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Abstract Humans are quite adept at communicating in
presence of noise. However most speech processing sys-
tems, like automatic speech and speaker recognition sys-
tems, suffer from a significant drop in performance when
speech signals are corrupted with unseen background distor-
tions. The proposed work explores the use of a biologically-
motivated multi-resolution spectral analysis for speech rep-
resentation. This approach focuses on the information-rich
spectral attributes of speech and presents an intricate yet
computationally-efficient analysis of the speech signal by
careful choice of model parameters. Further, the approach
takes advantage of an information-theoretic analysis of the
message and speaker dominant regions in the speech signal,
and defines feature representations to address two diverse
tasks such as speech and speaker recognition. The proposed
analysis surpasses the standard Mel-Frequency Cepstral Co-
efficients (MFCC), and its enhanced variants (via mean sub-
traction, variance normalization and time sequence filtering)
and yields significant improvements over a state-of-the-art
noise robust feature scheme, on both speech and speaker
recognition tasks.

Keywords Multi-resolution · Speech recognition · Speaker
verification · Biomimetic

1 Introduction

Despite the enormous advances in computing technology
over the last few decades, progress in the fields of auto-
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matic speech recognition (ASR) and automatic speaker veri-
fication/recognition (ASV) still faces tremendous challenges
when dealing with realistic acoustic environments and sig-
nal distortions. Tackling both speech and speaker feats adds
additional hurdles since information about the speaker iden-
tity and the speech message tends to be reflected in slightly
distinct yet overlapping components of the speech signal.
For instance, whereas formant frequencies convey crucial
information about the articulatory configuration of the vo-
cal tract, they also reveal details about speaker-specific vocal
tract geometries. Yet, our brains efficiently decode the signal
information pertaining to both speech content and speaker
identity using a common front-end machinery that is quite
robust even at relatively high levels of distortion and noise
(Greenberg et al. 2004).

Mel-Frequency Cepstral Coefficients (MFCC) are a clas-
sic example of the successful influence of biological in-
tuition onto speech technologies, making them a staple in
state-of-the-art ASR and ASV systems (Chen and Bilmes
2007; Kinnunen and Lib 2010). MFCCs provide a com-
pact form of representing spectral details in the speech sig-
nal, that is motivated by both perceptual and computational
considerations. They exploit the unique nature of frequency
mapping in the auditory system, by warping the linear fre-
quency axis into a nonlinear quasi-logarithmic scale. They
also allow the decoupling of the speech production source
and vocal tract characteristics via homomorphic filtering. In
doing so, they highlight information about both the charac-
teristics and configuration of the speech articulators that can
be translated into a parametrization of both the identity of
the speaker as well as the content of the speech message.
While quite efficient and successful in conveying this infor-
mation, features like MFCCs remain limited by their global
analysis of the frequency spectrum. For instance, the first
few coefficient describe details of the spectral tilt and com-
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pactness in the spectrum; but across all frequencies. Such
broad analysis scatters information in specific frequency re-
gions across all cepstrum coefficients.

In contrast, our knowledge of the central auditory sys-
tem reveals that neurons in the auditory midbrain and pri-
mary auditory cortex exhibit a tuning to spectral details that
is localized along the tonotopic axis (Schreiner and Calhoun
1995; Miller et al. 2002; Escabi and Read 2005). Such neural
architecture provides a detailed multi-resolution analysis of
the spectral sound profile that can bear great relevance to the
front-end feature schemes used in speech and speaker recog-
nition systems. Only few studies have attempted to trans-
late the intricate multiscale cortical processing into algorith-
mic implementations for speech systems, yielding some im-
provements for ASR tasks (in noise) albeit at the expense of
great computational complexity (Woojay and Juang 2007;
Wu et al. 2009). To the best of our knowledge, no similar
work was done for speaker recognition.

Admittedly, translating neurophysiological strategies into
compact and efficient signal processing methods comes with
a number of challenges; which have often hindered the in-
troduction of biomimetic front-ends for such complex tasks
as ASR or ASV (Stern 2011). They often amount to com-
plex and computationally-intensive mappings that are im-
practical to use in real systems. In the present work, we
set out to devise a simple, effective, and computationally-
efficient multi-resolution representation of speech signals
that builds on the principles of spectral analysis taking place
in the central auditory system. By carefully optimizing the
choice of model parameters, the analysis constrains the sig-
nal encoding to a perceptually-relevant subspace that max-
imizes recognition in presence of noise while maintaining
computational efficiency. Further, unlike any of the previous
approaches, speech (linguistic message) and speaker (iden-
tity) dominant regions in the signal encoding are analyzed,
and different parameters are defined for speech and speaker
recognition tasks. By employing the same front-end pro-
cessing machinery, we maintain a generic framework for
speech processing that can change parameters to shift focus
either towards speech content information for ASR tasks or
speaker information for ASV tasks. The following section
describes details of the proposed multi-resolution spectral
model and motivates the choice of its parameters. Next, we
describe the experimental setup and results. We finish with a
discussion of the proposed analysis, and comment on poten-
tial extensions towards achieving further noise robustness.

