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Sound systems and speech technologies can benefit greatly from a deeper understanding of how the
auditory system, and particularly the auditory cortex, is able to parse complex acoustic scenes into
meaningful auditory objects and streams under adverse conditions. In the current work, a
biologically plausible model of this process is presented, where the role of cortical mechanisms in
organizing complex auditory scenes is explored. The model consists of two stages: �i� a feature
analysis stage that maps the acoustic input into a multidimensional cortical representation and �ii� an
integrative stage that recursively builds up expectations of how streams evolve over time and
reconciles its predictions with the incoming sensory input by sorting it into different clusters. This
approach yields a robust computational scheme for speaker separation under conditions of speech or
music interference. The model can also emulate the archetypal streaming percepts of tonal stimuli
that have long been tested in human subjects. The implications of this model are discussed with
respect to the physiological correlates of streaming in the cortex as well as the role of attention and
other top-down influences in guiding sound organization. © 2008 Acoustical Society of America.
�DOI: 10.1121/1.3001672�
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I. INTRODUCTION

In our daily lives, we are constantly challenged to attend
to specific sound sources in the midst of competing back-
ground chatter—a phenomenon usually referred to as the
cocktail party problem �Cherry, 1953�. Whether at a real
cocktail party, walking down a busy street, or having a con-
versation in a crowded coffee shop, we are constantly ex-
posed to cluttered information emanating from multiple
sources in our environment that we have to organize into
meaningful percepts �Bregman, 1990�. This challenge is not
confined to humans. Animals too, including other mammals,
birds, and fish, have to overcome similar challenges in order
to navigate their complex auditory scenes, avoid predators,
mate, and locate their newborns �Aubin and Jouventin, 1998;
Fay, 1998; Hulse et al., 1997; Izumi, 2001�.

Despite the seemingly effortless and intuitive nature of
this faculty and its importance in understanding auditory per-
ception as a whole, we still know very little about the prin-
ciples that govern stream segregation in the brain, or about
the neural underpinnings underlying this perceptual feat.
How does the auditory system parse acoustic scenes as inter-
ferences appear sporadically over time? How does it decide
which parts of the acoustic signal belong together as one
coherent sound object? Tackling these questions is key to
understanding the bases of active listening in the brain as
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well as the development of efficient and robust mathematical
models which can match up to the biological performance of
auditory scene analysis tasks.

To solve this problem, the auditory system must success-
fully accomplish the following tasks: �a� extract relevant
cues from the acoustic mixture �in both monaural and binau-
ral pathways�, �b� organize the available sensory information
into perceptual streams, �c� efficiently manage the biological
constraints and computational resources of the system to per-
form this task in real time, and �d� dynamically adapt the
processing parameters to successfully keep up with continu-
ously changing environmental conditions.

Due to the significance of this question in both percep-
tual and engineering sciences, interest in tackling the phe-
nomenon of auditory scene analysis has prompted multidis-
ciplinary efforts spanning the engineering, psychology, and
neuroscience communities. On one end of the spectrum, nu-
merous studies have attempted strict engineering approaches
such as the successful application of blind source separation
techniques �Bell and Sejnowski, 1995; Jang and Lee, 2004;
Roweis, 2000�, statistical speech models �Ellis and Weiss,
2006; Kristjansson et al., 2006; Varga and Moore, 1990�, and
other machine learning algorithms. Despite their undeniable
success, these algorithms often violate fundamental aspects
of the manner humans and animals perform this task. They
are generally constrained by their own mathematical formu-
lations �e.g., assumptions of statistical independence�, are
mostly applicable and effective in multisensor configura-

tions, and/or require prior knowledge and training on the
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speech material or task at hand. On the other end of the
spectrum are the psychoacoustic studies that have focused on
the factors influencing stream segregation, and, in particular,
the grouping cues that govern the simultaneous and sequen-
tial integration of sound patterns into objects emanating from
a same environmental event �Bregman, 1990; Moore and
Gockel, 2002�. These efforts have triggered a lot of interest
in constructing biologically inspired systems that can per-
form intelligent processing of complex sound mixtures.
Models developed in this spirit offer mathematical frame-
works for stream segregation based on separation at the au-
ditory periphery �Beauvois and Meddis, 1996; Hartman and
Jonhson, 1991; McCabe and Denham, 1997�, or extending to
more central processes such as neural and oscillatory net-
works �von der Malsburg and Schneider, 1986; Wang and
Brown, 1999�, adaptive resonance theory �Grossberg et al.,
2004�, statistical model estimation �Nix and Hohmann,
2007�, and sound-based models �Ellis and Weiss, 2006�. De-
spite demonstrations often restricted to relatively simple and
abstract stimuli �e.g., tones and noise sequences�, these
implementations contributed heavily and in different ways to
our current thinking of the neurobiology of scene analysis.

The present work attempts at bridging the gap between
these two directions. Like the former, it provides a tractable
computational framework to segregate complex signals
�speech and music�; but like the latter approaches, it does so
in the spirit of biological plausibility. The fundamental aim
of this model is to demonstrate how specific auditory cortical
mechanisms can contribute to the formation of perceptual
streams.1 The model operates on single �monaural� inputs. It
is “behaviorally” realistic, requiring no prior training on spe-
cific sounds �voices, languages, or other databases�, no as-
sumptions of statistical independence or multiple micro-
phones, and can segregate sounds ranging from the simple
�tones and noise� to the complex �speech and music�. The
architecture of the model consists of two main components:
�i� a feature analysis stage that explicitly represents known
perceptual features in a multidimensional space, such as
tonotopic frequency, harmonicity �pitch�, and spectral shape
and dynamics �timbre� and �ii� an integrative and clustering
stage that reconciles incoming perceptual features with ex-
pectations derived from a recursive estimation of the state of
the streams present in the environment. Sensory information
is hence assigned to the perceptual clusters that match them
best.

This paper begins with a detailed description of the
model in Sec. II. In Sec. III, we present simulations of the
performance of the model under different auditory scene
configurations. We also test the contribution of the different
cortical mechanisms modeled in the current study to the pro-
cess of stream segregation. Finally, we end with a summary
of the different aspects of the model, then a discussion of the
interaction between the cortical circuitry and higher-level at-
tentional signals, and the possible role and mechanisms of
dynamic change in the auditory cortex in perceptual stream

formation.
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II. THE COMPUTATIONAL AUDITORY MODEL

The computational scheme presented here is principally
based on functional models of the primary auditory cortex
�A1�. This work is motivated by a growing body of evidence
strongly suggesting a role of the auditory cortex in processes
of auditory stream formation and sound organization �see
Nelken �2004� for a review�. Specifically, the present model
abstracts and incorporates three critical properties of A1
physiology. �i� Multidimensional feature representation: Au-
ditory cortical neurons are selectively sensitive to a host of
acoustic features �sometimes in an ordered manner mani-
fested as “response maps”� such as the tonotopic axis, tuning
bandwidth and asymmetry maps, thresholds, fast temporal
AM and FM modulations, and interaural cues �Middlebrooks
et al., 1980; Schreiner, 1998�. This varied sensitivity implies
that sounds with different perceptual attributes may activate
different neural populations, enabling them to potentially be
perceived as segregated sources. �ii� Multiscale dynamics:
A1 responses exhibit temporal dynamics �Kowalski et al.,
1996; Miller et al., 2002� that are commensurate with time
scales of stream formation and auditory grouping as well as
speech syllabic rates and intonation contours, musical melo-
dies, and many other sensory percepts �Carlyon and
Shamma, 2003; Elhilali et al., 2003; Miller and Taylor, 1948;
Viemeister, 1979�. Furthermore, numerous studies have cor-
roborated the involvement of the auditory cortex in the tem-
poral organization of acoustic sequences �Colombo et al.,
1996; Jerison and Neff, 1953; Kelly et al., 1996; Raus-
checker, 2005�. �iii� Rapidly adapting receptive fields: Physi-
ological and imaging studies suggest that cortical receptive
fields are rapidly modulated by auditory experience, behav-
ioral context, attentional and cognitive state, expectations
and memories, as well as the statistics of the stimulus �Fritz
et al., 2005; Hughes et al., 2001�. These findings support a
view of auditory perception and scene analysis as a dynamic
process mediated by an adaptive cortex that optimizes its
representation of incoming sounds according to the objec-
tives of the auditory task.

These three cortical response properties provide the key
ingredients of the present model, as described in detail below
and schematized in Fig. 1. While not strictly biophysical in
detail, all elements of the model are nevertheless abstracted
from known auditory physiological processes, perceptual
phenomena, and anatomical structures.

A. The feature analysis and representation stage

The initial feature analysis stage projects the input sound
onto a multidimensional perceptual space, allowing a natural
segregation of the acoustic waveform along multiple dimen-
sions, whereby different sound features occupy different ar-
eas of this space. This stage parallels the feature selectivity
in neurons along the auditory pathway up to the auditory
cortex, whereby a host of cells is tuned or best driven by
different attributes of the acoustic signal along several di-
mensions �tonotopic frequency, spectral shape, etc�. Our
working hypothesis is that these feature maps are, in fact, a
mechanism which permits the brain to “see” elements of

each sound object distinctly represented, with minimal inter-

lhilali and S. A. Shamma: Cocktail party problem: A cortical account



ference from the other sources, hence getting an uncontami-
nated “look” at features of each stream. By having a rich
enough representation, different sound objects occupy differ-
ent regions of the feature space, hence the emergence of
“clean looks” of each individual stream. In our model, this
operation is performed by mapping the sound mixture onto a
succession of instantaneous clean looks based on primitive
acoustic features such as onsets, harmonic relationships, or
spectral shapes and bandwidths. It is important to note that
these looks or patterns are extracted on an instant-by-instant
basis, yielding a sequence of unlabeled feature vectors at any
given instant. Only in the subsequent clustering stage of the
model are they assigned to their corresponding “streams”
and integrated over time.

