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Abstract
We introduce EzAudio, a text-to-audio (T2A) generation frame-
work designed to produce high-quality, natural-sounding sound
effects. Core designs include: (1) We propose EzAudio-DiT,
an optimized Diffusion Transformer (DiT) designed for audio
latent representations, improving convergence speed, as well as
parameter and memory efficiency. (2) We apply a classifier-free
guidance (CFG) rescaling technique to mitigate fidelity loss at
higher CFG scores and enhancing prompt adherence without
compromising audio quality. (3) We propose a synthetic caption
generation strategy leveraging recent advances in audio under-
standing and LLMs to enhance T2A pretraining. We show that
EzAudio, with its computationally efficient architecture and fast
convergence, is a competitive open-source model that excels in
both objective and subjective evaluations by delivering highly
realistic listening experiences.
Index Terms: text-to-audio generation, diffusion model, diffu-
sion transformer

1. Introduction
The rapid advancement of diffusion-based generative models
has transformed content creation, particularly in image synthe-
sis [1]. Inspired by this, early text-to-audio (T2A) methods
used spectrogram-based representations, evolving into a pow-
erful approach for high-quality sound generation [2, 3, 4]. Re-
cent work [5, 6, 7, 8] has improved T2A quality by adopting
one-dimensional (1D) latent audio representations. The Diffu-
sion Transformer (DiT) [9], leveraging Adaptive LayerNorm
(AdaLN) for diffusion step fusion, has shown strong perfor-
mance in visual generation and, more recently, in sound gen-
eration [5]. Despite these advances, recent T2A pipelines still
have room for improvement: (1) DiT in audio generation re-
quires substantial memory and training costs and could benefit
from further optimization for T2A tasks and latent audio repre-
sentations. (2) We find the T2A model using waveform latents
exhibit noticeable fidelity loss at high classifier-free guidance
(CFG) [10] scores. While higher guidance improves prompt
coherence, it can distort the waveform amplitude distribution,
subsequently affecting frequency features and introducing arti-
facts, leading to degradation in generation quality.

Beyond model design, pretraining plays a crucial role in
achieving high-quality T2A due to the scarcity of human-
labeled data. Strategies [7, 11] have been proposed to lever-
age unlabeled data for representation learning and improving
generation quality. However, text-to-audio mapping pretrain-
ing strategies still face challenges. Using CLAP embeddings
[3] derived from unlabeled audio data and switching to text-

*Work done during J. Hai’s internship at Tencent AI Lab, USA.

derived CLAP embeddings in downstream tasks can limit per-
formance due to mismatches between audio and text represen-
tations. Tagging-based pseudo captions [2, 12, 7] directly in-
corporate text conditions during pretraining but lack sequential
information about sound events, limiting the model’s ability to
process fine-grained prompts in downstream tasks. Synthetic
audio data [4, 6] offers precise descriptions and timing align-
ment but is difficult to prepare and may introduce artifacts or
unnatural characteristics due to discrepancies with real audio.

To address these challenges, we propose following core de-
signs: (1) EzAudio-DiT, an optimized DiT architecture for effi-
cient, high-quality T2A. It features a novel AdaLN variant that
reduces parameters and memory consumption without compro-
mising performance, along with long-skip connections to accel-
erate convergence. (2) We enhance CFG sampling by adopt-
ing CFG rescaling [13], originally developed to prevent over-
exposure in image generation. We demonstrate that when ap-
plied to waveform latents, it mitigates fidelity degradation at
high CFG scores while preserving strong prompt adherence,
eliminating the need for meticulous CFG tuning. (3) We lever-
age recent advances in audio understanding and LLMs to gen-
erate high-quality synthetic caption data for efficient T2A pre-
training. Specifically, we prepare the following sources of syn-
thetic caption data: (a) generating captions using audio caption-
ing and audio-language models, which have demonstrated the
ability to interpret complex auditory scenes [14, 15, 16], and (b)
enriching strong sound event labels [17] with LLMs to gener-
ate captions that provide detailed sequential information about
sound events.