2 The auditory multi-resolution spectral (AMRS)
features

The parameterization of speech sounds is achieved through
a multistage model that captures processing involved at dif-
ferent levels of the auditory pathway. All speech signals are

first processed through a pre-emphasis stage, implemented
as a first-order high pass filter with pre-emphasis coeffi-
cient 0.97. The one-dimensional acoustic signal s(t) are
mapped onto a time-frequency representation referred to as
auditory spectrogram, following an auditory-inspired model
of cochlear and midbrain processing detailed in Lyon and
Shamma (1996), Yang et al. (1992) and Wang and Shamma
(1994).

The first step consists of cochlear-filtering. This stage
involves convolving the speech signal s(t) with a bank
of 128 constant-Q (Q = 4), highly asymmetric, bandpass
filters h(t;f ), equally spaced on a logarithmic frequency
axis (Eq. (1a)). This operation results in a time-frequency
cochlear spectrogram ycoch(t, f ). Next, a spectral sharpen-
ing operation takes place, by taking a first-difference over
neighboring channels, followed by a half-wave rectifica-
tion (Eq. (1b)). The loss of phase-locking at the level of
the midbrain is then modeled by a short-term integration
over 10 ms windows, followed by a cubic-root compression
of the spectrogram (Eqs. (1c), (1d)). The outcome of this
analysis is a transformation of the one-dimensional signal
s(t) into a time-frequency spectrogram y(t, f ) (Fig. 1(a)).
The resultant spectrogram exhibits a number of character-
istics; most importantly, in preserving detailed speech in-
formation such as formant structure as well as exhibiting
noise robustness qualities over conventional representations
(Shamma 1988; Byrne et al. 1989; Wang and Shamma
1994):

ycoch(t, f ) = s(t) ⊗t h(t;f ), (1a)

ylin(t, f ) = max
(
∂tycoch(t, f ),0

)
, (1b)

ymid(t, f ) = ylin(t, f ) ⊗t μ(t; τ), (1c)

y(t, f ) = (
ymid(t, f )

)1/3
. (1d)

The spectrogram reveals layered information about the
speech signal that is distributed over different frequency
bands and varying over multiple time-constants. The next
stage of processing extracts detailed information about the
spectral shape in y(t, f ) via a bank of modulation filters
operating in the Fourier domain resulting in the spectral cor-
tical representation. The analysis mimics the spectral tuning
of neurons in the central auditory pathway in which indi-
vidual neurons are not only tuned to specific tonotopic fre-
quencies (like cochlear filters); they are also selective to var-
ious spectral shapes, in particular to peaks of various widths
on the frequency axis, hence expanding the cochlear one
dimensional tonotopic axis onto a two-dimensional sheet
(Schreiner and Calhoun 1995; Versnel et al. 1995). This
analysis provides a more localized mapping of the spectral
profile; that not only highlights details of bandwidth and
spectral patterns in the signal but centers around the dif-
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Fig. 1 (a) Processing stages starting from an acoustic waveform s(t)

to obtain AMRS features, parameterized by time t , tonotopic fre-
quency f and spectral modulation filter parameter Ωc . (b) Exam-
ple of spectral details revealed by AMRS analysis for vowel /a/ (c)

(left) Average auditory spectrum computed over the TIMIT corpus,
y(f ) = 〈〈|y(f ; t0)|〉T 〉Ψ ; (right) Average spectral modulation profile,
Y (Ω) = 〈〈|Y (Ω; t0)|〉T 〉Ψ

ferent frequency channels (Fig. 1(b)). Mathematically, the
multi-resolution spectral analysis is modeled by taking the
Fourier transform of each spectral slice y(t0, f ) in the au-
ditory spectrogram and multiplying it by a modulation fil-
ter HS(Ω;Ωc). The inverse Fourier transform then yields
the modulation filtered version of the auditory spectrogram.1

The spectral modulation filter HS(Ω;Ωc) is defined as

HS(Ω;Ωc) = (Ω/Ωc)
2e[1−(Ω/Ωc)

2], 0 ≤ Ω ≤ Ωmax,

(2)

where Ω represents spectral modulations (or scales) and has
units of cycles/octave (CPO), parameterizing the spectral
resolution at which the auditory spectrogram is analyzed.
Ωmax is the highest spectral modulation frequency set at 12
CPO (given the spectral resolution of 24 channels per oc-
tave).

1The modulation filtering is performed in real domain.

2.1 Choice of scales

There are two important aspects in defining the auditory
multi-resolution spectral (AMRS) features for a specific task
(ASR or ASV): (i) the span of the modulation filters; and
(ii) the distribution of filters over the chosen span. In the
current study, we constrain the range of scales to less than 4
CPO, since they cover more than 90 % of the entire spectral
modulation energy in speech (Fig. 1(c)) and are shown to be
most crucial for speech comprehension (Elliott and Theunis-
sen 2009). To determine the filter distribution over the range
0–4 CPO, we employ a judicious sampling scheme in which
the modulation regions with concentrated energy are sam-
pled more densely; while the regions with less energy are
sampled more coarsely. The set of scales Ωc is chosen by
dividing the average spectral modulation profile of speech
(computed over the entire train data of TIMIT corpus (Garo-
folo et al. 1993)) into equal energy regions. The average
spectral modulation profile Y (Ω) = 〈〈|Y(Ω; t0)|〉T 〉Ψ is de-
fined as the ensemble mean of the magnitude Fourier trans-
form of the spectral slice y(t0, f ) averaged over t0 and over
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Fig. 2 Illustration of the
spectral modulation filtering at
scales 0.25, 0.5, 1.0, 2.0, and
4.0 CPO for the utterance “come
home right away” taken from
TIMIT speech database. The top
panel shows the time domain
waveform along with the
underlying phoneme label
sequence

all speech data Ψ . The resulting ensemble profile, shown in
Fig. 1(b), is then divided into M equal energy regions Γi :

Γi =
∫ Ωi+1

Ωi

Y (Ω)dΩ, Γi = Γi+1, i = 1, . . . ,M −1,

(3)

where Ωi and Ωi+1 denote the lower and upper cutoffs for
kth band, Ω1 = 0, and ΩM = 4.