In the current version of the model, the initial analysis
stage consists of the following operations. �i� A frequency
analysis that captures early auditory processing in the co-
chlea and midbrain nuclei �Shamma, 1998; Wang and
Shamma, 1994�. It transforms the acoustic stimulus to an
auditory time-frequency spectrographic representation with
enhanced onsets and �to a lesser extent� offsets. �ii� A har-
monicity analysis which groups harmonically related compo-
nents into different channels in a process consistent with the
perception of pitch �Goldstein, 1973; Oxenham et al., 2004;
Wightman, 1973�. �iii� A multiscale spectral analysis of the
auditory spectrogram, as presumed to occur in primary audi-
tory cortex �Schreiner, 1998�. It is implemented by an instan-
taneous affine wavelet transformation of the spectral slices of
the auditory spectrogram. All parameters of these processes
are consistent with physiological data in animals �Langner,
1992; Miller et al., 2002; Schreiner and Urbas, 1988� and
psychoacoustical data in human subjects �Eddins and Bero,
2007; Green, 1986; Supin et al., 1999; Viemeister, 1979�. In
the current implementation of the model, we have left out
several acoustic features that are known to aid stream segre-
gation such as fast AM and FM modulations as well as spa-

FIG. 1. Schematic of a model for auditory scene analysis. The computationa
waveform into a multidimensional cortical representation, and an integrativ
streams. The gray captions within each stage emphasize the principle outputs
added to the representation at each module, evolving from a 1D acoustic
dimensional harmonicity mapping �time-frequency-pitch frequency� to a
shape�. The integrative and clustering stage of the model is initiated by a
feature vectors I�t�. These vectors are then integrated by multirate cortical dy
a Kalman-filter-based process. The cortical cluster use their current states to
perceived streams are always available online as they evolve and take their
tial cues. They can be readily incorporated into the model by
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creating additional representational axes. Next, we elaborate
on the implementation of each one of these operations.

1. Peripheral auditory processing

The initial stage of the model starts with a transforma-
tion of the signal from a pressure time waveform to a spa-
tiotemporal activation pattern. It captures the basic process-
ing taking place at the level of the auditory periphery
�Pickles, 1988�, including cochlear filtering, hair-cell trans-
duction, and auditory-nerve and cochlear-nucleus spec-
trotemporal sharpening. Briefly, it consists of a cochlear-filter
bank of 128 constant-Q highly asymmetric bandpass filters
�Q=4� equally spaced on a logarithmic frequency axis x with
center frequencies spanning a range of 5.3 octaves �i.e., with
a resolution of 24 channels per octave�. Next, a hair-cell
stage transduces the cochlear-filter outputs into auditory-
nerve patterns via a three-step process consisting of high-
pass filtering, a nonlinear compression, and low-pass leak-
age, effectively limiting the temporal fluctuations below
5 kHz. Finally, a lateral inhibitory network performs a sharp-
ening of the filter-bank frequency selectivity mimicking the
role of cochlear-nucleus neurons �Sacks and Blackburn,
1991; Shamma, 1998�. It is modeled as a first difference
operation across the frequency channels, followed by a half-
wave rectifier, and then a short-term integrator. Extensive
details of the biophysical grounds, computational implemen-
tation, and perceptual relevance of this model can be found
in Wang and Shamma �1994� and Yang et al. �1992�.

We complement the model above with an additional on-
set sharpening stage to emphasize the presence of transient
events in this spectrographic representation. We apply a
high-pass filter �filter cutoff about 400 Hz� to the output of
each frequency channel to boost the transient energy in the
signal. By accentuating the representation of onsets in the
spectrogram, we are reinforcing the likelihood of synchro-

del consists of two stages: a feature analysis stage, which maps the acoustic
clustering stage, which segregates the cortical patterns into corresponding

e different modules. In the feature analysis stage, additional dimensions are
eform �time� to a 2D auditory spectrogram �time-frequency� to a three-
ultiscale cortical representation �time-frequency-pitch frequency-spectral
ring module which determines the stream that matches best the incoming
cs, which recursively update an estimate of the state of streams A and B via
e a prediction of the expected inputs at time t+1: IA�t+1� and IB�t+1�. The
stable form.
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segment, hence biasing them to be labeled as originating
from a common source �Bregman, 1990�. It is worth noting
that this stage does not explicitly extract common onsets
across frequency channels. Rather, the sharpening process is
performed on each individual channel independently by way
of contrast enhancement. An indirect consequence of this
stage is that sound elements starting at the same time will
emerge with an enhanced representation, increasing the like-
lihood of grouping them together.

Given a discrete-time signal s�t�; t=0,1 , . . . ,n, the op-
erations above compute a time-frequency activity pattern
P�t ,x� that represents a noise-robust �Wang and Shamma,
1994� equivalent of an acoustic spectrum, called a
sharpened-onset auditory spectrogram �see Fig. 2�. It not
only encodes the instantaneous power in each frequency
band but also captures the temporal dynamics of the spectral
components falling within the bandwidth of each band, giv-
ing rise to fast “envelope modulations” of the signal. In ad-
dition, it exhibits an enhanced representation of onset cues
across the entire spectrum.

2. Harmonic analysis

Grouping of sound elements is facilitated if they bear a
harmonic relationship to each other, making them easily seg-
regated from elements with different fundamental frequen-
cies �Moore et al., 1986�. Hence, we add an explicit period-
icity pitch axis to the time-frequency spectrogram P�t ,x�. We
use a pitch extraction algorithm based on a template match-
ing model, similar to that proposed by Goldstein �1973� and
Shamma and Klein �2000�.

The algorithm begins by generating an array of har-
monic templates at different fundamental frequencies �F0’s�
following the procedure in Shamma and Klein �2000�. Next,
a template matching procedure is applied, essentially similar
in spirit to numerous pitch matching techniques present in
literature �Cohen et al., 1995; Duifhuis et al., 1982�. This
stage starts by comparing the input spectrum P�x ; t0� at every
time instant t0 with the entire array of templates using a
point-by-point multiplication of the spectra �of the signal and
each template for all F0 values�. Based on the match be-
tween the input spectrum and the harmonic templates, we
build a distribution of pitch values across the F0 �or harmo-
nicity� axis, where the pitch strength at a given fundamental
frequency F0 is based on the goodness of match �Euclidean

FIG. 2. Peripheral auditory processing. The schematic depicts the stages of
transduction, spectral and temporal sharpening, and onset enhancement. The
distance� between the spectrum and the corresponding tem-
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plate �Fig. 3�. Hence, the one-dimensional �1D� spectrum
P�x ; t0� yields a two-dimensional �2D� pattern Ph�x ,h ; t0� in-
dexed by tonotopic frequency x �covering a range of 5.3
octave� and fundamental frequency h �covering the pitch
range from 70 to 300 Hz�. Additionally, we append to the
pitch axis a copy of the full original spectrum P�x ; t0�. This
serves to present evidence of the energy in the signal in the
absence of any salient harmonicity cues. For instance, a fri-
cative �such as �s�� would produce an aperiodic hissing that
lacks any salient pitch estimate and, hence, is only captured
by its full original profile P�x ; t0�.

While many pitch extraction algorithms have been suc-
cessfully applied in sound segregation schemes, we particu-
larly chose the template matching technique for two main
reasons. First, the template model is assumption-free as to
the nature/number of pitches present in the signal and allows
us to extract harmonic structures at any given time instant,
without performing a pitch tracking over time or without an
explicit representation of pitch. Second, models of template
matching have been argued to be plausible biological mecha-
nisms for periodicity pitch �Cohen et al., 1995�. Work by
Shamma and Klein �2000� suggested a biologically inspired
model for the formation of harmonic templates in the early
stages of the auditory system based on the phase-locking
properties of cochlear filters. Their model explains how har-
monic templates can emerge in the peripheral auditory sys-
tem from a simple coincidence detection network operating
across cochlear channels.

Though quite successful in yielding proper pitch esti-
mates of various spectral patterns, the template matching
method has been criticized for its lack of robustness and
particularly for introducing additional estimates at octave or
subharmonic intervals of the fundamental frequency. These
additional estimates are not a real concern for our current
scene analysis model. As shall be discussed later in the de-
scription of our algorithm, the sound segregation is per-
formed based on a best match to the estimate of the sound
source, irrespective of the presence of redundant information
about a source.

