitigate this issue, the use of a large number of listeners and

assessment of behavioral consistency across responses aver-

ages out voluntary attentional effects, and yields consistent

response patterns reflecting signal-driven cues. Second, cer-

tain sounds may induce preferential processing relative to

others. The use of real world recordings inherently provides

context that may or may not be familiar to some listeners.

That is certainly the case for speech sounds, certain melodies

(for subjects who are musicians or music-lovers) as well as

other familiar sounds. While this is an aspect that again com-

plicates the study of auditory salience for subsets of listeners,

the use of a large pool of volunteers will highlight the behav-

ior of average listeners, leaving the focus on specific sounds

of interest as a follow-up analysis. In addition, it is the com-

plex interactions in a realistic setting that limits the translation

of salience models developed in the laboratory to real applica-

tions. Third, two competing auditory scenes are presented

simultaneously, to further divide the subjects’ voluntary atten-

tion. As such, the study presents an analysis of salience

“relative” to other contexts. By counter-balancing relative

contexts across listeners, we are again probing average

salience of a given sound event or scene regardless of context.

Still, it is worth noting that the use of dichotic listening may

not be very natural but does simulate the presence of compet-

ing demands on our attentional system in challenging situa-

tions. Finally, subjects are continuously reporting which

scene attracts their attention; rather than providing behavioral

responses after the stimulus. By engaging listeners throughout

the scene presentation, the paradigm aims to minimize effects

of different cognitive factors including voluntary attention

and memory that can cloud their report. In the same vein, this

study focuses on the onset of shifts in attention, before top-

down attention has time to “catch up.” Throughout the para-

digm, pupil dilation is also acquired, hence providing a

complementary account of salience that is less influenced by

top-down attentional effects.

In this report, we provide an overview of the dataset

chosen as well as analyses of the bottom-up attention

markers associated with it. Section II outlines the experi-

mental setup, behavioral data collection, as well as acoustic

features used to analyze the stimulus set. Section III

presents the results of the behavioral experiment along with

analyses of different types of salient events. The results

also delve into an acoustic analysis of the dataset in hopes

of establishing a link between the acoustic structure of the

scene stimuli and the perceived salience of events in those

scenes. We conclude with a discussion of the relevance of
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these findings to studies of bottom-up attention and audi-

tory perception of natural soundscapes.

II. METHODS

A. Stimuli

A set of twenty recordings of natural scenes was gath-

ered from various sources including the BBC Sound Effects

Library,24 Youtube,25 and the Freesound database.26 Scenes

were selected with a goal of covering a wide acoustic range.

This range included having dense and sparse scenes, smooth

scenes and ones with sharp transitions, homogeneous scenes

versus ones that change over time, and so forth. A variety of

sound categories was included, such as speech, music,

machine, and environmental sounds. All recordings were

carefully selected to maintain a subjectively good audio

quality. An overview of all scenes included in this dataset is

given in Table I.

Each scene had a duration of approximately two minutes

(average of 116 6 20 s). All wave files were downsampled to

22 050 Hz with a bit rate of 352 kbps. One of the scenes

(scene number 13) was originally recorded in stereo, from

which only the left channel was used. Scenes were normal-

ized based on the root mean square (RMS) energy of the

loudest 1% of each wave file. Alternative normalizations

(such as RMS energy across the entire waveform or peak

normalization) were deemed inappropriate for regulating the

scene amplitudes because they made the sparse scenes too

loud and the dense scenes too quiet or the reverse.

B. Behavioral data collection

Fifty healthy volunteers (ages 18–34, 16 males) with no

reported history of hearing problems participated in this

study. Subjects were asked if they had any musical training,

for example, if they had played an instrument, and if so, how

many years of training. Subjects were compensated for their

participation, and all experimental procedures were

approved by the Johns Hopkins University Homewood

Institutional Review Board (IRB).

Behavioral data were recorded using Experiment Builder

(SR Research Ltd., Oakville, ON, Canada), a software pack-

age designed to interface with the EyeLink 1000 eye tracking

camera. Subjects were seated with their chins and foreheads

resting on a headrest. Subjects were instructed to maintain fix-

ation on a cross in the center of the screen while they per-

formed the listening task. The eye tracker primarily recorded

each participant’s pupil size over the course of the experi-

ment. It was calibrated at the beginning of the experiment,

with a sequence of five fixation points. Dichotic audio stimuli

were presented over Sennheiser HD595 headphones inside a

sound proof booth. Sounds were presented at comfortable lis-

tening levels, though subjects were able to notify the experi-

menter if any adjustments were needed. Pupil size and mouse

movements were both initially recorded at a sampling fre-

quency of 1 kHz. Mouse movements were later downsampled

by a factor of 64. Data were analyzed using MATLAB software

(Mathworks, Natick, MA, USA).

Behavioral responses were collected using a dichotic lis-

tening paradigm. Subjects were presented with two different

scenes simultaneously, one in each ear. Subjects were

instructed to indicate continuously which of the two scenes

they were focusing on by moving a mouse to the right or the

left of the screen. Subjects were not instructed to listen for

any events in particular, but simply to indicate which scene

(if any or both) they were focusing on at any given time. A

central portion of the screen was reserved for when a subject

was either not focusing on either scene or attending to both

scenes simultaneously. Subjects were not instructed to

TABLE I. List of the twenty audio recordings of natural scenes used in this study and suggested for use in future studies. Scenes selected to cover a wide range

of acoustic environments. Scenes were labeled subjectively as sparse or dense in regards to the density of acoustic objects within.