The scheme has the dual advantage of (i) implicitly en-
coding the high energy signal components which are inher-
ently noise robust (ii) sampling the given modulation space
with a smaller set of scales which is important both in terms
of computation complexity as well the dimensionality of the
resulting feature space. Setting M = 5, the sampling scheme
results approximately in a log-scale in the spectral modula-

tion space, at 0.25, 0.5, 1.0, 2.0, and 4.0 CPO.2 The output
of the five spectral modulation filters for an example speech
utterance is shown in Fig. 2.

2.2 Encoding of speech and/vs speaker information

The speech signal, discounting the environmental and chan-
nel effects, carries information about both the underlying
linguistic message and the speaker identity (Fig. 1(b)). This
information is manifested in slightly distinct yet overlapping
components, and to separate these components is in gen-
eral a non-trivial task. The spectral modulation filtering de-
scribed above captures the overall spectral profile including
formant peaks by employing broad scale filters (0.25 and

2The original sampling results in spectral modulations at {0.18,0.59,

1.34,2.36,4.0} CPO.
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Fig. 3 Mutual Information
(MI) between feature
representations encoding
different scales and speech
message (left panel), MI
between feature representations
encoding different scales and
speaker information (right
panel)

0.5 CPO) as well as narrower spectral details such as har-
monic and subharmonic structures using higher resolution
filters (1, 2 and 4 CPO). In order to select a set of scales (Ωc)
that are relevant for diverse tasks such as speech and speaker
recognition, we analyze the mutual information (MI) be-
tween the feature variables (X) encoding various scales and
the corresponding (i) underlying linguistic message (Yl) (ii)
speaker identity (Ys ). The MI, a measure of the statistical
dependence between random variables (Cover and Thomas
2006), is defined for two discrete random variables X and Y

as:

I (X;Y) =
∑

x∈X,y∈Y

p(x, y) log2
p(x, y)

p(x)p(y)
. (4)

To estimate the MI, the continuous feature variables are
quantized by dividing the range of observed features into
cells of equal volume. To characterize the underlying lin-
guistic message, phoneme labels from the TIMIT corpus are
divided into four broad phoneme classes—the variable Yl

thus taking 4 discrete values representing the phoneme cate-
gories: vowels, stops, fricatives, and nasals. The average MI,
taken as the average of the MI computed across all the fre-
quency bands for any given scale, between the feature rep-
resentations at different scales and the speech message is
shown in Fig. 3(a). In the case of speaker identity, the ‘sa1’
speech utterance (She had your dark suit in greasy wash
water all year) taken from the TIMIT corpus is compared
across 100 different speakers—the variable Ys taking 100
discrete values representing the speaker identity. The aver-
age MI between different scales and speaker information is
shown in Fig. 3(b).3

Notice that the lower scales clearly provide significantly
more information about the underlying linguistic message,
while the speaker information is centered around 1 CPO—
probably highlighting the significance of overall spectral
profile including formant peaks in encoding speech message
and the significance of pitch or harmonically-related fre-
quency channels in representing speaker-specific informa-

3The difference in MI levels between the speech message and speaker
identity may be attributed to the observation that the speech signal
encodes more information about the underlying linguistic message as
compared to speaker information.

tion. In order to put more emphasis on message-dominant
information present in the speech signal, it is important to
encode information captured by lower scales for the speech
recognition task. Consequently, for the speaker recognition
task it is useful to encode information captured by higher
scales. Therefore, in the feature encoding for the speech
recognition task we choose Ωc = {0.25,0.5,1.0,2.0} CPO
and for the speaker recognition task Ωc = {0.5,1.0,2.0,4.0}
CPO.

Finally, the filtered spectrograms (one for each scale
in Ωc) are downsampled in frequency by a factor of 4.
This is achieved by integrating the 128 frequency channels
into 32-bands, equally-spaced on a log-frequency axis.4 The
final AMRS features are defined as 128 dimensional fea-
ture vector (32 auditory frequency channels multiplied by
4 scales) at each time frame of 10 ms. An estimate of pro-
cessor usage shows that computing the multi-scale modula-
tion filtering operation on top of the auditory-inspired spec-
trogram increases CPU time by about 75 % relative to an
efficient implementation of Mel-Frequency Cesptral Coeffi-
cients.