As a result of these designs, EzAudio1 achieves fast conver-
gence with reduced parameters and memory usage and is able
to generate highly realistic audio. It stands out as a competitive
open-source model in both objective and subjective evaluations.
We hope our model and pipeline empower researchers and star-
tups to develop T2A models more effectively and efficiently.

2. Method
EzAudio builds on recent advances in diffusion-based audio and
music generation [2, 5]. As shown in Figure 1, it comprises
three components: (1) a FLAN-T5-based text encoder [18] for
processing audio descriptions, (2) a latent diffusion model for
generating audio latents, and (3) a waveform VAE [5] for re-
constructing waveforms from audio latents.

The following sections detail EzAudio’s core designs: Sec-
tion 2.1 introduces the proposed EzAudio-DiT for diffusion
modeling, Section 2.2 describes CFG rescaling for sampling,
and Section 2.3 covers data labeling and training strategy.

1Code and demo: https://haidog-yaqub.github.io/EzAudio-Page/
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Figure 1: The framework of EzAudio and the architectural details of EzAudio-DiT.

2.1. Efficient EzAudio-DiT

Stable Audio [5] has successfully used DiT [9] for text-to-
music generation. However, we find opportunities to optimize
DiT’s efficiency and convergence speed in audio generation. To
achieve this, we propose two key modifications that enhance pa-
rameter and memory efficiency while accelerating convergence,
without compromising training stability. These designs include:

AdaLN-SOLA: The AdaLN layers in DiT are crucial for
managing both image class conditions and diffusion steps but
account for a significant portion of the model’s parameters.
However, in T2A, where cross-attention processes text con-
ditions, AdaLN can be simplified. AdaLN-Single [11] ad-
dresses this by sharing a single AdaLN module across all DiT
blocks but degrades performance and even destabilizes training.
To address this, we propose AdaLN-SOLA (AdaLN-Single
Orchestrated by Low-rank Adjustment), inspired by low-rank
adaption methods[19]. As shown in Figure 1 (d), AdaLN-
SOLA retains a shared AdaLN module but incorporates block-
specific low-rank matrices that dynamically adjust it based on
diffusion steps. This approach reduces parameters and memory
usage while preserving performance and stability.

Long-skip Connection: Earlier diffusion models use long-
skip connections to propagate low-level features and diffusion
steps into deeper layers for effective modeling. Recent DiT ar-
chitectures [11, 5] remove these connections, relying on trans-
former residuals for feature propagation and assuming AdaLN
can handle the diffusion steps. However, we find that removing
skip connections slows convergence and degrades performance,
particularly for waveform latent embeddings with 128 chan-
nels—far more than typical image representations—making
them difficult to process solely through residual connections.
To address this, we integrate long-skip connections into DiT,
inspired by U-ViT designs [20, 21, 7], allowing low-level fea-
tures to directly reach deeper transformer blocks, as shown in
Figure 1 (b).

2.2. CFG Rescaling

The CFG [10] is used to direct the diffusion sampling. It modi-
fies the output v only during the reverse process according to:

vcfg = vneg + w(vpos − vneg), (1)

where w is the guidance scale, and vpos and vneg represent
model outputs under positive and negative prompts, with vcfg
being the adjusted velocity. By default, the negative prompt is
set to empty, corresponding to the unconditional case.

A higher guidance scale enhances prompt alignment but
can disrupt the waveform’s amplitude distribution, affecting
frequency characteristics and ultimately degrading generation
quality. The CFG rescaling technique [13] is used to adjust the
magnitude of vcfg while preserving its direction when a large
w is employed.

vre = vcfg · std(vpos) · std(vcfg)−1, (2)
v′cfg = ϕ · vre + (1− ϕ) · vcfg, (3)

where ϕ is the rescaling factor, with v′cfg denoting the refined
CFG velocity for diffusion sampling.