# Dur Sparse Control Description Source

1 2:00 No No Nature, Birds Youtube.com/watch?v¼U2QQUoYDzAo

2 2:15 Yes No Sporting Event BBC:Humans/Crowds/CrowdsExterior.BC.ECD48c

3 2:00 No No Cafeteria BBC:Ambience/Cafes/CafesCoffees.BBC.ECD40b

4 2:02 Yes No Battle, Guns Youtube.com/watch?v¼TVkqVIQ-8ZM

5 1:21 Yes No Airplane, Baby Soundsnap.com/node/58458

6 1:13 No No Fair Freesoundeffects.com/track/carnival-street-party—42950/

7 1:59 No No Classical Music Youtube.com/watch?v¼pKOpdt9PYXU

8 2:01 Yes No Bowling Alley BBC:Ambience/America/America24t

9 2:00 No No Egypt Protests Youtube.com/watch?v¼H0ADRvi0FW4

10 2:08 No No Store Counter BBC:Ambience/America/America24k

11 1:57 No No Drum Line Youtube.com/watch?v¼c4S4MMvDrHg

12 1:59 No No Blacksmith Youtube.com/watch?v¼Ka7b-cicOpw

13 2:13 No No Orchestra Tuning Youtube.com/watch?v¼6lwY2Dz15VY

14 2:07 No No Japanese Game Show Youtube.com/watch?v¼I5PS8zHBbxg

15 2:22 No No Dog Park Freesound.org/people/conleec/sounds/175917/

16 2:14 No No Casino Freesound.org/people/al_barbosa/sounds/149341/

17 2:00 No Yes Piano Concerto Youtube.com/watch?v¼ePFBZjVwfQI

18 1:22 Yes Yes Car Chase BBC:Trans/Land/Vehicles/Motocycles/MotorCycleRacing17c

19 1:59 Yes Yes Maternity Ward BBC:Emergency/Hospitals/MaternityWard

20 1:19 No Yes Sailing Barge BBC:Trans/Water/Ships/ShipsSailing.BBC.ECD22b
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differentiate between locations within each region. As such,

participants were limited to three discrete responses at any

given point in time: left, right, or center. Subjects were also

instructed to fixate their gaze on the cross in the center of the

screen, in order to avoid effects of eye movements on pupil

size. A diagram of the screen is shown in Fig. 1(a).

Before data collection began, subjects were presented

with a brief, fifteen second example stimulus, consisting of a

pair of natural scenes distinct from the twenty used in the

main experiment. The same example was played a second

time with a corresponding cursor recording, to serve as one

possibility of how they could respond.

Two pairs from the set of twenty scenes used in this

study were chosen as “control” scenes, and were always

presented with the same opposing wave file. Thus, each of

the four control scenes was heard exactly once by each sub-

ject (50 trials across subjects). The remaining sixteen scenes

were presented in such a way that, across subjects, each

scene was paired with each other scene roughly an equal

number of times. Each individual subject heard each of these

scenes at most twice (total of 62 or 63 trials per scene across

50 subjects), with an average of six scenes presented a sec-

ond time to each subject. A trial ended when either of the

two competing scenes concluded, with the longer scene cut

short to that time. There was a fixed rest period of five sec-

onds between trials, after which subjects could initiate the

next trial at their leisure.

In parallel, we collected data from 14 listeners in a pas-

sive listening mode. In these passive sessions, no active

behavioral responses were collected and subjects simply lis-

tened to the exact stimuli as described earlier. Only pupil

size was collected using the eye tracker.

C. Analysis of behavioral data

Individual behavioral responses were averaged across

subjects for each scene by assigning a value of þ1 when a

participant attended to the scene in question, �1 when a

participant attended to the competing scene, and 0 otherwise

[Fig. 1(b)]. Choosing a different range to distinguish the

three behavioral states (instead of {þ1,0,�1}) resulted in

qualitatively similar results. The mean behavioral response

across all subjects will henceforth be referred to as the

average salience for each scene (since it averages across all
competing scenes). The derivative of this average salience

curve was computed and smoothed with three repetitions of

an equally weighted moving average with a window length

of 1.5 s.27 This derivative curve captured the slope of the

average salience and was used to define notable moments in

each scene. Peaks in the derivative curve were marked as

onsets of potential events [Fig. 1(c)]. A peak was defined as

any point larger than neighboring values (within 0.064 s).

The smoothing operation performed on the average salience

curve prior to peak picking eliminated small fluctuations

from being selected. The smoothing and selection parame-

ters were selected heuristically and agreed with intuitive

inspection of behavioral responses and location of peaks

based on eye inspection.

A total of 468 peaks were identified across the twenty

scenes. These peaks were ranked based on a linear combina-

tion of two metrics: the height of the derivative curve (slope
height), which reflects the degree of temporal agreement

between subjects; and the maximum height of the average

salience curve within four seconds following the event onset

(absolute consensus) which reflects the percentage of sub-

jects whose attention was drawn by an event irrespective of

timing. The four second range was chosen in order to avoid

small false peaks close to the event, as well as peaks far

away that may be associated with later events. The linear

combination of these two metrics (behavioral salience) was

used in order to avoid the dominance of either particularly

salient or particularly sparse scenes. The absolute consensus

was scaled by the 75th percentile of slope of salience. The

most salient 50% of these peaks (234 events) were taken as

the set of salient events used in the analysis reported in this

article, except where indicated.

Events were manually classified into specific categories

after their extraction. An experimenter listened to several

seconds of the underlying scene before and after each event

FIG. 1. (Color online) (a) Presentation screen for the behavioral task.

Subjects were asked to listen to one natural scene in each ear, and to move

the cursor to the side corresponding to the scene that they were focusing on

at any given time. (Text on top was not part of the presentation screen.) (b)

Example waveforms of two stimuli presented in a given trial along with

behavioral response of one subject shown in the center. (c) The average

response across subjects and competing scenes is shown for waveform 2.

Salience is denoted as the percentage of subjects attending to that scene at

any given time. Peaks in the height of the slope of the average salience are

marked as salient events.
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in order to make the classification. The categories of events

were speech, music, other human vocalizations (e.g., laugh-

ter), animal sounds, sounds created by a device or machin-

ery, and sounds created by an object tapping or striking

another object. Each event was individually categorized into

one of these six types.