3 Experimental setup

3.1 Phoneme recognition setup

Speaker independent phoneme recognition experiments are
conducted on TIMIT database (excluding ‘sa’ dialect sen-
tences), using the hybrid Hidden Markov Model/Multilayer
perceptron (HMM/MLP) framework (Bourlard and Morgan
1994; Trentin and Gori 2003; Garcia-Moral et al. 2011). The
training, cross-validation and test sets consist of 3400, 296
and 1344 utterances from 375, 87 and 168 speakers respec-
tively. 61 hand-labeled symbols of the TIMIT training tran-
scription are mapped to a standard set of 39 phonemes along
with an additional garbage class (Lee and Hon 1989).5

4This reduction of the spectral axis resolution did not affect the
ASR/ASV performance.
5It is possible to achieve higher recognition performance (in clean or
matched condition) by using a larger set of 49 labels during the train-
ing and mapping to the standard set of 39 phonemes only during the
scoring.
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MLP with a single hidden layer is trained to estimate
the posterior probabilities of phonemes (conditioned on the
input acoustic feature vector) by minimizing the cross en-
tropy between the input feature vectors and the correspond-
ing phoneme target classes (Richard and Lippmann 1991).
Temporal context is captured by training a second MLP
(in a hierarchical fashion) which operates on a longer tem-
poral context of 23 frames of posterior probabilities esti-
mated by the first MLP (Pinto et al. 2011). Both MLPs
have a single hidden layer with sigmoid nonlinearity (1500
hidden nodes) and an output layer with softmax nonlin-
earity (40 output nodes). The final posterior probability
estimates are converted to scaled likelihoods by dividing
them with the corresponding prior probabilities (unigram
language model) of phonemes. An HMM with 3 states,
each with equal self and transition probabilities, is used
for modeling each phoneme. The emission likelihood of its
each state is set to be the scaled likelihood. Finally, the
Viterbi algorithm is applied for decoding the phoneme se-
quence. Note that the hybrid HMM/MLP system achieves
better phoneme recognition performance than the standard
HMM/GMM systems (Garimella et al. 2010).

3.2 Speaker recognition setup

Text independent speaker verification experiments using
Gaussian Mixture Models (GMM) are conducted on a sub-
set of the NIST 2008 speaker recognition evaluation (SRE)
(NIST 2008). In our UBM-GMM based speaker recognition
system (Kinnunen and Lib 2010), the Universal Background
Model (UBM) is trained with data obtained from a set of
325 speakers. In the UBM training, a total of 256 mixtures
and 10 expectation-maximization iterations for mixture split
are used. A total of 85 target speaker models are obtained
by maximum a posteriori (MAP) adaptation of the UBM.
MIT Lincoln Lab GMM toolkit is used for the UBM-GMM
training. An independent set of 500 test trials is used to eval-
uate the verification performance. The number of impostor
and genuine trials in the test set are 169 and 331 respec-
tively. The data represents training and testing from an in-
terview setting using the same microphone (NIST 2008).6

This condition is specifically chosen in order to focus on
additive noise distortions, without introducing other chan-
nel mismatch scenarios in the standard NIST SRE—hence
ensuring consistency across ASR and ASV results in noise.
Also, the UBM-GMM recognition backend does not include
factor analysis techniques (Kinnunen and Lib 2010) which
address various channel mismatch scenarios present in the
NIST SREs. Notice however that the UBM-GMM system
used even without the factor analysis techniques achieves

6Corresponds to condition 2 of the eight common conditions evaluated
in the NIST 2008 speaker recognition evaluation.

state-of-the-art recognition performance on the same micro-
phone matched channel condition evaluated in this work.

3.3 Features

(i) For phoneme recognition experiments, each MFCC fea-
ture vector is obtained by stacking a set of 9 frames of
standard 13 Mel frequency cepstral coefficients along with
their first, second, and third order temporal derivatives.7 The
AMRS feature vector is obtained by taking the original 128
dimensions (32 auditory frequency channels ×4 scales, as
described in Sect. 2) along with their first, second, and third
order temporal derivatives.

(ii) For speaker recognition experiments, each MFCC
feature vector is obtained by taking 19 Mel frequency cep-
stral coefficients along with their first and second order tem-
poral derivatives. Note that the higher order cepstral coeffi-
cients are more common in the speaker recognition literature
and form the state-of-the-art feature representation in recent
NIST SREs. Similarly, the AMRS feature vector is obtained
by taking the base feature representation along with its first
and second order temporal derivatives.

4 Recognition results

4.1 Performance of AMRS features

Extending the mutual information analysis presented in the
Sect. 2.2, we empirically show the relevance of set of scales
{0.25,0.5,1.0,2.0} CPO and {0.5,1.0,2.0,4.0} CPO for
speech and speaker recognition tasks respectively. The per-
formance of the AMRS features that encode these two sets
of scales for the ASR and ASV tasks is shown in Table 1.
Notice in particular how encoding the lower scales and omit-
ting the higher scales improved the speech recognition per-
formance, and vice-versa for speaker recognition task.

