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Abstract 
For those in the early stage of learning a foreign language, they 

commonly experience difficulties in understanding spoken 

words in the second language, while they have no problem in 

recognizing words spoken in their mother tongue. This paper 

examines this phenomenon using biomimetic receptive fields 

that can be interpreted as a transfer function between acoustic 

stimulus and cortical responses in the brain. While receptive 

fields of individual subjects are often optimized to recognize 

unique phonemes in their mother language, it is unclear whether 

challenges associated with acquiring a new language 

(especially in adulthood) is due to a mismatch between 

phonemic characteristics in the new language and optimized 

processing in the system. We explore this question by 

contrasting biomimetic systems optimized for four different 

languages with sufficiently different characteristics. We 

perform English phoneme classification with these language-

optimized systems. We observed distinctive characteristics in 

receptive fields emerging from each language, and the 

differences of English phoneme recognition performance 

accordingly. 

Index Terms: auditory system, biomimetic STRFs, spectro-

temporal receptive fields, cortical analysis, and phoneme 

classification 

1. Introduction 
Learning a new language by the time we reach over ten is often 

very difficult; and only few learners are able to achieve native 

accents [1]. Part of the challenge with new language acquisition 

for young and older adults is recognizing unique phonemes of 

a foreign language if these phonemes don’t exist in their mother 

tongue. This difficulty gets amplified in noisy environments 

such as cocktail parties or in subway stations; even if native 

speakers may not find such environments as difficult. There has 

been some investigations into this phenomenon, focused on 

how nonnative phones are perceived into the categories for 

native phonemes [2]–[5]. According to [2], Guion, et. al. 

explored contrasts of consonants between Japanese and English 

and argued that foreign phonemes are perceived as the closest 

phoneme in their mother language based on a discrimination 

test. So and Best summarized that one’s ability of recognizing 

phonemes from their mother language may not always be 

helpful in recognizing non-native phonemes [3]. Studies have 

shown that the difficulty with foreign phonemes can be 

mitigated as the person continues in learning the language by 

expanding the cumulative auditory exposure and experience 

[2], [4]. As stated earlier, young children typically below the 

age of ten have shown plasticity in their brain tuning with 

potential of recognizing a wide variety of phonemes regardless 

of language [5]. 

Our understanding of auditory processing in the brain 

suggests that sounds entering our ears are analyzed along a 

hierarchical set of stages that gradually extract acoustic 

attributes from the signal, guided by cognitive feedback from 

memory, prior knowledge and past experiences. Of particular 

interest in the current work is the analysis that takes place at the 

level of auditory cortex, where there is evidence of plasticity 

effects that are shaped by learning or guided attention [6], [7]. 

While processing in the mammalian auditory system is not fully 

understood, it has successfully been approximated using a 

linear systems approach where each neuron is modeled as a 

spectro-temporal convolution of the input signal and a system 

transfer function [8]–[12]. The spectro-temporal convolution 

model is represented in 
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where t and f are time and frequency indices respectively, and 

H(t, f) is the transfer function of the model; also referred to as a 

Spectro-Temporal Receptive Field (STRF) [8]. As it is obvious 

from (1), the same stimulus s(t,f) analyzed through an array of 

neurons with varying receptive fields Hk will result in different 

mappings of the input signal. Here, we hypothesize that STRFs 

tuned to analyze statistical structure of one’s native language 

may be suboptimal for some phonemes in other foreign 

languages. To demonstrate the emergence of distinctive STRFs 

as a function of language, our work is focused on cortical 

analysis denoted in (1) with language specific biomimetic 

STRFs. 

To demonstrate this hypothesis, we first develop a training 

method for biomimetic STRFs based on Restricted Boltzmann 

Machine (RBM) and train biomimetic STRFs according to 

different languages. Then, we compare characteristics of the 

biomimetic STRFs in terms of Best Frequency (BF), Best Scale 

(BS), and Best Rate (BR) [13]. Additionally, we perform 

English phoneme classification using these language sensitive 

STRFs. From these investigations, we find that the biomimetic 

STRFs have different characters depending on the language, 

and their phoneme classification of a specific language varies 

depending on the language they were optimized for. 

The remainder of this paper is as follows. First, we describe 

a method for training the biomimetic STRFs. Next, we develop 

measures for characterizing the STRFs. These STRFs are then 

compared for their performance in phoneme classification. 

Finally, the experimental results are summarized in Section 3 

followed by a discussion and conclusion. 
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2. Methods 

2.1. Training biomimetic STRFs 

Reverse correlation has been classically used for estimating 

STRFs [13], [14]. This method requires a pair of a stimulus and 

corresponding neural response acquired in the brain in order to 

infer the tuning characteristics of the neuron under study. In this 

work, we take a converse approach where infer STRF structure 

from the data using RBMs. 

An audio waveform is first transformed into an auditory 

spectrogram that shows time-frequency representation based on 

a mammalian cochlear model [9]. We use the NSL toolbox to 

obtain an auditory spectrogram, and the frame length was set to 

8 ms without overlaps [15]. A vector x constructed by 

concatenating 15 frames is fed into the input layer in the RBM. 

For emulating neuron’s activity that seems to be binary, binary 

hidden nodes are considered in the hidden layer. In here, the 

number of hidden nodes is set to 100, and this setting is the same 

in all STRFs. 