D. Acoustic analysis of stimuli

The acoustic waveform of each scene was analyzed

to extract a total of nine features along time and frequency,

many of which were derived from the spectrogram of each

scene. The time-domain signal s(t) for each scene was

processed using the NSL MATLAB TOOLBOX
28 to obtain a

time-frequency spectrogram y(t, x). The model maps the

time waveform through a bank of log-spaced asymmetrical

cochlear filters (spanning 255 Hz to 10.3 KHz) followed by

lateral inhibition across frequency channels and short-term

temporal integration of 8 ms.

(1) The centroid of the spectral profile in each time frame

was extracted as a brightness measure,29 defined as

BR tð Þ ¼

X
x

x � y t; xð Þ2X
x

y t; xð Þ2
:

(2) The weighted distance from the spectral centroid was

extracted as a measure of bandwidth,30 defined as

BW tð Þ ¼

X
x

jx� BR tð Þj � y t; xð ÞX
x

y t; xð Þ
:

(3) Spectral flatness was calculated as the geometric mean

of the spectrum divided by the arithmetic mean,31 also at

each time frame,

FL tð Þ ¼

YN�1

x¼0

y t; xð Þ
 !1=N

XN�1

x¼0

y t; xð Þ=N

:

(4) Spectral irregularity was extracted as a measure of the

difference in strength between adjacent frequency chan-

nels,32 defined as

IR tð Þ ¼

X
x

y t; xþ 1ð Þ � y t; xð Þ
� �2

X
x

y t; xð Þ2
:

(5) Pitch (fundamental frequency) was derived according to

the optimum processor method by Goldstein.33 Briefly,

the procedure operates on the spectral profile at each

time slice yðt0; xÞ and compares it to a set of pitch tem-

plates, from which the best matching template is chosen.

The pitch frequency (F0) is then estimated using a maxi-

mum likelihood method to fit the selected template.34

(6) Harmonicity is a measure of the degree of matching

between the spectral slice yðt0; xÞ and the best matched

pitch template.

(7) Temporal modulations were extracted using the NSL

TOOLBOX. These features capture the temporal variations

along each frequency channel over a range of dynamics

varying from 2 to 32 Hz. See Ref. 28 for further details.

(8) Spectral modulations were extracted using the NSL

TOOLBOX. These modulations capture the spread of

energy in the spectrogram along the logarithmic fre-

quency axis; as analyzed over a bank of log-spaced spec-

tral filters ranging between 0.25 and 8 cycles/octave. See

Ref. 28 for further details. For both temporal and spectral

modulations, the centroid of each of these measures was

taken as a summary value at each time frame.

(9) Loudness in bark frequency bands was extracted using

the algorithm from the Acoustics Research Centre at the

University of Salford.35 The process starts by filtering

the sound using a bank of 28 log-spaced filters ranging

from 250 Hz to 12.5 kHz, each filter having a one-third

octave bandwidth to mirror the critical bands of the audi-

tory periphery. The outputs of each filter are scaled to

match human perception at each frequency range.

Loudness was averaged across frequency bands, provid-

ing a specific representation of the temporal envelope of

each waveform.

The collection of all nine features resulted in a 9� T repre-

sentation. Finally, features were z-score normalized to facili-

tate combining information across features.

E. Event analysis

Event prediction was conducted on the acoustic features

using a similar method to that for extracting behavioral

events. This procedure serves as the basis for the simple

model to be evaluated in Sec. III. The derivative of each fea-

ture was calculated, and then smoothed using the same mov-

ing window average procedure used in the behavioral

analysis. Peaks in this smoothed derivative were taken as

predicted events for each specific feature. The height of this

peak was retained as a measure of the strength of this pre-

dicted event, allowing for thresholding of events based on

this ranking later in the analysis. Thus, a series of events was

predicted for each of the nine acoustic features included in

this study.

In order to assess the correspondence between events

predicted by the acoustic features and behavioral events, the

scenes were analyzed over overlapping bins of length TB.

Results reported here are for two-second time windows with

a time step of half a second, but qualitatively similar results

were observed for other reasonable values of TB. Each bin

containing both a behavioral event and a predicted event was

determined to be a “hit”; each bin with only a predicted

event was determined to be a “false alarm.” A Receiver

operating characteristic or ROC curve could then be gener-

ated by varying a threshold applied to the predicted events.
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This analysis was performed using events predicted

from individual features (e.g., loudness only) or across com-

binations of features. The cross-feature analysis was

achieved in two ways: (a) A simple method was used to flag

a predicted event if any feature indicated an event within a

given bin. (b) Cross-feature integration was performed using

Linear Discriminant Analysis (LDA), using ten-fold cross

validation.36 Each time bin was assigned the value of the

strongest event predicted within that bin for each feature, or

zero if no such event was present. The acoustic features, and

thus the strength of the corresponding predicted events, were

z-score normalized. Events from both increases and

decreases in each acoustic feature were included in the LDA

analysis. Each bin was assigned a label 1 if a behavioral

event was present, and 0 if not. Training was done across

scenes, with 10% of the data reserved for testing, using con-

tiguous data as much as possible. The process was repeated

nine times using a distinct 10% of the data for testing each

time. An ROC curve was again generated by varying a

threshold on the predicted events.

An ROC curve representing the inter-observer agree-

ment was also generated as a rough measure of the theoreti-

cal limit of predictability. This curve was generated by again

dividing the scenes into overlapping bins, with the value of

each bin corresponding to the percentage of subjects who

began attending to the scene in the corresponding time

frame. This time series was then thresholded at varying lev-

els and compared to the same set of behavioral events in

order to plot the ROC.