Table 1 Automatic speech recognition (ASR) and automatic speaker
verification (ASV) performance of AMRS features. ASR performance
is shown in phoneme recognition rate (PRR) and ASV performance is
shown in equal error rate (EER)

Scales encoded in the
features (CPO)

ASR performance
(in PRR, %)

ASV performance
(in EER, %)

[0.25,0.5,1,2] 71.9 3.4
[0.5,1,2,4] 68.7 2.7

7The 9 frame context window and the resulting 468 dimensional fea-
ture representation achieved best recognition performance, better than
the standard 39 dimensional MFCC features (Nemala et al. 2011).
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Table 2 Automatic speech
recognition (ASR) and
automatic speaker verification
(ASV) performance of MFCC
and AMRSF feature
representations for different
types of noise

Noise type SNR (in dB) ASR performance (in PRR) ASV performance (in EER)

MFCC AMRSF MFCC AMRSF

Clean ∞ 71.4 71.9 2.7 2.7

Factory1 20 48.2 61 7.1 5.9

15 38.1 53.1 10.9 7.6

10 28.3 42.7 17.8 11.4

5 19.6 30.9 28.4 18.7

Average 33.5 46.9 16.1 10.9

Babble 20 48.1 64.1 5.4 4.1

15 37.3 55.8 7.9 5.9

10 27.6 43.7 11.5 9.7

5 19.5 29 24.8 14.2

Average 33.1 48.1 12.4 8.4

Volvo 20 60.8 70.9 3.9 2.9

15 55.7 70.7 4.6 3.4

10 49.9 70.1 6.4 4.8

5 42.9 68.9 10.9 6.5

Average 52.3 70.1 6.4 4.4

F16 20 48.5 61.4 10.7 7.5

15 37.8 53.3 16.3 10.7

10 27 40.9 21.7 14.5

5 18.2 27.2 29.9 21.1

Average 32.8 45.7 19.6 13.4

4.2 Comparison with standard front-end features

The proposed AMRS features are contrasted with MFCC
features on both ASR and ASV tasks. To evaluate the noise
robustness aspect of the two feature representations, various
noisy versions of the test set are created by adding four types
of noises at Signal-to-Noise-Ratio (SNR) levels of 20 dB,
15 dB, and 10 dB. The noise types chosen are, Factory floor
noise (Factory1), Speech babble noise (Babble), Volvo car
interior noise (Volvo), and F16 cockpit noise (F16), all taken
from NOISEX-92 database, and added using the standard
FaNT tool (Hirsch 2005). In all the experiments, the recog-
nition models are trained only on the original clean training
set and tested on the clean as well as noisy versions of test set
(mismatch train and test conditions). The phoneme recog-
nition accuracy and speaker verification performance of the
MFCCs and the AMRS features is listed in Table 2. The pro-
posed AMRS features achieve ASR and ASV performance
comparable to that of MFCCs under clean conditions. With
additive noise conditions reflecting a variety of real acous-
tic scenarios, the AMRS features perform substantially bet-
ter than the MFCCs—an average relative improvement of
38.9 % on the ASR task and an average relative error rate
reduction of 31.9 % on the ASV task.

4.3 Comparison with state-of-the-art noise robust scheme

We further compare the performance of AMRS features
with a state-of-the-art noise robust feature scheme, Mean-
Variance ARMA (MVA) processing of MFCC features
(Chen and Bilmes 2007). The MVA processing, when ap-
plied with the standard MFCC features, combines the ad-
vantages of multiple noise robustness schemes: cepstral
mean subtraction, variance normalization, and temporal
modulation filtering. The MVA has been shown to pro-
vide excellent robustness for additive noise distortions
and form the state-of-the-art in noise robustness evalua-
tions on the Aurora 2.0 and Aurora 3.0 databases (Chen
and Bilmes 2007). Note that the auto-regression-moving-
average (ARMA) filtering in the MVA processing is shown
to be superior to temporal modulation filtering techniques
like RASTA (Hermansky and Morgan 1994) for noise ro-
bustness.

To further improve the noise robustness of AMRS fea-
tures and be consistent with the temporal modulation fil-
tering employed in the MVA feature scheme, the AMRS
features are processed with a bandpass modulation filter
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Table 3 Automatic Speech
Recognition (ASR) and
Automatic Speaker Verification
(ASV) performance of
MFCC_MVA and E_AMRSF
representations for different
types of noise

Noise type SNR (in dB) ASR performance (in PRR) ASV performance (in EER)

MFCC_MVA E_AMRSF MFCC_MVA E_AMRSF

Clean ∞ 68.2 69.5 3 2.9

Factory1 20 55.7 61.7 5.4 5.2

15 48.4 55.3 10 6.5

10 39.4 45.5 16.6 10.7

5 30.2 34.3 23.9 16.3

Average 43.4 49.2 13.9 9.6

Babble 20 56.5 64.5 4.5 3.9

15 49.5 57.7 6.2 5.4

10 40.7 48.1 10.7 8.9

5 29.7 34.4 19.5 12.4

Average 44.1 51.1 10.2 7.6

Volvo 20 63.5 69.4 3.6 3

15 62 69.2 5.2 3.4

10 60.2 68.6 6.5 4.6

5 58.1 67.7 9.4 6.2

Average 60.9 68.7 6.1 4.3

F16 20 57.1 61.8 12.4 7.3

15 50.8 55.6 18.3 10.2

10 43.2 46.4 22.4 12.4

5 34.6 35.1 26.6 16.6

Average 46.4 49.7 19.9 11.6

applied in the temporal domain.8 The filtering is done in
the Fourier domain of the modulation amplitude. First the
Fourier transform of the time sequence of each feature in
the feature stream is taken, then is multiplied by a bandpass
modulation filter HT (w; [0.5,12]) capturing the modulation
content within the specified range of 0.5 Hz and 12 Hz. Note
that this temporal modulation range has been shown to be in-
formation rich and crucial for speech comprehension (Elliott
and Theunissen 2009). The inverse Fourier transform then
yields the modulation filtered version of the feature stream.
The bandpass modulation filter HT (w; [0.5,12]) is defined
as follows:

HT

(
w; [0.5,12]) = (αw)2e[1−(αw)2],

α =
⎧
⎨

⎩

1/0.5, 0 ≤ w < 0.5,

1/w, 0.5 ≤ w ≤ 12,

1/12, 12 < w ≤ wmax,

(5)

where wmax is the modulation frequency resolution—50 Hz
corresponding to the 10 ms frame-rate of the feature stream.

8Note that the MVA processing has been shown to be optimal for cep-
stral domain features (Chen and Bilmes 2007). Consequently, it may
be sub-optimal to apply the same processing on the AMRS features.

The phoneme recognition accuracy and speaker verifi-
cation performance of MVA and enhanced AMRS features
(E_AMRSF) is shown in Table 3. In addition to being com-
parable in the clean/matched conditions, the E_AMRSF
features perform significantly better than MVA features in
noisy/mismatch conditions—an average relative improve-
ment of 12.2 % on the ASR task and an average relative
error rate reduction of 33.9 % on the ASV task.

5 Discussion

In this work, we begin to address the issue of versatile
speech representations that could bear relevance to both
speaker and speech recognition tasks. The proposed scheme
captures the prominent features of the speech spectrum
ranging from its broad trends (which correlate with vocal
tract shape and length) to its rapidly varying details (which
capture information about harmonics and voice quality).
Because of the non-targeted nature of the proposed multi-
resolution analysis, it is able to map the speech signal onto
a rich space that highlights information about the glottal
shape and movements as well as vocal tract geometry and
articulatory configuration. Notice how the proposed analy-
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sis allowed for defining two slightly different feature rep-
resentations for speech and speaker recognition tasks using
the same feature analysis machinery. This multi-resolution
representation can be viewed as a local variant (w.r.t log-
frequency axis) of the analysis provided by the cepstral de-
composition (MFCC). Spectral shape information in cep-
stral analysis is scattered over all cepstrum coefficients and
hence must be considered collectively, and not individually.
In the proposed localized approach, one can mine the in-
formation in each scale component individually. While the
two methods perform comparably in clean, the proposed
feature representations reveal substantial robustness under
noisy conditions in both ASR and ASV tasks.

The current effort is not the first attempt at bringing more
biological realism to analysis of speech signals. A number
of authors have explored improvements to speech feature
analysis that ranged from detailed modeling of the effer-
ent auditory periphery, including intricate nonlinear effects
and firing patterns at the auditory nerve (Seneff 1986; Beet
and Gransden 1992; Ghitza 1994; Lee et al. 2011; Clark
et al. 2012), cochleogram-type representations (Muthusamy
et al. 1990), stabilized and normalized auditory image rep-
resentations (Patterson et al. 2010), to even more selective
model-based spectro-temporal fragments and dynamic maps
(Brown et al. 2001; Barker et al. 2010). Auditory-inspired
techniques have generally led to noticeable improvements
over more ‘conventional’ signal processing methods for
recognition tasks, particularly when dealing with distorted
signals in presence of background or competing noises
(Fanty et al. 1991; Jankowski and Lippmann 1992; Her-
mansky 1998). Additional techniques have also been pro-
posed to take advantage of the multi-resolution scheme tak-
ing place at more central stations of the auditory pathway;
whereby the spectral details of the signal as they evolve
over time are meticulously analyzed via parallel channels
that capture intricate details of the signal of interest. Re-
cent implementations of such schemes have been shown to
yield noticeable improvements to automatic speech recogni-
tion, particularly with regards to its noise-robustness (Woo-
jay and Juang 2007). The current work falls in the same
category of more centrally-inspired analysis of speech sig-
nals. It provides two major advantages over comparable
methods (Woojay and Juang 2007; Wu et al. 2009): It
does not involve dimension-expanded representations (close
to 30,000 dimensions) which would inherently require te-
dious and computationally-expensive schemes hence lim-
iting their applicability. Instead, our model is constrained
to a perceptually-relevant spectral modulation subspace and
further uses a judicious sampling scheme to encode the in-
formation with only four modulation filters. This results
in a low-dimensional and highly robust feature space. The
enhanced AMRS features also constrain temporal modula-
tions to a perceptually-relevant space shown to be crucial for

speech comprehension. Note that none of the components of
the model have been calibrated to deal with a specific noise
condition making it appropriate for testing in a wide range
of acoustic environments.

Our ongoing efforts are aimed at achieving further im-
provements by applying the multi-resolution analysis on
enhanced spectral profiles obtained from speech enhance-
ment techniques (Loizou 2007) that benefit from addi-
tional voice/speech activity detectors and noise estima-
tion/compensation techniques. Also, the noise robustness
obtained here from AMRS features can extend to other
large scale ASR tasks in TANDEM framework (Herman-
sky et al. 2000). Similarly, more elaborate ASV systems are
achievable using AMRS features in conjunction with stan-
dard practices in speaker recognition like factor analysis,
supervectors and score normalization (Kinnunen and Lib
2010).