3. Cortical processing

Following this peripheral stage, the model proceeds to a
finer analysis of the time-frequency patterns Ph�x , t ,h�, mim-
icking processing of central auditory stages �particularly the

auditory processing starting from cochlear filtering, followed by hair-cell
t of this process is an onset-enhanced time-frequency auditory spectrogram.
early
outpu
primary auditory cortex�. This analysis is strongly inspired
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by extensive physiological and psychophysical experiments
carried over the past two decades. Our current understanding
of cortical processing reveals that cortical units exhibit a
wide variety of receptive field profiles �Kowalski et al., 1996;
Miller et al., 2002; Elhilali et al., 2007�. These response
fields, also called spectrotemporal receptive fields �STRFs�,
represent a time-frequency transfer function of each neuron,
hence capturing the specific sound features that selectively
drive the cell best. Functionally, such rich variety implies
that each STRF acts as a selective filter specific to a range of
spectral resolutions �or scales� and tuned to a limited range
of temporal modulations �or rates�, covering the broad span
of psychoacoustically observed modulation sensitivities in
humans and animals �Eddins and Bero, 2007; Green, 1986;
Viemeister, 1979�. In the current model, we break down this
analysis into a spectral mapping and a temporal analysis. The
spectral shape analysis is considered to be part of the feature
analysis stage of the model, as it further maps the sound

FIG. 3. Harmonicity analysis stage. The auditory spectrogram is further ana
in the figure depicts a mixture of male and female utterances shown in the lo
is extracted and processed through a template matching model. The output o
cross section P�x ; to� yields a good match with a harmonic template at 104
respectively, at that time instant.
patterns into a spectral shape axis �organized from narrow to
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broad spectral features�. On the other hand, the temporal cor-
tical analysis spans two primary ranges: slow ��30 Hz� and
fast ��30 Hz�. The slow dynamics refer to the typical range
of phase-locking rates in the cortical responses and are cor-
related with a host of perceptual phenomena as we review
below. In the model, these dynamics come into play in the
next integrative and clustering stage. Fast dynamics arise
from the selective sensitivity and encoding of rapid rates of
AM and FM stimulus modulations in cortical and precortical
responses ��30 Hz� �Chi et al., 2005; Langner, 1992�. This
feature is not included in the current version of the model.

Spectral shape analysis. Based on the premise that spec-
tral shape is an effective physical correlate of the percept of
timbre, we perform a spectral analysis of each spectral pat-
tern extracted in the earlier stages. This multiscale analysis is
performed by a wavelet decomposition, where each cross
section from the auditory spectrogram Ph�x , t ,h� �at a given

to extract any harmonically related spectral channels. The lower left panel
anel. At time instant t0, a temporal cross section of the spectrogram P�x ; to�
template matching is shown in the top rightmost panel and reveals that the

and another one at 227 Hz, corresponding to the male and female voices,
lyzed
wer p
f this

Hz
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time instant t and harmonic profile h� is processed via a bank
of analysis filters S�� �GS�x ,���:

I�x,t,h,�� = Ph�x,t,h��xGS�x,�� , �1�

where �x is convolution with respect to the tonotopic axis x.
The filter GS�·� is a complex-valued spectral “impulse re-
sponse,” implemented as a Gabor-like mother wavelet that is
parametrized by its most sensitive spectral modulation ���,
spanning the range �1 /8,1 /4,1 /2,1 ,2 ,4 ,8� cycles/octave,
and defined as

GS�x,�� = �gs��x� + j�ĝs��x� ,

�2�
gs�x� = �1 − x2�ex2/2,

where gs�·� and ĝs�·� form a Hilbert transform pair. By de-
fining the filters as complex valued, we are efficiently con-
joining arrays of filters with the same magnitude responses
and varying phase responses. This same analysis can be re-
formulated in real space R by unwrapping the functions gs�·�
along all possible phases between 0 and 2�. Further details
on the filter design can be found in Chi et al. �2005� and
Wang and Shamma �1995�.

This spectral decomposition offers an insight into the
timbre components of each of the acoustic features extracted
so far �Fig. 4�. The local and global spectral shapes in the
acoustic patterns are captured via a bank of spectral modu-
lation filters tuned at different scales �1 /8–8 cycles/octave�.
On the one hand, the coarsest modulation scales capture the
general trend in the spectrum, hence highlighting its broad
spectral attributes, such as speech formants. On the other
hand, the high-order scale coefficients describe the denser
spectral patterns corresponding to features with higher spec-
tral density, such as harmonic peaks. Unlike the cepstral
analysis commonly used in speech recognition systems
�O’Shaughnessy, 2000�, the multiscale model operates lo-

FIG. 4. Cortical spectral shape analysis. Each spectral slice is further anal
various features of the original spectrum, namely, the fundamental frequency
and third formant frequencies F2 and F3�.
cally along the tonotopic frequency axis.
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B. The integrative and clustering stage

The second integrative and clustering stage induces
stream segregation by reconciling incoming sensory infor-
mation with gradually formed expectations �Fig. 1�. The
model builds on the cortical representation described in Sec.
II A 3 as an infrastructure to map the incoming signal into a
multidimensional space where features arising from different
sound sources distribute into areas of activity with minimal
overlap. It effectively allows the system to capture clean
looks of the different streams present in the environment by
mapping the cluttered sound mixtures onto a multitude of
perceptually relevant dimensions. Using these activation pat-
terns, the next critical stage of the model is to integrate these
incoming looks and set up computational rules to cluster
them by labeling them according to the different streams
present in the scene. These rules �or schemas� come into play
to govern how sound elements are assigned to their corre-
sponding perceptual objects and integrated to form coherent
segregated streams.

This integration process postulates that clusters of A1
neurons with typical multiscale dynamics of 2–30 Hz
�Miller et al., 2002� integrate their sensory inputs to maintain
a form of a working memory representation. This memory
trace is used to build expectations of how a stream evolves
over time and makes predictions about what is expected at
the next time instant. By reconciling these expectations with
the actual incoming sensory cues, the system is able to assign
incoming features to the perceptual group that matches them
best �Nix and Hohmann, 2007�. Specifically, the integrative
stage consists of different cortical clusters �two clusters in
the current model�, both governed by a recursive Markovian
process which �i� integrates the input of each cortical array
with dynamics typical of time constants of A1, �ii� uses a
Kalman-filter-based estimation to track the evolution of each
array/stream over time, and �iii� utilizes the recent auditory

via a multiresolution wavelet analysis. The multiscale mapping highlights
nd its harmonic partials as well as its formant peaks �particularly the second
yzed
F0 a
experience to infer what each cluster expects to “hear” next.
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The computation of these different operations is detailed next
and schematized in Fig. 5.

Temporal dynamics and integration. The integrative
stage of the model is initiated by a temporal analysis which
integrates sensory information over time in a process mim-
icking functional cortical models. Specifically, A1 neurons
exhibit selectivity to various temporal dynamics present in
the acoustic input. The temporal features of sound vary over
multiple time scales ranging from sharp transitions to very
slowly evolving patterns. The encoding of these temporal
dynamics �at least at the level of primary auditory cortex�
appears to be achieved through richly diverse networks of
neurons whose STRFs vary from rapidly decaying responses
to more sluggish types. The collection of all such neurons
extends over a broad span of psychophysically observed
temporal modulation sensitivities in both humans and ani-
mals, covering the range 2–30 Hz �Dau et al., 1996; Drul-
lman, 1995; Green, 1986; Viemeister, 1979�.

Mathematically, we capture this temporal analysis via a
wavelet decomposition through a bank of complex-valued
filters R�� �GT�t ,���:

Y�t,x,h,�,�� = I�t,x,h,���tGT�t,�� , �3�

where �t is convolution with respect to the time axis t. The
filter GT�·� is based on a gamma function parametrized by the
temporal modulation ��� which take the values

FIG. 5. Architecture of the feature integration and clustering processes. T

patterns represented in the feature analysis stage. The incoming sensory inpu

most consistent with ÎA�t� are “passed through” the stream A branch into a c
information and outputs a representation of stream A �YA�t�� and it uses the

via a Kalman-filter estimation. This information is in turn used to build an
upper �yellow� panel indicates that a similar process takes place over a s
environment.
�2,4 ,8 ,16,32� Hz and is defined as
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GT�t,�� = �gt��t� + j�ĝt��t� ,

�4�
gt�t� = t2e−3.5t sin�2�t� .

The use of complex valued instead of real filters is motivated
by the same efficient implementation as described for the
spectral filters GS�·�. Further details about the design and
temporal filtering procedure can be found in Chi et al.
�2005�.

Inference and clustering. Apropos of the clustering
stage, we focus on inference schemas to regulate the pattern
segregation process. Inference principles are generic rules
that effectively bias the system to parse the acoustic scene
based on its recent acoustic experiences and contextual ex-
pectations �Barlow, 1994; Humphrey, 1992�. Specifically, the
model uses its recent experience with sources in the environ-
ment to infer what it expects to hear at the next time instant.
If that expectation is matched with physical acoustic cues,
then the cues are assigned to that corresponding sound ob-
ject. If not, they are flagged as a different perceptual object.
These processes capture the dynamic nature of auditory
scene analysis, whereby information about a specific object
builds up and accumulates over time to segregate it from
competing information generated by other streams in the en-
vironment. In addition, they are applicable to all domains of
sounds covering speech, music, environmental sounds, etc.

hematic illustrates the various stages involved in segregated the acoustic

t� are compared to predicted patterns ÎA�t� and ÎB�t�. The features which are

al integrative array. This neural cluster plays a dual role: it accumulates the
able information �I�t� ,Y�t�� to update the current memory trace of stream A

ctation about the next input ÎA�t+1�, hence closing the feedback loop. The
cortical cluster �B�, which tracks the evolution of another stream in the
he sc
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They are generally supplemented by additional cognitive
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mechanisms that involve even higher-level processes such as
linguistic knowledge, sound familiarity, as well as attentive
and memory-based schemas �see Bregman �1990� and refer-
ences therein�. These latter effects are outside the scope of
the current model and shall not be discussed in the present
study.