F. Pupil response analysis

Pupil data, acquired using the EyeLink 1000 eye track-

ing camera (SR Research, Ltd., Oakville, ON, Canada) were

sampled at 1000 Hz and normalized as follows: all data were

z-score normalized, then averaged across all subjects and all

scenes to reach one mean trend line. A power law function

was fit to this trend curve starting from 3 until 100 s. This

region avoids the initial rising time of the pupil response and

the higher amount of noise near the end due to a lower num-

ber of scenes with that duration. The trend line was then sub-

tracted from the normalized pupil size recordings from each

trial. In order to examine the relationship between pupil

responses and the acoustic stimuli or subjects’ behavioral

responses, increases in pupil size were identified using a sim-

ilar procedure as the extraction of salient events. The deriva-

tive of the pupil size measure was first computed. This

derivative was smoothed using the same moving window

average procedure used in the behavioral analysis. Peaks in

this smoothed derivative were marked as pupil dilations.

III. RESULTS

A. Behavioral results

A total of 234 behavioral events are recorded over the 20

scenes used in the database. The behavioral measures used in

this study give an estimate of both absolute consensus (reflect-

ing overall agreement across subjects) and slope height (indi-

cating temporal agreement across subjects). Both measures

can be taken as indicator of salience strength of a sound

event; and indeed both measure are found to be significantly

correlated with each other [qð232Þ ¼ 0:26; p ¼ 6:1� 10�5],

indicating that an event judged as strong with one metric will

often be determined to be strong based on the other.

The minimum number of events found in a scene is four

(a quiet cafeteria scene, with an average of 1.8 events/min),

while the densest scene has sixteen events (an energetic

piano solo excerpt, with an average of 12 events/min). Some

scenes have very clear and distinct events, as evidenced by

the high slopes in the average salience curve, indicating that

the subjects agree upon when the event occurred more

closely in time. Other scenes have comparatively less clear

events. The mean absolute height of consensus for all events

is 56%, indicating that on average, a little over half of the

subjects attended to the scene within four seconds following

one of these salient events (as described in Sec. II).

Figure 2 depicts the number of events and their salience

strength for different scenes. Scenes are divided by category:

sparse scenes, music scenes, predominantly speech scenes

and other. Events in sparse scenes are significantly stronger

(as measured by behavioral salience) than events in any of

the other three categories (music, p ¼ 2:3� 10�3; speech,

p ¼ 3:5� 10�5; other, p ¼ 3:8� 10�3), based on post hoc
Tukey HSD tests at the 0.05 significance level.

Moreover, the time since the last event is inversely cor-

related with the absolute height of consensus [qð212Þ
¼ �0:33; p ¼ 9:04� 10�7] [Fig. 3(a)], suggesting that sub-

jects may be sensitized towards a scene after each event. To

further assess the timing of salient events, we compute the

duration of all shifts in attention towards a scene as the time

between when a subject moved the cursor to that scene and

when that subject moved the cursor away from it. The distri-

bution of these “onset to offset times” was fit using kernel

density estimation and peaks at around 3.11 s [Fig. 3(b)].

This histogram does corroborate the assertion observed in

Fig. 3(a) indicating that subjects continue attending to a

FIG. 2. (Color online) Distribution of events across the different natural

scenes. Each bar represents one of the twenty scenes in the database. The

height of the bar indicates the relative salience strength of the events within

that scene. The shading of the bar describes the number of events present

within that scene. Scenes are sorted by category, then by number of events

within each scene. Sparse scenes contain significantly stronger salient events

than the other scene categories, indicated by �.
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scene after a salient event 3 s post-onset or more; hence

masking any potential behavioral responses within that time

window.

B. Acoustic features

An acoustic analysis of the scenes sheds light on the

attributes of sound events that are deemed salient. On aver-

age, subjects tend to respond a little under a second after a

change in acoustic properties of the scenes. Using loudness

as an example, Fig. 4 (inset) shows the average behavioral

response overlaid with the loudness of the scene highlighting

the roughly 1 s shift between acoustic change in the scene

and the behavioral response. Looking closely at these reac-

tion times, we divide salient events by their strength as quan-

tified by absolute consensus without the slope of salience, to

avoid any influence of timing on the rankings. The reaction

time is calculated for each behavioral event by finding the

time of the maximum slope of loudness in a two second win-

dow preceding the behavioral event. Figure 4 shows the con-

fidence intervals (95%) of reaction times for different

salience levels, adjusted for multiple comparisons. A post
hoc Tukey HSD test shows that subjects respond

significantly more quickly for high salience events than for

low salience events (p¼ 0.047).

Previous studies have indicated that loudness is indeed a

strong predictor of salience.19 The current dataset supports

this intuitive notion. Figure 5(a) (inset) shows a significant

increase in loudness preceding an event, calculated as the

average loudness within 0.5 s before an event minus the

average loudness between 2.0 and 1.5 s before the event

[tð232Þ ¼ 11:6; p� 0:001]. These time ranges relative to

the behavioral event are chosen in accordance to the delay of

a little under a second between when an acoustic feature

changes and when subjects respond (Fig. 4).

In addition to loudness, changes in other acoustic fea-

tures also correlate with presence of salient events. Figure

5(a) depicts changes in each feature following salient events,

normalized for better comparison across features. There are

significant increases in brightness [tð232Þ ¼ 4:0; p ¼ 9:1
�10�5], pitch [tð232Þ ¼ 3:0; p ¼ 0:0033], and harmonicity

[tð232Þ ¼ 7:3; p ¼ 5:2� 10�12], as well as a significant

decrease in scale [tð232Þ ¼ �3:8; p ¼ 1:9� 10�4].

In order to extend our analysis beyond just the salient

events used in this paper, we examine all peaks in the behav-

ioral response (beyond the top 50% retained in most analyses,

as outlined in Sec. II). The strength of derivative peaks of these

responses correlate with degree of change in acoustic features.

Specifically, loudness (q¼ 0:44; p¼ 1:0�10�23), harmonicity

(q¼ 0:33; p¼ 2:7�10�13), brightness (q ¼ 0:17; p ¼ 1:95

�10�4), and scale (q ¼ �0:14; p ¼ 0:002) are all statistically

significantly correlated with degree of behavioral salience. In

other words, the weaker the change in acoustic features, the

weaker the behavioral response; hence our choice to focus on

the stronger (top 50%) changes since they correlate with better

defined acoustic deviations.