Acknowledgements This research is partly supported by
IIS-0846112 (NSF), 1R01AG036424-01 (NIH), N000141010278 and
N00014-12-1-0740 (ONR), and by the Office of the Director of Na-
tional Intelligence (ODNI), Intelligence Advanced Research Projects
Activity (IARPA), through the Army Research Laboratory (ARL). All
statements of fact, opinion or conclusions contained herein are those
of the authors and should not be construed as representing the official
views or policies of IARPA, the ODNI, or the U.S. Government. Parts
of this analysis have been presented in (Nemala et al. 2012).

Open Access This article is distributed under the terms of the Cre-
ative Commons Attribution License which permits any use, distribu-
tion, and reproduction in any medium, provided the original author(s)
and the source are credited.

References

Barker, J., Ma, N., Coy, A., & Cooke, M. (2010). Speech fragment
decoding techniques for simultaneous speaker identification and
speech recognition. Computer Speech & Language, 24(1), 94–
111.

Beet, S. W., & Gransden, I. R. (1992). Interfacing an auditory model
to a parameteric speech recogniser. In Proceedings of the Institute
of Acoustics (IOA) (Vol. 14, pp. 321–328).

Bourlard, H., & Morgan, N. (1994). Connectionist speech recognition:
a hybrid approach (p. 348). Dordrecht: Kluwer Academic.

Brown, G. J., Barker, J., & Wang, D. (2001). A neural oscillator sound
separator for missing data speech recognition. In Proceedings of
the international joint conference on neural networks, IJCNN’01
(Vol. 4, pp. 2907–2912). 4.

Byrne, W., Robinson, J., & Shamma, S. (1989). The auditory process-
ing and recognition of speech. In Proceedings of the speech and
natural language workshop (pp. 325–331).

Chen, C., & Bilmes, J. (2007). Mva processing of speech features.
IEEE Transactions on Audio, Speech, and Language Processing,
15(1), 257–270.

Clark, N. R., Brown, G. J., Jurgens, T., & Meddis, R. (2012).
A frequency-selective feedback model of auditory efferent sup-
pression and its implications for the recognition of speech in
noise. The Journal of the Acoustical Society of America, 132(3),
1535–1541.



Int J Speech Technol

Cover, T., & Thomas, J. (2006). Elements of information theory (2nd
ed.). New York: Wiley-Interscience.

Elliott, T., & Theunissen, F. (2009). The modulation transfer func-
tion for speech intelligibility. PLoS Computational Biology, 5,
e1000302.

Escabi, M. A., & Read, H. L. (2005). Neural mechanisms for spectral
analysis in the auditory midbrain, thalamus, and cortex. Interna-
tional Review of Neurobiology, 70, 207–252.

Fanty, M., Cole, R., & Slaney, M. (1991). A comparison of dft, plp
and cochleagram for alphabet recognition. In Conference record
of the twenty-fifth Asilomar conference on signals, systems and
computers (Vol. 1, pp. 326–329).

Garcia-Moral, A., Solera-Urena, R., Pelaez-Moreno, C., & Diaz-de-
Maria, F. (2011). Data balancing for efficient training of hybrid
ANN/HMM automatic speech recognition systems. IEEE Trans-
actions on Audio, Speech, and Language Processing, 19(3), 468–
481.

Garimella, S. V. S. S., Nemala, S. K., Mesgarani, N., & Herman-
sky, H. (2010). Data-driven and feedback-based spectro-temporal
features for speech recognition. IEEE Signal Processing Letters,
17(11), 957–960.

Garofolo, J. S., Lamel, L. F., Fisher, W. M., Fiscus, J. G., Pallett, D. S.,
& Dahlgren, N. L. (1993). DARPA TIMIT acoustic phonetic con-
tinuous speech corpus (Vol. LDC93S1). Philadelphia: Linguistic
Data Consortium.

Ghitza, O. (1994). Auditory models and human performance in tasks
related to speech coding and speech recognition. IEEE Transac-
tions on Speech and Audio Processing, 2(1), 115–132.

Greenberg, S., Popper, A., & Ainsworth, W. (2004). Speech processing
in the auditory system. Berlin: Springer.

Hermansky, H. (1998). Should recognizers have ears? Speech Commu-
nication, 25, 3–27.

Hermansky, H., & Morgan, N. (1994). RASTA processing of speech.
IEEE Transactions on Speech and Audio Processing, 2(4), 382–
395.

Hermansky, H., Ellis, D. P. W., & Sharma, S. (2000). Tandem con-
nectionist feature extraction for conventional hmm systems. In
Proceedings of the IEEE international conference on acoustics,
speech, and signal processing.

Hirsch, H. G. (2005). FaNT: filtering and noise adding tool. http://
dnt.kr.hsnr.de/download.html.

Jankowski, C. R., & Lippmann, R. P. (1992). Comparison of auditory
models for robust speech recognition. In Proceedings of the work-
shop on speech and natural language (pp. 453–454)

Kinnunen, T., & Lib, H. (2010). An overview of text-independent
speaker recognition: from features to supervectors. Speech Com-
munication, 52, 12–40.