Mathematically, we implement the inference-based pro-
cesses by reformulating the cortical temporal analysis to al-
low each perceptual stream to be temporally tracked by a
different family of neurons R+ representing an array of rate-
selective units �R�� so that R+= �R��, where �
� �2–30� Hz. The superscript “�” refers to the different per-
ceptual objects being represented in the model, the number
of which needs to be fixed ahead of time. In the current
version of the model, we limit that number to two sources,
i.e., implementing two neural populations R1 and R2. These
neural arrays capture the dynamics of two streams, phenom-
enologically representing foreground and background
streams. Computationally, the segregation model now pro-
ceeds as a three-step feedback-loop system involving the fol-
lowing.

1. Estimation process: Each rate-selective array R+ acts as a
system of memory units whose internal states capture the
recent history of the acoustic object it represents. By up-
dating these internal states over time, we can track the
temporal evolution of the streams and maintain a working
memory representation of the object at the level of the
cortical network R. This operation is carried out by for-
mulating the temporal analysis in Eq. �3� as an autore-
gressive moving average �ARMA� model �Oppenheim
and Shafer, 1999; Proakis and Manolakis, 1992�, which
can be easily mapped into state-space form by introducing
a latent variable representing the internal state �or explicit
memory register�.

2. Prediction process: The memory units for each sound
stream are used to build an expectation of what the stream
family R+ expects to hear in the next time instant �t0+1�
given the auditory experience acquired up to time t0. The
states of this dynamic system are recursively predicted
using a Kalman filter �Chui and Chen, 1999; Welch and
Bishop, 2001�.

3. Clustering process: The predicted Î+�t0+1� and actual
I�t0+1� incoming cues are compared in order to assign the
input patterns to their corresponding clusters based on the
best match between the actual and predicted features. This
implementation of a best-match clustering uses a simple
Euclidean distance measure to contrast the incoming fea-
tures with the predicted states from stage 2 and assign the
clusters �or streams� based on the smallest distance to the
cluster centroids.

The specific implementation of each stage is detailed in
the Appendix. A schematic describing the interaction be-
tween the three processes described above is given in Fig. 5.

III. RESULTS

To demonstrate the effectiveness of the model, we first

test some of the classic paradigms widely used in perceptual
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studies of scene analysis �Bregman, 1990� so as to explain
the role played by the different modules of the model in
sound segregation. We then show simulations of the model
using natural speech-on-music, speech-on-speech, and vo-
coded speech mixtures. All tone and speech simulations em-
ploy the same model configuration without changes or tuning
of parameters across different stimuli. Finally, we test the
contribution of the different model components to its perfor-
mance and establish the relationship between cortical mecha-
nisms and the process of stream segregation.

A. Organization of tone sequences

Stream segregation is strongly influenced by the rhythm
and frequency separation between sound tokens. One of the
simplest and most compelling demonstrations of auditory
streaming involves sequences of alternating tones presented
at different rates and frequency separations. It consists of two
alternating tones; a high “A” note and a low “B” note. Such
sequence is usually perceived as one stream when it is played
at slow rates ��2 Hz� or with small frequency separations
�approximately �1 /6 octave� �van Noorden, 1975�. How-
ever, at larger separations and higher rates, the sequence per-
ceptually splits into two simultaneous auditory streams.

We explore the model’s ability to mimic human percep-
tion as we vary these two critical parameters �frequency
separation between the two notes �FAB and tone repetition
time �T�. The simulation consisted of 10 s long sequences of
alternating two tones. The low note was fixed at 850 Hz, and
the frequency separation between the high and low notes was
varied over the range �3, 6, 9, 12� semitones. Each tone in
the sequence was 75 ms long and the separation onset to
onset between tones A and B was varied systematically over
�100,150,200,300,400� ms. The simulation was repeated
25 times for each sequence without changing the parameters
of the model. Due to the inherent variability in the noise
terms of the Kalman-filter prediction, the outcome of the
simulation can vary if the clustering process is not strongly
biased to segregate one way or another. Each simulation can
yield either a “two-stream” outcome �i.e., each note sequence
segregating into a separate cluster� or a “one-stream” out-
come �i.e., both notes labeled as belonging to one cluster�.
We tallied the simulation outcomes across all 25 repetitions
and computed the average predicted likelihood of perceiving
two streams for all �F and �T values. Figure 6 depicts the
average segregation results across trials. The simulations
show that sequences are more likely to segregate if the fre-
quency separation is above four semitones repeating at a rate
of about 3 Hz or more. Note that the “perceptual segregation
boundary” �shown as a white contour representing a thresh-
old value of 25% in Fig. 6� qualitatively replicates the shape
of this boundary measured in human subjects �van Noorden,
1975�. The exact location of this boundary, however, can be
readily shifted downward or sideways to match human or
animal performance. For instance, by sharpening further the
bandwidth of the frequency analysis, we can shift the bound-
ary downward, thus increasing the likelihood of perceiving
two streams at smaller �FAB’s. Similarly, by increasing sen-

sitivity to faster temporal modulations, we can shift the
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boundary to the left, thus enabling the model to track the
alternating tones hence decreasing the likelihood of perceiv-
ing two separate streams �as shall be shown in detail in a
later section of the results�.

In our simulations of the alternating tone sequences, the
emergence of the different streams occurs rather rapidly,
sometimes within one or two presentations of each tone. In
many circumstances, it is reported that buildup of streaming
can range from a few hundreds of milliseconds to several
seconds �Anstis and Saida, 1985; Bregman, 1978�. To repro-
duce these time scales, it is necessary to incorporate more
biological realism to the cortical processing stage via simple
adaptation processes or synaptic depression mechanisms
known to operate at the level of thalamocortical projections
�see Elhilali et al. �2004� for details�. Habituation of A1 re-
sponses over time has been postulated as a possible neural
mechanism responsible for the observed perceptual buildup
of streaming �Micheyl et al., 2005�.

The role of frequency separation in scene analysis can
be further demonstrated by a sequence of alternating multi-
tone cycles �Fig. 7�a�� which consists of interleaved high
�H1, H2, H3� and low �L1, L2, L3� notes, constructing a
sequence H1, L1, H2, L2, H3, L3,… �Bregman and Ahad,
1990�. The high frequencies were fixed at 2500, 2000, and
1600 Hz and the low frequencies were 350, 430, and
550 Hz. When the tones are played at a fast repetition rate
�e.g., 4–5 Hz�, the sequence is perceived as two segregated
streams of high and low melodies, as depicted in the gray
panels of Fig. 7�a�. The model’s account of this percept origi-
nates in the distribution of receptive field bandwidths �along
the multiscale spectral analysis axis� which range from the
very narrow ��1 /10 octave� to the broad ��2 octaves� with
an average bandwidth of about 1 /6 octave. Humans are most

FIG. 6. Induction of streaming with alternating two tone sequences. The
model’s segregation of alternating two-tone sequences is tested with differ-
ent stimulus parameters and averaged across 25 repetitions. The frequency
separation and tone repetition time values tested are shown with the white
diamond-shaped points. The surface shown in the figure is an interpolation
of the results from these points using a cubic 2D interpolation. The white
contour represents a contour of 25% to indicate a potential coherence
boundary. The low tone in the sequence was fixed at 850 Hz, while the high
note was placed3,6,9,12 semitones higher. Each tone was 75 ms long.
sensitive to patterns with peak spacings of this order �Eddins
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and Bero, 2007; Green, 1986�. Consequently, when the alter-
nating tones are closely spaced, only a minority of receptive
fields can resolve them into two streams. On other hand,
when tones are well separated, two classes of receptive fields
are differentially activated by each tone hence easily segre-
gating them into two clusters. Similarly, the dependence of
streaming on tone presentation rates reflects the dominant
neuronal dynamics of the auditory cortex, as represented by
the multiple time constants governing the cortical integration
in the model. At very slow rates, integrators cannot sustain
their memory �and hence, their expectations� for sufficiently
long times to influence the input, hence biasing the system to
label it as a single stream. At faster rates �commensurate with
cortical time constants�, expectations are fed back, causing
spectrally resolved incoming tones to cluster into two
streams.

B. Timbre-based segregation

Stream segregation in general can be induced between
sound sequences that differ sufficiently along any feature di-
mension in the cortical representation, including different
distributions along the spectral analysis axis �timbre�, harmo-
nicity axis �pitch�, and other axes not included in the current
model such as location cues and fast modulation rates �Gri-
mault et al., 2002; Shinn-Cunningham, 2005�. Figure 7�b�
illustrates the streaming of the two alternating natural vowels
/e/ and /./, each repeating roughly twice per second �i.e.,
about 2 Hz�. Although they have the same pitch �110 Hz�
and occupy roughly the same frequency region, the vowels
are perceived as two segregated streams because their corti-
cal representations are sufficiently distinct along the multi-
scale spectral analysis axis. A detailed discussion of the se-
quential organization of vowels �similar to those tested here�
as well as other speech sounds can be found in Bregman
�1990�, Chap. 6.