C. Acoustic context

In addition to the absolute value of acoustic features

immediately related to a salient event, the acoustic context

preceding the event plays an important role in affecting the

FIG. 3. (Color online) (a) The strength of an event relative to the time since

the last event. (b) Histogram of individual onset to offset times. These times

each correspond to a single mouse movement to and from a scene. A proba-

bility density function was fitted using kernel density estimation (a non-

parametric method) and peaks at 3.11 s.

FIG. 4. (Color online) Reaction times. The reaction time is defined here as

the time between a change in loudness and the change in the behavioral

response (inset). Events are ranked by absolute consensus to avoid timing

issues. Boxes represent 95% confidence intervals, adjusted for multiple

comparisons using a post hoc Tukey HSD test.
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percept of salience. For instance, an event induced with a

given loudness level does not always induce a fixed percept

of salience. Instead, the context in which this event exists

plays a crucial role, whereby a loud sound is perceived as

more salient in a quieter context than in a raucous one.

Figure 5(b) shows the average loudness over time around

salient events, ranked into three tiers by salience strength.

The figure highlights the fact that the events with the highest

salience are preceded by a baseline loudness that is lower

than average. Specifically, while both high and mid-salience

events tend to be equally loud acoustically, their perceived

salience is different given the loudness of their preceding

contexts. Figure 5(c) also shows the average loudness over

time for events split by scene density. There is a much larger

loudness change for events in sparse scenes.

D. Event types

Although loudness shows a strong average increase

across all events, that increase is not uniform across all

types of events, revealing a nonlinear behavior across con-

texts. In order to better understand the effect of the scene

context around the event on its perceived salience, events

are manually categorized into different types based on pre-

ceding scene immediately prior to the event. Note that

many scenes are heterogeneous and include events of dif-

ferent types. The most straight-forward categories are

speech, music, and animal sounds. “Other vocalizations”

include laughter, wordless cheering, and crying. Of the

remaining events, most are either created by some sort of

device or machinery (“device”), or associated with objects

impacting one another (“tapping/striking”). The number of

events in each category are shown in Fig. 6(a). As revealed

in this plot, music and speech events do not necessarily

exhibit strong changes in loudness and are significantly

softer when compared to other event categories [tð223Þ
¼ �5:71; p ¼ 3:7� 10�8]. In particular, post hoc Tukey

HSD tests indicate that speech and music events both show

significantly lower loudness increases than any of the top

three categories (other vocalization, device, and tap/strike

events) at the 0.05 significance level.

FIG. 6. (a) Number of events in each category, and the loudness change

associated with each (bottom, � indicates p< 0.05, �� indicates p< 0.0001).

(b) Feature change associated with specific categories of events (� indicates

p< 0.05, �� indicates p< 0.001). All error bars represent 61 standard error.

FIG. 5. (Color online) (a) Acoustic feature change averaged across events.

All features are z-score normalized. Statistically significant increases or

decreases are labeled by asterisks, where � indicates p< 0.05 and � � p
< 0:0001. Inset: Average loudness relative to salient events. Vertical bars

indicate the time windows used to measure the change in acoustic feature

across events. (b) Average loudness around salient events, separated by

strength of salience. (c) Average loudness around salient events, separated by

scene density. All error bars and shaded areas represent 61 standard error.
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In order to further examine the acoustic features associ-

ated with events of different types, the histogram of feature

changes is broken down into different subcategories [Fig.

6(b)]. This figure is an expansion of Fig. 5(a) that hones in

on context-specific effects. The figure highlights different

changes in acoustic features that vary depending on context;

such as a prominent increase in harmonicity associated with

speech events versus a notable change in spectral metrics

such as brightness and flatness for more percussive events

such as devices [Fig. 6(b), rightmost panels].

E. Long-term context

Although salient events are associated on average with

changes in acoustic features, there are many instances in which

a change in acoustic feature does not result in a behaviorally

defined event. Figure 7(a) shows an example of a knocking

sound consisting of two consecutive knocks. While both

knocks elicit equally loud events [Fig. 7(a), top], the behav-

ioral response (bottom) is markedly reduced to the second

knock, presumably because its pop-out factor is not as strong

given that it is a repetitive event based on recent history.

In order to evaluate the effects of long-term context more

comprehensively, we tally the behavioral responses before and

after the strongest loudness changes in our stimuli (top 25% of

all loudness changes). On the one hand, we note that loudness

changes before ([�8,0] s) and after ([0,8] s and [8,16] s) these

strong loudness deviations are not significantly different [Fig.

7(b) top]. On the other hand, loudness increases in a [0,8] s

window are found to elicit a significantly lower response than

both increases in a eight-second window prior to these events

[tð381Þ ¼ 2:68; p ¼ 0:0077] and increases in the following

eight seconds [tð413Þ ¼ 3:2; p ¼ 0:0015] [Fig. 7(b), bottom].

This analysis indicates that acoustic changes over a longer

range (up to 8 s) can have a masking effect that can weaken

auditory salience of sound events.

F. Event prediction

Based on the analysis of acoustic features in the scene,

we can evaluate how well a purely feature-driven analysis

predicts behavioral responses of human listeners. Here, we

compare predictions from the features presented in this study

using a direct combination method as well as cross-feature

combination (see Sec. II). We also contrast predictions from

three other models from the literature. The first comparison

uses the Kayser et al. model15 which calculates salience

using a center-surround mechanism based on models of

visual salience. The second is a model by Kim et al.,19 which

calculates salient periods using a linear salience filter and

linear discriminant analysis on loudness. The third is a

model by Kaya et al.,18 which detects deviants in acoustic

features using a predictive tracking model using a Kalman

filter. While the first two models are implemented as pub-

lished in their original papers, the Kaya model is used with

features expanded to include all the features included in the

current study. All three models are trained using cross-

validation across scenes. Hit and false alarm rates are calcu-

lated using two-second bins (see Sec. II).