Lee, K. F., & Hon, H. W. (1989). Speaker-independent phone recogni-
tion using hidden Markov models. IEEE Transactions on Acous-
tics, Speech, and Signal Processing, 37, 1641–1648.

Lee, C., Glass, J., & Ghitza, O. (2011). An efferent-inspired auditory
model front-end for speech recognition. In 12th annual confer-
ence of the international speech communication association, IN-
TERSPEECH.

Loizou, P. (2007). Speech enhancement: theory and practice (1st ed.).
Boca Raton: CRC Press.

Lyon, R., & Shamma, S. (1996). Auditory representations of timbre
and pitch In Auditory computation. Handbook of auditory re-
search (Vol. 6, pp. 221–270). Berlin: Springer.

Miller, L., Escabi, M., Read, H., & Schreiner, C. (2002). Spectrotem-
poral receptive fields in the lemniscal auditory thalamus and cor-
tex. Journal of Neurophysiology, 87(1), 516–527.

Muthusamy, Y. K., Cole, R. A., & Slaney, M. (1990). Speaker-
independent vowel recognition: spectrograms versus cochlea-
grams. In International conference on acoustics, speech, and sig-
nal processing, ICASSP-90 (pp. 533–536).

Nemala, S. K., Patil, K., & Elhilali, M. (2011). Multistream bandpass
modulation features for robust speech recognition. In Proceedings
of the 12th annual conference of the international speech commu-
nication association, INTERSPEECH (pp. 1277–1280).

Nemala, S., Zotkin, D., Duraiswami, R., & Elhilali, M. (2012).
Biomimetic multi-resolution analysis for robust speaker recogni-
tion. EURASIP Journal on Audio Speech and Music Processing.
doi:10.1186/1687-4722-2012-22

NIST (2008). Speaker recognition evaluation. http://www.nist.gov/
speech/tests/sre/2008.

Patterson, R. D., Walters, T. C., Monaghan, J., Feldbauer, C., & Irino,
T. (2010). Auditory speech processing for scale-shift covariance
and its evaluation in automatic speech recognition. In Proceedings
of 2010 IEEE international symposium on circuits and systems,
ISCAS (pp. 3813–3816).

Pinto, J., Garimella, S. V. S. S., Magimai-Doss, M., Hermansky, H., &
Bourlard, H. (2011). Analyzing MLP-based hierarchical phoneme
posterior probability estimator. IEEE Transactions on Speech and
Audio Processing, 19, 225–241.

Richard, M. D., & Lippmann, R. P. (1991). Neural network classifiers
estimate Bayesian a posteriori probabilities. Neural Computation,
3(4), 461–483.

Schreiner, C., & Calhoun, B. (1995). Spectral envelope coding in cat
primary auditory cortex: properties of ripple transfer functions.
Auditory Neuroscience, 1, 39–61.

Seneff, S. (1986). A computational model for the peripheral auditory
system: application of speech recognition research. In Acoustics,
Speech, and Signal Processing, IEEE International Conference
on ICASSP’86 (Vol. 11, pp. 1983–1986).

Shamma, S. (1988). The acoustic features of speech sounds in a model
of auditory processing: vowels and voiceless fricatives. Journal of
Phonetics, 16, 77–91.

Stern, R. (2011). Applying physiologically-motivated models of audi-
tory processing to automatic speech recognition. In International
symposium on auditory and audiological research.

Trentin, E., & Gori, M. (2003). Robust combination of neural networks
and hidden Markov models for speech recognition. IEEE Trans-
actions on Neural Networks, 14(6), 1519–1531.

Versnel, H., Kowalski, N., & Shamma, S. A. (1995). Ripple analysis
in ferret primary auditory cortex, III: topographic distribution of
ripple response parameters. Auditory Neuroscience, 1, 271–286.

Wang, K., & Shamma, S. A. (1994). Self-normalization and noise-
robustness in early auditory representations. IEEE Transactions
on Speech and Audio Processing, 2, 421–435.

Woojay, J., & Juang, B. (2007). Speech analysis in a model of the
central auditory system. IEEE Transactions on Speech and Audio
Processing, 15, 1802–1817.

Wu, Q., Zhang, L., & Shi, G. (2009). Robust speech feature extraction
based on Gabor filtering and tensor factorization. In Proceedings
of the IEEE international conference on acoustics, speech, and
signal processing.

Yang, X., Wang, K., & Shamma, S. A. (1992). Auditory representations
of acoustic signals. IEEE Transactions on Information Theory, 38,
824–839.

http://dnt.kr.hsnr.de/download.html
http://dnt.kr.hsnr.de/download.html
http://dx.doi.org/10.1186/1687-4722-2012-22
http://www.nist.gov/speech/tests/sre/2008
http://www.nist.gov/speech/tests/sre/2008

	Recognizing the message and the messenger: biomimetic spectral analysis for robust speech and speaker recognition
	Abstract
	Introduction
	The auditory multi-resolution spectral (AMRS) features
	Choice of scales
	Encoding of speech and/vs speaker information

	Experimental setup
	Phoneme recognition setup
	Speaker recognition setup
	Features

	Recognition results
	Performance of AMRS features
	Comparison with standard front-end features
	Comparison with state-of-the-art noise robust scheme

	Discussion
	Acknowledgements
	References