C. Old-plus-new heuristic

Implicit in the notion of a stream is a sequence of sounds
that share consistent or smoothly varying properties. To this
effect, sounds with drastically different features violate ex-
pectations built up over time for the ongoing streams and are
hence assigned to new streams. This is consistent with the
well-known old-plus-new principle, stating that “If part of a
sound can be interpreted as being a continuation of an earlier
sound, then it should be” �Bregman, 1990�. Figures 7�c� and
7�d� offer a simple illustration of this principle. In Fig. 7�c�,
an alternating sequence of A tones and a two-tone complex
�B and C� are perceived as two separate streams �Bregman
and Pinker, 1978� because tones B and C are strongly
grouped by this common onset and are sufficiently separated
from the A tone in frequency �1800 Hz versus 650 and
300 Hz�. When tones A and B are equal in frequency �Fig.
7�d��, a continuity is created that combines these tones into a
single stream and breaks the previous grouping of B and C
�Bregman and Pinker, 1978�. Instead, tone C is now per-
ceived as the “new” evidence, against the “old” continuing

stream of the A and B tones.
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FIG. 7. Model simulations of “classic” auditory scene analysis demonstrations. The left column of panels shows the acoustic stimuli fed to the model. The
middle and right columns depict the results of the stream segregation process, which are defined as the time-frequency marginal obtained by integrating the
time-frequency activity across the entire neural population �scale and rate filters� representing each cluster. �a� Multitone cycles: The stimulus consists of
alternating a high sequence of 2500, 2000, and 1600 Hz notes and a low sequence of 350, 430, and 550 Hz �Bregman and Ahad, 1990�. The frequency
separation between the two sequences induces a perceptual split into two streams �middle and right panels�. �b� Alternating vowels: Two natural /e/ and /./
vowels are presented in an alternating sequence at a rate of roughly 2 Hz. The vowels are produced by a male speaker with an average pitch of 110 Hz. Timbre
differences �or different spectral shapes� cause the vowel outputs to segregate into separate streams. �c� Old+new principle �1�: An alternating sequence of a
high A note �1800 Hz� and BC complex �650 and 300 Hz� is presented to the model. The tone complex BC is strongly glued together by virtue of common
onset cues, and hence segregates from the A sequence which activates a separate frequency region. �d� Old+new principle �2�: The same design as in
simulation �c� is tested again with a new note A frequency at 650 Hz. Since tones A and B activated the same frequency channel, they are now grouped as a
perceptual stream separate from stream C �gray panels�, following the continuity principle. �e� Crossing trajectories: A rising sequence �from 400 to 1600 Hz
in seven equal log-frequency steps� is interleaved with a falling sequence of similar note values in reverse �Bregman and Ahad, 1990�.
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Another striking illustration of this “continuation” prin-
ciple is the crossing trajectories paradigm depicted in Fig.
7�e� �Tougas and Bregman, 1985�. When rising and falling
tone sequences are interleaved, subjects are unable to follow
the patterns of notes in each sequence. Instead, they report
hearing a bouncing percept of two streams, as depicted in the
gray panels of Fig. 7�e�, presumably caused by the expecta-
tions of two separate �high and low� streams built up prior to
the crossing point, and which are maintained �by continuity�
after it.

D. Segregation of speech sounds

Parsing complex sound mixtures of speech and/or music
exploits the same principles described for tone sequences. In
both, basic acoustic features are used to extract “clean” looks
from the mixture, which are then parsed into separate
streams based on their consistency with built-up expecta-
tions. In the earlier tone sequence examples, clean features
were readily available since the tones were sequentially pre-
sented. With speech mixtures, clean looks of one speaker or
another are principally derived when components from one
speaker �i� share a common onset and hence are enhanced
together, �ii� are harmonically related and differ in pitch from
the other speaker, and �iii� appear in the gaps within the
simultaneous speech of another speaker, hence providing op-
portunities to sneak clean looks of one of the speakers.

We tested the model’s effectiveness in segregating ran-
domly selected and mixed pairs of speech utterances from
the TIMIT speech database. Given that our approach does
not allow any language-based grammars or speaker-specific
information to shape the segregation process, we are in effect
testing the ability of the model to track and segregate a given
voice based on consistent timbre properties or smooth evo-
lution of its harmonics. To evaluate the results of the model,
we compared how closely the segregated streams matched
the original unmixed signals as quantified by the correlation
coefficient between the original and segregated cortical rep-
resentations. This measure computes a direct linear correla-
tion at zero lag between the two vectors representing the
cortical tensors of clusters A and B. Other suitable metrics
that yield comparable results include the signal-to-noise ratio
�SNR� �between the energy in the original spectrogram and
the difference between the original and segregated spectro-
grams� or the improvement in intelligibility measured by the
spectrotemporal intelligibility index �Elhilali et al., 2003�.
These measures yielded qualitatively equivalent results to
those obtained from the correlation coefficient. Samples of
reconstructed segregated sentences can be heard at http://
www.isr.umd.edu/�mounya/CPP/speech�simulations.htm.
They were synthesized by inverting the streamed multidi-
mensional representations using a convex-projection algo-
rithm �Chi et al., 2005�.

Examples of segregating speech from music and mix-
tures of two simultaneous speakers are shown in Figs. 8�a�
and 8�b�, respectively. In both cases, the segregated spectro-
grams resemble the original versions and differ substantially
from the mixed signal. We quantified the apparent improve-

ment in the case of the speech-on-speech-mixtures by com-
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puting the correlation coefficients from 400 speech mixtures
from both genders, as shown in Fig. 8�c�. For each pairwise
mixture, we computed the similarity between �i� the original
and segregated samples ��seg, segregation correlations�, �ii�
the two original samples ��base, baseline correlations�, and
�iii� the segregated samples against the original competing
signal ��conf, confusion correlations�. The histograms demon-
strate that segregation occurs with an accuracy of �seg

=0.81, which is substantially higher than the “confusability”
baseline, indicated by �conf=0.4 and �base=0.2, hence dem-
onstrating the efficacy of the segregation of the speech sig-
nals into different streams.

Finally, to assess more clearly the role of the integrative
stage in sorting and clustering its inputs, we sought to re-
move the errors introduced by imperfect harmonic analysis
of the mixed inputs and hence test the performance of the
remaining stages in model. To do so, we assumed a “perfect”
harmonic analysis module that can fully separate each frame
of mixed speakers into its two original unmixed frames. Spe-
cifically, we simply bypassed the harmonic analysis by sup-
plying the original unmixed �unlabeled, onset enhanced, and
multiscale analyzed� pairs of spectral cross sections of the
speech signals and determined the performance of the inte-
grative stage in sorting and clustering the patterns into two
streams. As expected, the resulting segregation �indicated by
the correlation coefficients in Fig. 8�c�, right panel� is
slightly better: �seg=0.9, �conf=0.3, and �base=0.2. This im-
provement is due to the cleaner separation between the over-
lapping harmonic complexes and unvoiced speech phonemes
that cannot be segregated by the harmonic analysis module
�as simulated in the section above�, which ultimately causes
a feedthrough between the target and competing streams,
hence increasing the confusion correlation �conf. Conse-
quently, the quality of the reconstructed segregated speech in
this case is noticeably better than the quality obtained from
the segregation of the “true” mixtures.

E. Segregation of mixtures of vocoded speech

We extend the testing of the model by exploring condi-
tions that would not normally induce streaming, hence mim-
icking human failure at segregating certain sound mixtures.
We used simulations of cochlear-implant processing to ex-
plore the model’s performance of impoverished speech-on-
speech mixtures. It is well known that hearing-impaired lis-
teners experience great difficult perceiving speech in noisy
conditions �Festen and Plomp, 1990; Peters et al., 1998�.
Recent work by Qin and Oxenham �2003� explored this phe-
nomenon using implant simulations and showed that fluctu-
ating masker backgrounds �including concurrent speakers�
greatly degrade normal-hearing listeners’ ability to segregate
and perceive vocoded speech. We used a similar procedure
as in the Qin and Oxenham �2003� study to simulate a vo-
coder channel. Specifically, each speech utterance �taken
from the TIMIT database� was filtered into 24 contiguous
frequency bands, equally spaced on an equivalent rectangu-
lar bandwidth �ERB� scale between 80 and 6000 Hz. The
envelope output of each band was used to modulate narrow-

band noise carriers, hence creating a vocoded speech signal
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FIG. 8. �Color online� Model performance with real speech mixtures. �a� Speech-on-music mixtures: Left panels depict spectrograms of a male utterance and
a piano melody. The mixture of these two waveforms is shown in the middle. Model outputs segregate the two sources into two streams that resemble the
original clean spectrograms �derived as time-frequency marginals similar to Fig. 7�. �b� Speech-on-speech mixtures: Male and female speech are mixed and
fed into the model, which segregates them into two streams. To evaluate performance, correlation coefficients ��� are computed as indicators of the match
between the original and recovered spectrograms: �seg measures the similarity between the original and streamed speech of the same speaker. �base measures
the �baseline� similarity between the two original speakers. �conf measures the confusions between an original speaker and the other competing speaker. �c�
Speech segregation performance is evaluated by the distribution of the three correlation coefficients. Left panel illustrates that the average values of �seg

=0.81 are well above those of �conf=0.4 and �base=0.2, indicating that the segregated streams match the originals reasonably well, but that some interference
remains. Right panel illustrates results from the model bypassing the harmonic analysis stage �see text for details�. The improved separation between the
distributions demonstrates the remarkable effectiveness of the integrative and clustering stage of the model when harmonic interference is completely removed
�distribution means � =0.9, � =0.3, and � =0.2�.
seg conf base
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with minimal spectral cues and no temporal fine-structure
information �see Qin and Oxenham �2003� for details�.