Figure 8 shows a receiver operating characteristic or

ROC curve contrasting hit rates and false alarms as we

FIG. 7. (Color online) (a) An example of a stimulus that produces a time-

varying response. A repeated knocking sound elicits a lower response to the

second knock. (b) Effects of strong loudness increases on neighboring loud-

ness increases. Statistically significant differences in the response to these

acoustic changes are labeled by �.

FIG. 8. (Color online) (a) Comparison between different methods of predict-

ing salient events. The inset shows the maximum number of events pre-

dicted by each individual feature, and by the combination of all features.

Features in order are: 1—Flatness, 2—Irregularity, 3—Bandwidth, 4—

Pitch, 5—Brightness, 6—Rate, 7—Scale, 8—Harmonicity, 9—Loudness.

(b) ROC for dense and sparse scenes separately, using the prediction with

the highest performance.
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sweep through various thresholds for each model in order to

predict behavioral responses of salient events. As is immedi-

ately visible in this plot, none of the models is achieving a

performance that comes very close to the theoretical limit of

predictability. The latter is computed here using a measure

of inter-observer agreement (see Sec. II for details).

Comparing the different methods against each other, it is

clear that a model like Kayser’s is limited in its predictive

capacity given its architecture as mainly a vision-based

model that treats each time-frequency spectrogram as an

image upon which center-surround mechanisms are imple-

mented (accuracy of about 0.58, defined as the area under

the ROC curve). Given the highly dynamic and heteroge-

neous nature of the dataset used here, the corresponding

spectrograms tend to be rather busy ‘images’ where salient

events are often not clearly discernible.

In contrast, the model by Kim et al. was designed to

map the signal onto a discriminable space maximizing sepa-

ration between salient and non-salient events using a linear

classifier learned from the data. Despite its training on the

current dataset, the model is still limited in its ability to pre-

dict the behavioral responses of listeners, with an accuracy

of about 0.65. It is worth noting that the Kim et al. model

was primarily designed to identify periods of high salience,

rather than event onsets. Moreover, it was developed for the

AMI corpus, a dataset that is very homogeneous and sparse

in nature. That is certainly not the case in the current dataset.

The Kaya model performs reasonably well, yielding an

accuracy of about 0.71. Unlike the other models, the Kaya

model attempts to track changes in the variability of features

over time in a predictive fashion. It is worth noting that

extending the features of the original Kaya model to the rich

set employed in the current study was necessary to improve

its performance. Interestingly, a relatively simple model

which simply detects changes in acoustic features and inte-

grates across these features in a weighted fashion using lin-

ear discriminant analysis [“Feat Change–LDA” in Fig. 8(a)]

performs equally well as the Kaya model. On average, this

model is able to predict human judgments of salience with

an accuracy of about 0.74 using a linear integration across

features. Of note, a simpler version of the feature change

model that treats all features as equally important remains

limited in its predictable accuracy (about 0.63). This result

further corroborates observations from earlier studies about

the important role of interaction across acoustic features in

determining salience of auditory events.18,37 Also worth not-

ing is that smoothing the behavioral responses helps stabilize

the detection of change points in the acoustic features.

Employing the LDA-based model with raw acoustic features

yields an accuracy of only 0.59.

In order to get a better insight of the contribution of dif-

ferent acoustic features in accurately predicting salient

events, Fig. 8(a) (inset) examines the proportion of events

explained by certain features alone. The analysis quantifies

the maximum hit rate achievable. The figure shows that

loudness is the single best feature, as it can explain about

66% of all events alone. The next best feature, harmonicity,

can explain 59% of events alone. Combining all features

together (rightmost bar) is able to explain all events (100%),

even though it also comes with false alarms as shown in the

ROC curve [Fig. 8(a)]. Qualitatively similar results about

relative contribution of features are obtained when generat-

ing an ROC curve using each of these features individually.

Moreover, the relative contribution of acoustic features to

the prediction of events is consistent with an analysis of

LDA classifier weights which also show that loudness is the

strongest indicator of event salience, followed by harmonic-

ity and spectral scale.

In order to examine the effect of scene structure on the

predictability of its salient events based on acoustics, we

look closely at predictions for sparse vs less sparse scenes.

As noted earlier in this paper, sparse scenes tend to give rise

to more events. Also, by their very nature, sparse scenes tend

to be quieter which makes changes to features such as loud-

ness more prominent, resulting in stronger salience events

[as discussed in Fig. 5(b)]. The sparse scenes with well-

defined events may be more easily described by loudness

alone. This hypothesis is supported by manually separating

the twenty scenes used here into sparse and dense scenes,

and evaluating the model’s performance on each subset. The

prediction for dense scenes with more overlapping objects

shows more of an improvement with the inclusion of addi-

tional features in comparison to the prediction for sparse

scenes. Using maximum hit rate as a metric, loudness alone

was only able to account for 58% of salient events in dense

scenes, while it could explain 82% of events in sparse

scenes. In addition, the event prediction for the dense scenes

is closer to the inter-observer ROC than that of the sparse

scenes.

For the four “control” scenes, which were always paired

with the same competing scene, it is interesting to examine

the impact of the opposite scene on salience of a scene of

interest. As noted throughout this work, auditory salience of

a sound event is as much about that sound event as it is about

the surrounding context including a competing scene playing

in the opposite ear. We include features of this opposite

scene in the LDA classifier. The prediction for one scene

shows great benefit [Fig. 9(a)], since it is paired with a very

sparse scene containing highly distinct events. However, this

effect was not consistent. The prediction of events in a very

sparse scene are hindered slightly by including information

from the opposing scene [Fig. 9(a)], further reinforcing the

idea that event prediction is much more effective on sparse

scenes. The other control pair, which involved two more

comparable scenes in terms of event strength, are mostly

unaffected by including features from the competing scene.