2.3. Training Strategy

Synthetic Caption Data Generation: We utilize multiple ap-
proaches to generate synthetic caption data, enhancing caption
diversity and richness: (1) Auto-ACD [22] utilizes audio and
video captioning models to generate initial captions, which are
then refined by a language model into natural audio descrip-
tions for AudioSet and VGGSound. (2) AS-Qwen-Caps uses
Qwen-Audio2 [14], one of the leading audio-language models,
to describe audio from AudioSet and VGGSound; (3) AS-SL-
GPT4-Caps uses OpenAI’s GPT-4o-mini API3 to prepare de-
scriptions that emphasize sequential information based on tem-
poral annotations from the strongly labeled subset of AudioSet
[17]. To ensure the quality and accuracy of captions, we use a
CapFilt-like [23, 16] filtering method, leveraging a pre-trained
CLAP model [24] to discard audio-caption pairs with similarity
scores below a set threshold.

Multi-Stage Training: We adopt a three-stage training ap-
proach [11, 7] to leverage unlabeled audio data and enhance
generation quality. (1) Masked Audio Modeling: Following
diffusion-based mask pretraining methods [21, 7, 25], the dif-
fusion model is first trained to predict masked tokens from un-
masked ones, without text conditioning. A random portion of

2We compare Qwen-Audio [14] and GAMA [15], selecting Qwen-
Audio for its higher accuracy and fewer hallucinations on AudioCaps.

3https://platform.openai.com/docs/models/gpt-4
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Figure 2: Ablation of DiT Design. The gray dashed edges indi-
cate results from training resumed after a crash.

tokens—ranging from 25% to 100% with a minimum span of
0.2s—is masked, and the cross-attention module in transformer
blocks is excluded during this stage. (2) Text-Audio Align-
ment: This stage integrates synthetic captions to facilitate text-
audio alignment learning. Building on the masked modeling
stage, we introduce a randomly initialized cross-attention mod-
ule into each DiT block to process text conditions. To ensure
a smooth training transition, we initialize the output projection
layer of the cross-attention module to zero. Additionally, to en-
courage greater reliance on text input, we set a fixed 75% prob-
ability of fully masking all tokens during training. (3) Super-
vised Fine-Tuning: Finally, following Tango [2], we fine-tune
the model on AudioCaps [26] to further enhance performance.

3. Experiments
3.1. Experimental Setups

We conduct experiments using a 24kHz sample rate for both the
waveform VAE and the T2A model. The waveform latent op-
erate at 50Hz and consists of 128 channels. We train the wave-
form VAE on AudioSet [27] for 1 million steps, enabling it to
handle a wide variety types of sounds. For DiT models, DiT-L
consists of 24 DiT blocks, each with 1024 channels, while DiT-
XL has 28 DiT blocks, each with 1152 channels. The rank in
AdaLN-SOLA is 32 for DiT-L and 36 for DiT-XL. The LDM
employs velocity (v) prediction and Zero-SNR schedulers [13],
both effective in diffusion-based image and audio generation
[28, 29]. We use 50 sampling steps and a CFG score of 3 by
default in the ablation studies presented in Sections 3.2 and 3.3.

Following previous T2A studies [3, 30, 2, 6], we evalu-
ate our model using Frechet Distance (FD)4, Kullback–Leibler
(KL) divergence, and Inception Score (IS), with pre-trained
PANNs [31] as the feature extractor. Additionally, we employ
CLAP5 [24] to assess the coherence between the generated au-
dio and the text prompt. All audio samples are resampled to
16kHz during evaluation. The AudioCaps test set, comprising
900 audio clips with 882 currently available, is used for evalua-
tion. Each clip has five captions, and we randomly select one
caption per clip, following AudioLDM and Tango [2, 3].

4We exclude FAD due to reliability concerns [3, 16].
5https://huggingface.co/laion/larger clap general

Table 1: Comparison of pretraining methods.

Dataset Mask Mod. FD↓ KL↓ IS↑ CLAP↑

WavCaps No 17.79 1.66 9.60 0.273
EzAudioCaps No 16.60 1.67 10.04 0.288

EzAudioCaps Yes 15.46 1.44 10.11 0.294

Table 2: Ablation of CLAP filtering.