We simulated the effect of implant processing on 25
male utterances, each contaminated by a randomly chosen
sentence spoken by a female speaker and added at 0 dB
SNR. The sentences were processed through the vocoder de-
scribed above and presented to the model. We quantified the
model’s performance in a similar fashion, as described in
Fig. 8, by calculating a �seg, �conf, and �base for each pair of
sentences. Our results show that a 24-channel simulation
yields average values of �seg=0.63, �conf=0.58, and �base

=0.2, indicating a worse segregation performance �lower �seg

value� and an increased confusion with the concurrent utter-
ance �higher �conf�. Just like in Qin and Oxenham �2003�, the
impoverished spectral resolution in the implant simulation as
well as lack of temporal fine structure and pitch cues is
largely responsible for the poor segregation between concur-
rent utterances at the level of the cortical representation. This
in turn affects the subsequent integration and clustering stage
where features from different sources are confused as be-
longing to the same cluster, and hence the poor model seg-
regation mimicking listeners’ experiences in these condi-
tions.

F. Testing the model’s components

The model’s aim is to demonstrate how specific auditory
cortical mechanisms contribute to the process of scene analy-
sis and formation of perceptual streams. The processes of
particular interest here are the multiscale analysis, the corti-
cal dynamics, and the adaptive nature of cortical processing.
In order to explore the role of the first two components in
perception of complex auditory scenes and demonstrate their
contribution to the model’s performance, we modified the
structure of the model for testing purposes, as shall be shown
next. The third component �namely, the expectation process�
is hard to modify or omit since it constitutes the core of the
integration and clustering operation. The additional transfor-
mations in the model �e.g., harmonicity analysis, onset en-
hancement, etc.� clearly contribute to solving the stream seg-
regation problem �as shown by the vocoded speech
simulation, for instance�. In this section, we solely focus on
the contribution of the first two cortical mechanisms to
sound segregation.

1. Multiscale analysis

We remove the multiscale analysis stage and basically
perform the clustering operation directly on the harmonic
patterns extracted from the auditory spectrogram
�Ph�x , t ,h��. The goal of this exercise is to explore how the
model’s performance would deteriorate in the absence of the
spectral pattern analysis. The other stages of the model re-
mained unchanged, with the exception that, now, the integra-
tive and clustering stage takes—as input—a time-frequency-
pitch representation as opposed to a four-dimensional �4D�
tensor. In the biological system, this modification of the

model would be equivalent to bypassing the spectral analysis
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performed at the level of auditory cortex and confining the
system to a spectral decomposition performed in precortical
nuclei.

We argued earlier that the contribution of the cortical
spectral analysis is to map different spectral patterns into
different regions of the multiscale axis. For instance, vowels
with different spectral profiles will excite different filters and
hence segregate along this axis, even though they might oc-
cupy the same frequency region and share a common har-
monic structure. In the absence of this spectral analysis, the
model has to rely on the segregation resulting from the co-
chlear analysis as well as the harmonicity mapping, making
it blind to any difference in timbre structure between differ-
ent streams. We test this model stripped of its multiscale
analysis on the alternating vowel example shown in Fig.
7�b�. Figure 9�a� shows the results of this incomplete model.
As expected, the vowels /e/ and /./ produced by the same
speaker share a common pitch of about 110 Hz and occupy
roughly the same spectral region. Therefore, the model has
no evidence to segregate them and to group them into one
stream. Using the tonotopic axis alone, the two vowels over-
lap greatly �lower left panel of Fig. 9�a��. In contrast, the
multiscale analysis reveals the different timbre structures
arising from the two vowels �lower right panels of Fig. 9�a��.
This simulation clearly demonstrates an example of the role
of multiscale spectral analysis in discerning timbres of com-
plex sounds and strengthens the claim that the topographic
organization of mammalian auditory cortex with neurons of
different spectral resolutions and sensitivities �orthogonal to
its tonotopic organization� does indeed underlie the system’s
ability to distinguish between natural sounds of distinct tim-
bres �e.g., speech� �Sutter, 2005�.

2. Cortical dynamic

We stipulate in the current model that cortical time con-
stants play a role in the process of auditory scene organiza-
tion by facilitating the tracking of sound streams over the
course of few to tens of hertz. To test this hypothesis, we
modified the range of cortical time constants implemented in
the model by adjusting the parameters of the temporal filters
�shown in Fig. 1 as cortical clusters A and B�. The full ar-
chitecture of the model remains unchanged, except that now
the integrative and clustering stage operates according to
three possible modes: �1� a normal cortical mode with five
filters spread over the range 2�1,2,3,4,5� Hz �exactly the same
simulation as in Sec. III A�, �2� thalamiclike dynamics where
we also use five filters distributed over the range
2�4,4.5,5,5.5,6� Hz �Miller et al., 2002�, and �3� midbrainlike
dynamics with five filters spanning the range 2�5,5.5,6,6.5,7� Hz
�Miller et al., 2002�. In all three cases, we fixed the number
of temporal filters to 5 in order to maintain a fair comparison
between all three modes of operation. We only varied the
dynamic range of the filters’ tuning.

We tested the model under all three conditions on the
classic alternating two-tone sequence with varying frequency
separation �F and tone repetition time �T �similar to that
described in Sec. III A�. As expected, the boundary �repre-
senting a threshold value of 25%� shifts to the left indicating

that the model becomes sensitive to faster repetition rates
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and is able to track streams repeating at faster rates, hence
following the tones in both frequency channels and grouping
them as one stream �Fig. 9�b��. The leftmost panel is an

FIG. 9. Model performance after modification of parameters. �a� Omitting t
alternating vowels /e/ and /./ �shown in Fig. 7�b��. A time-frequency spectr
grouped as one cluster �shown above� and an empty second cluster. The tw
in each cluster. Below: A tonotopic view of the two vowels �obtained from
overlap in the spectral region occupied by both phonemes. The right panels sh
that emerge from the multiple scale filters. �b� Varying the cortical dynam
varying dynamic ranges for the cortical filters. The white contours are all bo
of Fig. 6.
identical replica of Fig. 6 and is shown to contrast the chang-
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ing boundary as a result of the change in the dynamics of the
model. As the simulations show, the model’s ability to track
streams of separate tonal frequencies is dictated by the clock

ltiscale analysis: The model �without the scale analysis� is simulated using
is presented to the incomplete model and leads to the entire stream being

rightmost panels depict the time-frequency marginals reflecting the energy
ross sections of the spectrogram at different time instances� reveals a great
multiscale view of both phonemes and reveal the different timbre structures
he three panels show results of segregation of alternating two tones with

ries reflecting a 25% threshold of streaming. The leftmost panel is a replica
he mu
ogram
o top
two c
ow a

ics: T
unda
which paces the cortical integrative stage, which can be
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made faster or slower. The segregation boundary �shown in
Fig. 8�b�� is in agreement with human behavioral data only
for the “cortical-like” time constants �leftmost panel�, hence
corroborating our claim of the involvement of cortical-like
integrative processes in the organization of auditory scenes
and formation of perceptual streams.

IV. DISCUSSION

In summary, we have demonstrated that a computational
model of cortical auditory processing consisting of a multi-
dimensional feature representation stage followed by an in-
tegrative clustering stage can successfully tackle aspects of
the “cocktail party problem” and provide an account of the
perceptual process of stream formation in auditory scene
analysis. The model directly tested the premise that cortical
mechanisms play a fundamental role in organizing sound
features into auditory objects by �1� mapping the acoustic
scene into a multidimensional feature space and �2� using the
spectral and temporal context to direct sensory information
into corresponding perceptual streams. Key to this organiza-
tional role are the multiple time scales typically observed in
cortical responses, as well as an internal representation of
recent memory that allows the smooth evolution of streams
over time.

A powerful aspect of our formulation is its real-time
capability because the model forms auditory streams as it
receives its input data, requiring no prior training on a spe-
cific speech corpus or early exposure to a set of voices,
sound categories, and patterns. As shown in Sec. III, such an
adaptive cortical scheme can successfully simulate stimulus
configurations typically tested in auditory scene analysis
studies. Furthermore, it makes use of a variety of instanta-
neous and sequential grouping mechanisms that are postu-
lated to play a pivotal role in streaming, thus demonstrating
that these principles can be effectively generalized to parse
complex stimuli such as real speech mixtures.

The current implementation of the model can be readily
extended to include other perceptual features known to play
a role in sound separation. For instance, the spatial location
of sound sources influences their streaming �Wittkop and
Hohmann, 2003�. Adding this perceptual attribute to the
model entails augmenting the cortical multidimensional rep-
resentation with a spatial dimension whose responses are
computed from midbrainlike processing of binaural cues,
e.g., extraction of interaural-time and interaural-level differ-
ences in the medial superior olive �MSO� and lateral superior
olive �LSO�, or of monaural spectral cues to estimate eleva-
tion �Colburn et al., 2006�. Other perceptual attributes im-
portant for streaming that can be added to the model include
loudness �Bregman, 1990� and rapid temporal modulations
�Grimault et al., 2002�.

A. Role of cortical mechanisms in stream segregation

The overarching motivation of the present work is to
explore the significance of the auditory image that emerges
at the level of A1 and its implications for the process of
stream segregation and scene analysis. Each physiological

mechanism incorporated in the model is ascribed a particular
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functional role and can potentially guide our understanding
of the brain function in general and biological auditory scene
analysis, in particular.