G. Pupillary response

In addition to recording behavioral responses from lis-

teners, our paradigm monitored their pupil diameter through-

out the experiment. The subjects’ pupil size shows a

significant increase immediately following events defined

using these methods [Fig. 10(a)]; with a typical pupil dila-

tion associated with a salient event lasting about three sec-

onds [Fig. 10(a)]. While all salient events correlate with

pupil dilation, not all dilations correlate with salient events.

Figure 10(b) shows that about 29% of pupil dilations
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coincide with salient events (defined as occurring within 1 s

of such an event). Another 26% coincide with other peaks in

the behavioral responses that we did not label as significant

salient events (see Sec. II). Interestingly, 49% of pupil dila-

tions did not coincide with any peak in the behavioral

response. In contrast, there is a strong correspondence

between pupil dilations and changes in acoustic features in

the stimuli. An analysis of all pupil dilations correlates sig-

nificantly with increases in acoustic loudness during the

behavioral task [tð548Þ ¼ 7:42; p ¼ 4:4� 10�13] [Fig. 10(c),

top bar]. At the same time, randomly selected points in

the pupil responses that do not coincide with any significant

pupil variations also do not coincide with any significant

changes of acoustic loudness [Fig. 10(c), bottom bar].

Finally, in order to rule out any possibility of motor factors

during the behavioral task contaminating the pupil response

analysis, we replicate the same analysis of pupil changes

vs loudness changes during a passive listening session of the

same task with no active responses from subjects (N¼ 14).

The results confirm that pupil dilations significantly correlate

with increases in acoustic loudness even during passive lis-

tening [tð355Þ ¼ 4:53; p ¼ 8:2� 10�6] [Fig. 10(c), middle

bar].

IV. DISCUSSION

In this study, we present a database of diverse natural

acoustic scenes with a goal to facilitate the study and model-

ing of auditory salience. In addition to the sound files them-

selves, a set of salient events within each scene has been

identified, and the validity of these events have been checked

using several methods. Specifically, our analysis confirms

the intuition that a change in some or all acoustic features

correlates with a percept of salience that attracts a listener’s

attention. This is particularly true for loud events; but

extends to changes in pitch and spectral profile (particularly

for speech and music sound events). These effects fit well

with contrast theories explored in visual salience.6 In the

context of auditory events, the concept of contrast is specifi-

cally applicable in the temporal dimension, whereby as

sounds evolve over time, a change from a low to a high value

(or vice versa) of an acoustic attribute may induce a pop-out

effect of the sound event at that moment. While earlier stud-

ies have emphasized the validity of this theory to dimensions

such as loudness,16,19,22 our findings emphasize that the

salience space is rather multidimensional spanning both

spectral and temporal acoustic attributes. Increases in bright-

ness and pitch both suggest that higher frequency sounds

tend to be more salient than lower frequency sounds.

Naturally, this could be correlated with changes in loudness

that are associated with frequency38 or more germane to how

high frequencies are perceived. The rise in harmonicity sug-

gests that a more strongly pitched sound (e.g., speech,

music) tends to be more salient than a sound with less pitch

strength. Interestingly, the scale feature (representing a mea-

sure of bandwidth) tended in the opposite direction. Events

that are more broadband and spectrally spread tended to be

more salient than more spectrally narrow events.

FIG. 9. Effects of adding opposing scene information. (a) Examples of pre-

diction performance for two specific scenes, with and without features from

the opposing scene. (b) ROC over all control scenes.

FIG. 10. (a) Average pupil size following events, z-score normalized and

detrended. The black bar represents the region where the pupil size is signifi-

cantly greater than zero. (b) Percentage of pupil size increases that are near

salient events or other peaks in the slope of salience. (c) Change in loudness

associated with increases in pupil size. Error bars represent 61 standard error.
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The relative contribution of various acoustic features

has been previously explored in the literature. Kim et al.19

reported that they observed no improvement to their model

predictions with the incorporation of other features besides

sound loudness in Bark frequency bands. However, in the

present study, features other than loudness do show a contri-

bution. Loudness is only able to account for around two-

thirds of the salient events, with the remaining events

explained by one or more of the other eight acoustic features

[Fig. 8(a), inset]. In particular, the other features seem help-

ful in establishing salient events in the context of acousti-

cally dense scenes, in which the difference in loudness

between the background and the salient sound is much

lower. This finding is supported by Kaya et al.39 which

showed that the contribution to salience from different fea-

tures varied across sound classes. The Kaya et al. study used

comparatively more dense acoustic stimuli.

In addition to its multidimensional nature, the space of

auditory salience appears to also be context or category-

dependent. By using a diverse set of scenes of different gen-

res (e.g., speech, music, etc.), our results indicate that

observed contrast across acoustic attributes does not uni-

formly determine the salience of an auditory event, but

rather depends on general context in which this event is pre-

sent. Notably, speech events appear to be strongly associated

with increases in harmonicity. This result aligns with expect-

ations, as speech is a very strongly pitched sound. Similarly,

because it is pitched, speech is characterized by a low spec-

tral flatness. As such it is unsurprising that speech events are

associated with a decrease in flatness. Also worth noting is

that both speech and music events were not associated with

any significant or big changes in a number of spectral met-

rics (including brightness, bandwidth) in contrast with more

percussive-type events such as devices and tapping. These

latter two contexts induced an expected dominance of loud-

ness [Fig. 6(b), rightmost panels]. However, it is interesting

that musical events show the least consistent changes across

all features, perhaps indicating that what makes a musical

section salient is much more intricate than basic acoustics.

Overall, these results suggest that the analysis of salience

may need to carefully consider the contextual information of

the scene; even though the exact effect of this categorization

remains unclear.