Threshold # Samples FD↓ KL↓ IS↑ CLAP↑

0.35 0.58M 16.17 1.48 9.85 0.290
0.45 0.11M 16.27 1.40 10.31 0.303

0.40 0.27M 15.46 1.44 10.11 0.294

3.2. Ablation of DiT Architecture

We perform an ablation study on different DiT designs using
the AudioCaps dataset, training for 80k steps with a batch size
of 128 and a learning rate of 1e-4, following the DiT-L con-
figuration in Section 3.1. Stable-Audio-DiT [5], which extends
DiT [9] with cross-attention and Rotary Position Embedding
(RoPE) [32], serves as our baseline. We investigate the effects
of adding long-skip connections and replacing AdaLN with ei-
ther AdaLN-Single or the proposed AdaLN-SOLA. We com-
pare convergence across three training stages. Model perfor-
mance improves steadily during the early and middle stages,
with results reported at 15k and 40k steps. In the late stage, per-
formance stabilizes with minor fluctuations, and the best scores
between 60k and 80k steps are reported based on validation loss.

The key findings can be summarized as follows: (1) As
shown in Figure 2 (a) and (b), long-skip connections signif-
icantly accelerate convergence and lead to better model per-
formance; (2) Replacing AdaLN with AdaLN-Single leads to
performance degradation and introduces numerical instability,
causing training crashes, whereas AdaLN-SOLA maintains sta-
bility with minimal impact on performance; (3) Figure 2 (c) and
(d) illustrates that long-skip connections slightly increase model
parameters and memory usage, while AdaLN-SOLA substan-
tially reduces both, resulting in a more lightweight model.
In conclusion, EzAudio-DiT achieves faster convergence and
greater efficiency than Stable-Audio-DiT.

3.3. Ablation of Training Strategy

We conduct an ablation study comparing our dataset with Wav-
Caps [12], which enriches audio tags using ChatGPT but often
lacks sequential information6 and has been used for pretraining
in Tango-Full [2]. Additionally, we evaluate the impact of mask
modeling. For pretraining without mask modeling, we use a
batch size of 128 and train for 150K steps at a 1e-4 learning rate
with synthetic caption data, followed by 30K fine-tuning steps
on AudioCaps at 1e-5. When incorporating mask modeling, we
first train on AudioSet for 100K steps at 1e-4, then perform 50K
steps on synthetic caption data at 5e-5, and conclude with 30K
fine-tuning steps at 1e-5.

As shown in Table 1, our proposed dataset improves gener-
ation quality and strengthens text coherence. Also, mask mod-
eling pretraining further enhances overall generation quality.

Additionally, we evaluate different thresholds for filtering
synthetic captions. The threshold selection is based on the
mean CLAP score of AudioCaps, which is around 0.30. We

6Comparison with our dataset available on the Demo page.
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Table 3: Comparison of EzAudio and T2A models with evaluation results on AudioCaps. † denotes trainable parameters.

Method Model # Params.† Pretrain Data Text Encoder FD↓ KL↓ IS↑ CLAP↑

Ground Truth – – – – – – – 0.302

Tango [2] 2D U-Net 866M Synthetic Caption FLAN-T5 19.07 1.33 7.70 0.293
Tango-AF [16] 2D U-Net 866M Synthetic Caption FLAN-T5 21.84 1.32 9.20 0.269
AudioLDM10 [3] 2D U-Net 739M CLAP Embedding CLAP 30.96 2.36 7.38 0.197
AudioLDM-210 [30] 2D U-Net 712M Synthetic Caption CLAP + FLAN-T5 25.03 1.75 8.13 0.236
Make-An-Audio [4] 2D U-Net 453M Synthetic Audio CLAP 18.77 1.71 8.80 0.244
Make-An-Audio-211 [6] 1D Transformer 937M Synthetic Audio CLAP + FLAN-T5 16.16 1.42 9.93 0.284
Gen-AU-Large [8] 1D Transformer 1.25B Synthetic Caption CLAP + FLAN-T5 17.21 1.40 11.42 0.2709

EzAudio-L 1D Transformer 596M Synthetic Caption FLAN-T5 15.59 1.38 11.35 0.319
EzAudio-XL 1D Transformer 874M Synthetic Caption FLAN-T5 14.98 1.29 11.38 0.314

Figure 3: Ablation of CFG scales and rescaling factors.

set higher thresholds than this number to prioritize quality. All
models are trained with mask pretraining. As shown in Table 2,
a lower threshold allows for more diverse but noisier data, neg-
atively impacting all metrics, whereas a higher threshold im-
proves most metrics but reduces FD and limits data diversity.
We adopt a threshold of 0.40 for EzAudioCaps, as it provides
the best balance between data diversity and model performance.