1. Multiscale cortical representation

The organization of the auditory pathway up to the au-
ditory cortex indicates that different auditory features are ex-
tracted from the incoming sounds at various stages and prob-
ably organized into auditory objects at the cortical level
�Nelken, 2004�. This rich image which emerges at the level
of A1 effectively projects the acoustic waveform into a
higher dimensional perceptual space in a mapping reminis-
cent of operations taking place in classification and regres-
sion techniques such as support vector machines and kernel-
based classifiers �Cristianini and Shawe-Taylor, 2000;
Herbrich, 2001�. Specifically, one can draw an analogy be-
tween this cortical representation and kernel-induced feature
spaces, where input vectors are projected onto a higher-
dimensional feature space, hence increasing the computa-
tional power of the classifier and improving the segregation
between the different classes. In a similar fashion, the corti-
cal mapping used in the current model attempts to enhance
discrimination between the different auditory objects in the
scene by allowing them to occupy nonoverlapping parts of
the perceptual space.

A complementary view of this cortical representation
can be thought of in terms of a sparse coding strategy em-
ployed by the auditory system. The rich span of neuronal
selectivities in the primary auditory cortex may underlie a
sparse distributed representation of natural scenes, allowing
the system to optimally and robustly encode the complex
sensory information in acoustic environments with multiple
sources and sound objects �Klein et al., 2003; Olshausen and
Field, 2004; Denham et al., 2007�. Evidence from auditory
cortical physiology is consistent with this view �Woolley
et al., 2005� and suggests that the correspondence between
cortical tuning and spectrotemporal features in natural
sounds constitutes a mapping that effectively enhances dis-
criminability among different sounds. The feature analysis
stage described in the current model builds on this principle
by outlining an extensive perceptual representation with fil-
ters that are selectively driven by particular sound features.

An important contribution of the model presented here is
to formalize a framework that allows us to better understand
this image which emerges at the level of A1. A final word of
caution, however, is that including or excluding one of these
dimensions does not always affect the representation of that
feature alone because the different representational dimen-
sions do not necessarily interact linearly. Consequently, leav-
ing out one axis at any stage might also affect the separabil-
ity of sound elements along other axes, especially with
“complex” or “naturalistic” sounds such as speech.

2. Cortical dynamics

Information in sound occurs on multiple time scales
with different temporal features having distinct acoustic
manifestations, neural instantiations, and perceptual roles. At

the level of the central auditory system �particularly the pri-
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mary auditory cortex�, numerous physiological investiga-
tions have shown that cortical responses appear to be particu-
larly tuned to relatively slow rates of the order of few to tens
of hertz. The sluggishness of cortical responses has been
postulated to correspond very closely to important informa-
tion components in speech and music. In speech, slow tem-
poral modulations reflect movements and shape of the vocal
tract, and consequently the sequence of syllabic segments in
the speech stream. In music, they reflect the dynamics of
bowing and fingering, the timbre of the instruments, and the
rhythm and succession of notes. Overall, the analysis win-
dows at the level of the cortex constitute the “clock” that
paces the process of feature integration over time. In this
respect, the appropriate choice of time constants for this pro-
cess is crucial for achieving the desired performance. Our
work emphasizes that the choice of cortical time constants is
not arbitrary for the process of stream segregation. Rather, it
builds on the compatibility between cortical windows and
information in natural sounds and argues for a tight corre-
spondence between cortical encoding and the processes of
auditory scene analysis. The present model is grounded in
this view and actually relies on the choice of cortical dynam-
ics to regulate the tempo of the feature integration. As dis-
cussed in the results shown in Fig. 8�b�, one can certainly
bias the performance of the model to “speed up” or “slow
down” the process by choosing a different range of time
constants or alternatively weighting the different temporal
filters differently. However, the choice of the range of tem-
poral parameters remains critical to obtain a correct behavior
of the model as well as regulating the predictive stage as
shall be discussed next.

3. Expectation processes

In addition to the appropriate choice of the representa-
tional space, the model relies strongly on a sound classifica-
tion methodology for assigning the feature vectors to their
corresponding classes. Unlike batch techniques, real-time
segregation of these features requires continuous monitoring
of the input and tracking of the different objects in the scene.
Our present implementation accomplishes this process via an
ongoing accumulation of expectations of each object. These
expectations can be thought of as a matched filter that per-
mits into the cluster only sensory patterns that are broadly
consistent with recent history of that class. The principle of a
matched filter has been presented as a reasonable hypothesis
to explain observed plastic changes of cortical receptive
fields �Fritz et al., 2007�. The physiological plausibility of
this mechanism rests on the existence of feedback projec-
tions that mediate the adaptive representation of biological
information under continuously changing behavioral con-
texts and environments.

Adaptive signal processing techniques such as Kalman
filtering have been successfully implemented to model many
forms of dynamic neural adaptation and plasticity in hippoc-
ampal and motor circuits �Eden et al., 2004; Srinivasan
et al., 2006; Wu et al., 2006�. In the current model, we rely
on the recursive nature of the Kalman filter to continuously
estimate the state of each sound stream. The choice of a

linear technique such as Kalman filtering �as opposed to
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other statistical filtering approaches such as particle filtering�
is motivated by a long history of linear systems theory in
characterizing receptive fields in physiological studies. The
cortical STRFs �referred to through this paper� are linear
approximations to a neuron’s selectivity to different features.
We therefore used the same linear formulation as the basis of
the Kalman-filter model.

4. Architecture of the model

Overall, our work stresses that computational schemes
that can capture the essence of these three processes �multi-
scale representation, cortical dynamics, and expectancies�
would be able to perform robustly in problems of sound
segregation. It also ascribes specific roles to these neural
phenomena in the overall strategy of sound organization in
the auditory system. While not all stages may be necessary
for the process of sound segregation for any particular acous-
tic scene, putting all of them together is what allows the
model to perform with any sound mixture without prior
knowledge of the sound class.

For instance, segregation of the tone sequences shown in
Figs. 6 and 7 can easily be achieved without the harmonicity
analysis nor any particular enhancement of the onset cues.
They do, however, rely greatly on the frequency analysis
performed at both the peripheral level and the spectral shape
analysis at the cortical level. Similarly, the harmonicity
analysis contributes to the formation of different speaker
streams in two ways: to help segregate simultaneous �over-
lapped� speech segments and to attend to one harmonic spec-
trum over another. Both of these stem from the unique asso-
ciation of harmonics with pitch through the postulated
harmonic templates �Fig. 3�. To understand these assertions,
consider first how the model streams two alternating �non-
overlapping� different spectra from two speakers. Just as
with the two alternating tones, the two distinct harmonic
spectra will be assigned to different clusters. In this case,
harmonicity does not afford any added advantage to the for-
mation of the streams. When the two harmonic spectra over-
lap, harmonicity �through the templates� helps breakup the
combined spectrum into the two distinct harmonic spectra,
which can then be again assigned to the appropriate clusters.
Without harmonicity, the complex combined spectrum is
treated as a new different spectrum and assigned to a new
cluster. The association of harmonicity with pitch �through
the templates� also facilitates attending to one harmonic
stream over another by “focusing” on the pitch of the
speaker, which in turn may enhance the representation and
streaming of that speaker from the mixture. Without pitch,
attending to a specific speaker would have to depend on
other attributes such as their timbre, accent, or location. Fi-
nally, it is conceivable that other �less commonly encoun-
tered� spectral “regularities” beyond harmonicity can also be
utilized in this streaming process provided they have the
same type of anchor �e.g., pitch or templates� �Roberts and

Bregman, 1991�.
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B. Neural correlates of streaming and attention

The present model is based on the premise that stream-
ing is reflected in the response properties of neurons in the
primary auditory cortex. This hypothesis is corroborated by a
growing body of evidence from experiments that explore the
neural bases of auditory stream segregation. For example,
studies by Fishman et al. �2001� and Micheyl et al. �2005�
have identified a possible correlate of stream segregation in
the primary auditory cortex �A1� of awake monkeys pre-
sented with repeating ABAB tone sequences. Qualitatively
similar results have been obtained in bats by Kanwal et al.
�2003� and in birds by Bee et al. �2004�. Recent results using
awake ferrets trained on auditory scene analysis tasks reveal
changes in the spectrotemporal tuning of cortical receptive
fields in a direction that promotes streaming and facilitates
the formation of two segregated objects �Yin et al., 2007�.

The question remains, however, as to where and how
exactly in the model does the adaptive nature of the STRFs
emerge and serve functionally to promote streaming? We
propose that the buildup of the clusters over time and the
subsequent feedback that changes �or controls� the input
stream into the integrative stage is the model’s explanation
for the experimentally observed rapid STRF changes during
streaming. Specifically, if we were to imagine recording from
a cortical cell represented by one of the integrators in Fig. 1
in the quiescent state �i.e., without feedback�, we would ob-
serve responses with spectral and temporal selectivity that
mimics the STRFs typically seen in A1 �Miller et al., 2002�.
During streaming, the top-down feedback would alter the
input into this cell �at the junction labeled “unsupervised
clustering” in Fig. 1�, effectively changing the selectivity of
the cell or its STRF. Such a change would enhance the inputs
that match the cell’s cluster and suppress those that do not
�i.e., belong to the competing stream�, in agreement with
experimental observations �Yin et al., 2007�.

This view of the relationship between streaming and
rapid STRF plasticity makes several specific predictions that
need to be explored in the future. For instance, STRF
changes in the model essentially represent the neural corre-
late of the so-called “buildup” of streaming. This means that
STRF plasticity must occur rather rapidly, within one or a
few seconds of the initiation of streaming, at a rate commen-
surate with the dynamics of the buildup of the clusters in the
model. So far, STRF adaptation has been detected only over
relatively long epochs �minutes� due to the need to collect
enough spikes to estimate them. New experimental tech-
niques are therefore needed to estimate the STRFs rapidly, in
particular, during the perceptual buildup of the streams.