Moreover, an interesting observation that emerges from

the behavioral judgments of listeners is that auditory salience

is driven by acoustic contrast over both short (within a cou-

ple of seconds) and long (as much as 8 s) time spans. The

multi-scale nature of integration of acoustic information is

not surprising given that such processing schemes are com-

mon in the auditory system; especially at more central stages

including auditory cortex.40 However, it does complicate the

development of computational models capable of multiplex-

ing information along various time constants; as well as

complementing a basic acoustic analysis with more cogni-

tive processes that enable the recognition of contextual infor-

mation about the scene. This extended analysis over the

longer context of a scene will need to delve into memory

effects and their role in shaping salience of sound events by

reflecting interesting structures in the scene such as presence

of repetitive patterns (that may become less conspicuous

with repetition) or familiar transitions (as in the case of

melodic pieces).

The choice of a diverse set of natural scenes was crucial

to painting a fuller picture of this auditory salience space.

This follows in the tradition of studies of visual salience;

which greatly benefited from an abundance of databases with

thousands of images or video with clearly labeled salient

regions based on eye-tracking, visual search, identification,

and detection measures.12 The widespread availability of such

databases has greatly facilitated work ranging from visual per-

ception to computer vision. Crucially, the abundance of data-

sets brought forth a rich diversity of images and videos that

challenged existing models and pushed forth advances in our

understanding of visual attention and salience. Our goal in the

present study is to provide a rich database that takes a step

towards achieving the same benefits for the study of auditory

salience, providing a level of facilitation and consistency

which has previously been unavailable. While the dataset

used here represents only a tiny fraction of the diversity of

sound in real life, it provides a small benchmark for future

models and theories of auditory salience, while stirring the

conversation about appropriate selections for development of

future datasets.

Scene variety is one of the key qualities of this set of

scenes, encouraging the development of models that apply to

a wider range of settings. This versatility would be vital to

many applications of salience research, such as use in hear-

ing aids and audio surveillance, or as a preliminary filter for

scene classification.41 Aside from subjective evaluation and

comparison of acoustic features, the scene variety in this

database is also reflected in the differing behavioral response

to each scene. Some scenes had strong, clearly defined

events while others had relatively weaker events; some had

many events while others had only a few.

As with all studies of salience, the choice of behavioral

metric plays a crucial role in defining the perceptual context

of a salient event or object. In vision, eye-tracking is a com-

monly chosen paradigm as eye fixations have been strongly

linked to attention42 although there is still some influence of

top-down attention as seen through task-dependent effects.43

Other methods that have been employed include mouse

tracking, which is a reasonable approximation to eye track-

ing while requiring less equipment, even though it is nois-

ier.44 Manual object annotation is also common, such as in

the LabelMe45 and Imagenet46 databases. Although manual

labeling may be influenced more by top-down information

and can consume more time per scene, large amounts of

such annotations have been collected using web-based

tools.45

In the present study, pupil size provides the closest anal-

ogy to eye tracking while mouse movements are analogous

to mouse tracking. Consistent with previous results in audio

and vision studies,47–49 our analysis shows that when a

salient stimulus is received, pupils naturally dilate to try to

absorb as much information as possible. However, using the

complex scenes employed in the current study sheds light on

a more nuanced relationship between pupil dilations and

auditory salience. As the results indicate, pupil dilation
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correlates strongly with acoustic variations; but not all

acoustic variations imply behaviorally salient sound events.

In other words, while almost all salient events correlate with

an increase in pupil size locally around the event, increases

in pupil size do not always coincide with presence of a

behaviorally salient event. As such, pupillometry cannot be

used as a sole marker of bottom-up salience. It is therefore

necessary to engage listeners in a more active scanning of

the scenes, since they have to indicate their attentional state

in a continuous fashion. Obviously, by engaging listeners in

this active behavioral state, this paradigm remains a flawed

indicator of salience. To counter that effect, a large number

of subjects is sought to balance results against consistency

across subjects. Alternative measures based on non-invasive

techniques such as EEG and MEG are possible and are being

investigated in an ongoing follow-up work.

Despite being an imperfect metric for salience, the

behavioral paradigm used in the present study provides a

clear account of the onsets of salient events; hence allowing

a direct evaluation of the concept of temporal contrast which

also champions an analysis of temporal transitions over

sound features. Using such a model proves relatively power-

ful in predicting human judgments of salient events, though

limitations in this approach remain due to its local nature in

the acoustic analysis, as well as failure to account for the

diversity of scenes present. Qualitatively, the results of this

study match some of the other trends in the visual salience

literature as well. In both, some categories of objects are

more difficult than others, in addition to the discrepancy

between different scenes. Difficulty in predicting salience in

dense acoustic scenes lines up with performance of visual

salience models. Borji50 recommends focusing on scenes

with multiple objects, in part because models perform more

poorly for those complex scenes. Similarly, the dense audi-

tory scenes in this study contain events that were much more

difficult for any of the existing models to predict. The larger

discrepancy between the model predictions and the inter-

observer agreement confirms that there is more room for

improvement for these scenes. Models of auditory salience

need to be designed with these types of stimuli in mind.

In line with the visual literature, our analysis suggests

that smoothing of the acoustic features is required to even

come close to a good prediction of the acoustic salient

events. This is analogous to suggested observations that

models that generate blurrier visual maps perform better in

the visual domain.11 Moreover, models of visual salience

incorporating motion in videos have not performed better

than static models.11 Similarly, some basic attempts at incor-

porating longer term history in our model of auditory

salience were not able to improve predictions. That is not to

say, that history plays no role in salience in either field, but

that its role may be complex and difficult to model.

Finally, it is worth noting that the lingering issue of the

role of top-down attention in the entire paradigm remains

unclear despite efforts to minimize its effects. It has been

suggested that events with high inter-subject agreement may

be associated with true salience, while those with low inter-

subject agreement may be associated with top-down atten-

tion, because of the variability in what people consciously

think is important.19 However, since it would be difficult to

dissociate events due to top-down attention from simply

weaker events resulting from salience, that distinction is not

made here. In fact, with the attempts made to minimize

effects of top-down attention in this study, it is likely that

weaker events identified here are still a result of bottom-up

processing.
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