3.4. Ablation of CFG and CFG Rescaling

As shown in Figure 3, we evaluate CFG scores using the model
trained in Section 3.3. Higher CFG values improve text-audio
alignment but also increase FD, indicating a decline in audio
quality. With CFG = 5 yielding the highest CLAP score and
less FD degradation, we apply rescaling at this level. A rescal-
ing factor around 0.50–0.75 helps maintain strong prompt align-
ment while mitigating the negative impact on audio quality.

3.5. Comparison with State-of-the-art

We compare EzAudio with recent open-source T2A models,
introducing two variants: EzAudio-L and EzAudio-XL, which
differ only in model size, corresponding to EzAudio-DiT in L
and XL configurations, as described in Section 3.1. Both mod-
els are trained on the proposed dataset using mask modeling, as
detailed in Section 3.3. We use a CFG score of 5 and a rescal-
ing score of 0.75, as stated in Section 3, while increasing the
sampling steps to 100.

The baseline models7 are summarized in Table 3. To en-
sure a fair comparison, we use the official checkpoints8 or pro-
vided samples9 for each baseline. All models are evaluated us-
ing the same test method and dataset described in Section 3.1,
following the recommended sampling configurations from their

7Stable Audio focuses on music generation, so we exclude it from
the final T2A comparison but compare its DiT in Section 3.2.

8For baselines with multiple versions, we use tango-full-ft-ac,
tango-af-ac-ft-ac, audioldm-l-full, and audioldm2-large.

9Gen-AU releases samples with YouTube IDs but no captions. Since
each ID can correspond to five different captions, linking a sample to
its original prompt caption isn’t always accurate, which may affect the
precision of the CLAP score.

Figure 4: Mean opinion scores with 95% confidence intervals.

respective papers or repositories.
As shown in Table 3, 2D U-Net-based models10 perform

worse on FD and IS metrics, producing less realistic audio.
Among them, Tango stands out with a strong CLAP score, in-
dicating better coherence. More recent models11 leveraging a
1D VAE and transformer architecture demonstrate notable im-
provements in FD and IS. In particular, Gen-AU-Large, bene-
fiting from a larger model scale and extensive pre-training, fur-
ther enhances audio quality, achieving the highest IS. EzAudio-
L and EzAudio-XL match or surpass baselines across various
metrics, highlighting their superior quality and prompt coher-
ence, with EzAudio-XL holding a slight overall advantage.

We conduct a subjective experiment12 to evaluate overall
audio quality (OVL) and text relevance (REL) using a 5-point
Mean Opinion Score (MOS) on 30 randomly selected prompts.
12 participants with backgrounds in music production or sound
engineering take part. As shown in Figure 4, results align with
objective findings: EzAudio-XL outperforms baselines in both
relevance and quality. Make-An-Audio 2 receives a lower OVL
score than its objective metrics suggest, likely due to artifacts
from synthetic data. Notably, EzAudio-XL’s OVL score ap-
proaches real recordings, demonstrating its ability to generate
highly realistic audio.

4. Conclusion
In this paper, we introduce EzAudio, a framework that inte-
grates a training- and computationally-efficient DiT architec-
ture, an effective training pipeline leveraging synthetic caption
data, and CFG rescaling to achieve precise and high-quality au-
dio generation. In future work, we plan to incorporate tech-
niques such as ControlNet, and DPO to further improve con-
trollability and generation quality.

10The open-source AudioLDMs lack fine-tuning or exclusive training
on AudioCaps, leading to differences from the paper’s best results.

11Make-An-Audio 2 uses all five captions per clip to compute met-
rics, whereas Tango, AudioLDM, and our method use one randomly
selected caption, leading to differences with its reported results.

12Due to cost constraints, we compare EzAudio-XL with Tango,
AudioLDM-2, Make-An-Audio-2, and real samples from AudioCaps.
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