Another key prediction of the model concerns the role of
attention and its neural correlates in streaming. At first
glance, the model appears to segregate streams rather auto-
matically without “supervision,” suggesting perhaps a mini-
mal or no role for attention in the buildup of this percept.
However, an alternative hypothesis is that the top-down
“feedback loop” in the model is enabled only when the lis-
tener’s attention is engaged. Clearly, without feedback, clus-
tering ceases and no streams can form. Attention, we postu-

late, engages the feedback loop and enables streaming. We
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further postulate that “selective attention” to one stream or
another can modulate the gain in the appropriate feedback
loop, and hence favor the formation and perception of one
�e.g., the foreground stream� over the other �the back-
ground�. Although still conjectural, this view is consistent
with several physiological and psychoacoustic data. One is
the experimental finding that STRF plasticity is not observed
in the absence of attentive behavior �Fritz et al., 2005�, im-
plying that streaming would not occur without top-down
feedback activated by behavior �and presumably attention�.
Another is the modulation by attention of the mismatch
negativity �MMN� component of the auditory evoked re-
sponse, which is often interpreted as a potential neural index
of streaming �Sussman et al., 2007�. A second source of evi-
dence for the critical role of attention is psychoacoustic stud-
ies, demonstrating that switching of attention to an ongoing
acoustic stimulus is always associated with a perceptual
buildup of its streams as if it had been initially “unstreamed”
�Carlyon et al., 2001�. Furthermore, attention has been
shown to modulate streaming, e.g., as in the ability to switch
at will between hearing certain tone sequences as one or two
streams �Sussman et al., 2007� or the interaction between
stimulus parameters and listener’s attentional control in de-
limiting the “fission boundary” and the “coherence bound-
ary” in the perception of alternating tones �Bregman, 1990;
van Noorden, 1975�.

We should note, however, that the exact role of attention
in streaming remains debatable with some evidence suggest-
ing that sound organization can occur in the absence of at-
tention. Such streaming is thought to be driven by “intrinsic”
neural processes, manifested by oddball effects �generally
arising from novel and unexpected stimuli �Näätänen, 1992��
and the persistence of the MMN component even when sub-
jects display no overt attention to the sound �Sussman, 2005;
Ulanovsky et al., 2003�. This preattentive component of
streaming is usually termed “primitive” stream segregation
�Bregman, 1990�. In our model, such primitive stream seg-
regation implies that the top-down feedback must continue to
operate in the absence of attention and that, therefore, STRFs
should display adaptation during passive listening to sound
reflecting the buildup of streams. This hypothesis remains
physiologically untested.
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APPENDIX: FEATURE INTEGRATION AND
CLUSTERING

The clustering of sound features into different classes
�two in the current model� proceeds through a three-step
feedback loop which involves an estimation, prediction, and
clustering stage. Each of these steps is mathematically imple-

mented as follows.
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1. Estimation

To make the dynamics of each filter R�
+ more math-

ematically tractable and allow the tracking of its evolution
over time, we reformulate Eq. �3� as a nth order ARMA
difference equation �Oppenheim and Shafer, 1999; Proakis
and Manolakis, 1992�:

a0Y�t� + ¯ + anY�t − n� = b0I�t� + ¯ + an−1I�t − n

+ 1� , �A1�

where �ai� and �bi� are scalar coefficients corresponding to
impulse response gt�t ,�� and whose values are determined
by applying the Steiglitz–McBride algorithm �Ljung, 1999�.
This latter is a commonly used technique in filter design and
parametric modeling of systems, which allows the computa-
tion of the ARMA coefficients for a prescribed time domain
impulse response.

Next, we reduce this difference equation into a first-
order vector equation following so-called state-space meth-
ods �Durbin, 2001; Pollock, 1999�. Widely used in control
theory, these methods are well suited for defining recursive
time-series systems and compactly describing multi-input
multi-output models in vectorial form. Thus, we introduce a
latent variable called Z�t� which captures the internal state of
the system at discrete times t, and hence operates as a
memory register for the stream being represented. We follow
standard techniques for converting difference equations into
state-space forms �Bay, 1999; Pollock, 1999�, yielding the
new model formulation:

I�t� = AZ�t� + 	�t� , �A2a�

Z�t� = BZ�t − 1� + CY�t� + 
�t� , �A2b�

where Z�t��Z� �t�� �Z�t� ,Z�t−1� , . . . ,Z�t−n+1��T, and A, B,
and C are three fixed-coefficient matrices derived from filter
parameters �ai� and �bi� following the standard techniques
used in difference equation to state-space conversions �see
Pollock �1999� for a step-by-step procedure description�.
Note that we chose to define the state-space model as an
output-input relationship �and not the other way around� by
deriving the observation equation �A2a� as a function of the
input I�t� �not the output Y�t�� because our ultimate goal is to
use this model to make predictions about expected inputs for
a given stream. Additionally, we introduced noise terms �	�t�
and 
�t�� to both equalities in Eq. �A2�. This allows us to
formulate a statistical model of the temporal analysis of each
temporal unit R�

+, which permits a stochastic estimation of
the state-vector Z, and hence a nondeterministic prediction

of the expected input Î+�t�. The perturbation terms 	�t� and

�t� are two Gaussian-noise processes drawn from zero
mean multivariate distributions with covariances P and Q,
respectively.

Therefore, the underlying dynamical system �captured in
Eq. �A2�� is now a Markovchain model where the state esti-
mate at the next time increment Z�t+1� is a function of the
current state Z�t� combined with the input-output variables
�I�t� ,Y�t��. Note that we have as many such systems as we

have rate-selective units ��R��� representing the neural array
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R+ �i.e., each array R+ encompasses five dynamical systems
operating at rates of 2 ,4 ,32 Hz�. Hence, the overall model is
effectively a family of hidden Markov models evolving over
successive discrete-time instants, which collectively capture
the temporal evolution of a given stream.

Given the present formulation, we define an optimal so-
lution for updating the latent variables Z in a way that en-
ables both recursive tracking and prediction of future states.
We opt for a Kalman-filter estimation �Chui and Chen, 1999;
Haykin, 1996� because of its various advantages: �1� it is a
computationally tractable and well defined mathematical so-
lution to such estimation problem, �2� is optimal in the least
mean square sense, and �3� is an online recursive technique
where the current state estimate is computed only from the
previous state �i.e., using recent history of the stream�.
Henceforth, the state variable Z is now updated as a Kalman
filter-based evaluation �Haykin, 1996; Pollock, 1999�, where
the estimate of Z at time t is given by

Ẑ�t� = Ẑ�t�t − 1� + KG�t��I�t� − AẐ�t�t − 1�� ,

KG�t� = ��t�t − 1�AT�A��t�t − 1�AT + P�−1, �A3�

��t� = ��t�t − 1� − KG�t�A��t�t − 1� ,

where Ẑ�t� is the new predicted state at time t, Ẑ�t � t−1� is a
priori estimate of Z conditioned on all prior information up
to time t−1, KG is the Kalman gain �Haykin, 1996�, and ��t�
is the estimate error covariance matrix between the actual
and estimated Z. The starting conditions Z�0� and ��0� are
initialized to small random values.

One of the advantages of using a multirate analysis for
the temporal tracking is the fact that each neural array R+

encompasses a wide range of temporal dynamics. To this
effect, it is important to note that the vector Z�t� reflects
more than the state of the system at exactly time instant t.
Rather, it captures the past history of the system over a time
window governed by the filter dynamics determined by the
transition matrices A, B, and C. This memory can go as far
back as 500 ms in the case of the slow filters operating at
�=2 Hz.

2. Prediction

So far in the model, the input-output pair �I�t� ,Y�t�� is
used to update the current estimate of the latent variable
Z�t�. The next stage involves using this triplet
�I�t� ,Y�t� ,Z�t�� to make an inference about the next expected

input Î�t+1�. To proceed with this prediction, we take advan-
tage of known temporal regularities likely to exist in sound
patterns arising from the same source �i.e., no abrupt spectral
transitions from one time instant to the next� �Becker, 1993;
Foldiak, 1991; Griffiths et al., 2001�. We model this temporal
uniformity by assuming a locally smooth evolution of the
cortical representation for each time step; i.e., the estimated

cortical state Ŷ�t+1� equals the current state Y�t�. Based on
this assumption, the model can make a prediction about the

next input vector Î+�t+1� following the system’s equation

�A2�. This prediction represents the acoustic patterns that the
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cortical unit R�
+ is expecting to hear based on its recent

history in order to maintain a smooth temporal evolution.
Given that each stream is represented by an entire array of
cortical neurons �R�

+�, we sum across the predictions of all

�-units within the array to obtain two expected inputs Î1�t
+1� and Î2�t+1� from the two streams R1 and R2 repre-
sented in the model.

3. Clustering

The final stage is the most crucial step to segregating
incoming sound patterns I�t� into their corresponding percep-
tual streams. This procedure is performed based on a simple
clustering rule that contrasts each input pattern with its clos-
est match from the predictions of the arrays R1 and R2. Only

the pattern that closely matches the predictions Î1�t� or Î2�t�
is used as the next input I�t+1� for that stream following the
clustering “closest match” rule:

h+ = arg min
h

�Î+�t� − I�t�� . �A4�
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