A training cost is defined by combining a reconstruction 

error and a constraint on the number of active nodes in the 

hidden layer as 
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where W is a weight matrix of the RBM, h is a feedforward 

vector applied sigmoid function for reflecting a probability, m 

is training data index, and g is a binary sampling function based 

on Bernoulli distribution with h as an onset probability. p 

represents the average number of activated neurons (p=10), and  

is a regularization coefficient set at 0.0001. The constraint on 

the hidden nodes prevents overfitting and it emulates sparse 

neuronal reaction to a stimulus as observed in biological 

systems. Let Y be a random variable representing the number of 

activated nodes by the function g. Then, the distribution known 

as the Poisson binomial distribution is denoted as 
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where A is a set whose elements are possible combinations for 

choosing k nodes from N hidden nodes. This can be 

approximated by Binomial(N, μ/N) where ii
h� �� [16]. 

Thus, the sum of elements in feedforward vector means the 

average number of activation neurons. After training, we obtain 

biomimetic STRFs by reshaping the weight W to a 3D tensor in 

dimension of the number of STRFs, the number of frequency 

bins, and the number of frame bins, respectively.  

Table 1: Database used in training biomimetic STRFs  

Language Database Subset  

English LibriSpeech [17] dev-clean 

Korean ETRI 1000 [18] read 1000 

Chinese Thchs-30 [19] training set 

Japanese Jsut v1.1 [20] basic5000 

 

In our implementation, we train the RBM by using the 

AdamOptimizer from TensorFlow library. The learning rate, 

batch size, and maximum number of iterations are set to 0.0001, 

250, and 1000, respectively. This paper considers three Asian 

languages that have different linguistic origins compared to 

English, and databases used in training RBM are described in 

Table 1. Under the same parameters, language sensitive 

biomimetic STRFs are obtained by separately training RBMs 

according to the language. 

2.2. Analysis of STRFs characteristics  

An STRF includes excitatory and inhibitory regions in time-

frequency domain. Since these regions have an effect on 

neurons’ activity by adjusting a membrane potential, their 

shapes in time-frequency domain are important to characterize 

STRFs. Inseparability can be considered as one of the measures 

to characterize the shapes of excitatory and inhibitory regions 

[21]. To quantify inseparability, Singular Value Decomposition 

(SVD) is performed on each STRF. From its singular values, 

the inseparability is defined as 
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where 1�  is the biggest singular value as 1 2 ... K� � �� � � . If 

the Ins is close to 0, the STRF can be approximated to rank 1 

matrix, which can be approximated with a simple temporal 

function and a simple spectral function.  

In addition, we analyze the language-sensitive STRF based 

on  three additional metrics; Best Frequency (BF), Best Scale 

(BS), and Best Rate (BR) [13], [21]. Figure 1 shows an STRF 

and Scale-Rate (SR) plot as an example to explain the three 

metrics. The SR plot shows intensity along the spectral 

variation (i.e. scale) and temporal variation (i.e. rate) of STRF 

and can be obtained by applying a 2D Fourier Transform to an 

STRF. From the figure, BF is defined as a frequency which 

shows the maximum positive value along the frequency axis. In 

the right panel, BS and BR are defined as the centroid along the 

scale and the rate axes, respectively. 

 

Figure 1: STRF and SR Plot for explaining three 
metrics; Best Frequency, Best Scale, and Best Rate 

2.3. Phoneme classification  

Next, we adapt the phoneme recognition framework used by 

Thomas et al. [10]. Figure 2 depicts a pipeline that employs the 

language-sensitive biomimetic STRF in phoneme recognition. 

As mentioned previously, audio waveforms are transformed 

into an auditory spectrogram as stimuli, s(t,f), and neural 

response, r(t,n), is estimated by performing a 2D convolution 
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and a frequency marginalization for each STRF (H(t, f)). By 

stacking the responses, a 100-dimensional response vector can 

be obtained per a frame, and Discrete Cosine Transform (DCT) 

is applied to the response vector for performing a decorrelation. 

After that, Multi-Layer Perceptron (MLP) is considered as a 

classifier. An input vector composed by concatenating 9 frames 

is fed into the input layer and goes to the hidden layer composed 

by 2000 nodes and the output layer in sequence. Note that the 

number of output nodes is determined depending on the number 

of target phonemes. 

 

Figure 2: A flowchart for phoneme classification 
based on biomimetic STRFs 

In here, two types of target phonemes, vowels and 

consonants, are considered, consistent with targets considered 

by Mesgarani et al. [13]. For system training, we use the TIMIT 

database excluding the ‘SA’ dialect sentences. 

3. Results 

3.1. Training biomimetic STRFs 

Each language database in Table 1 is exclusively divided into a 

training and a validation sets with a ratio of 10:1. Figure 3 

shows training and validation costs as defined in (2). The costs 

are significantly decreased after about 20 iterations. Note that 

the standard deviation of error between consecutive cost values 

after 100 iteration is about 0.001 in all cases. 

 

 

Figure 3: Training and validation costs. 

 

Figure 4: Examples of biomimetic STRFs. 

Figure 4 gives an example of five STRFs from each RBM 

optimized for a different language. The frequency domain is 

represented in octave scale (from 184 Hz to 7246 Hz). In each 

panel, there are strong positive regions that contribute 

increasing feedforward excitation for activation of hidden 

nodes. On the other hand, negative region contribute strong 

inhibitions. Note that the locations and shapes of these regions 

are different depending on the language. 

3.2. Analysis of STRFs characteristics 

We look closely at the patterns of trained STRFs. Figure 5 

examines the inseparability of each STRF group; and reveals 

that most distributions resembles a normal distribution, with 

subtle distinction across languages. Interestingly, none of the 

STRFs yield an inseparability of 0 indicating the presence of 

slanted excitatory and inhibitory regions with varying slopes 

that likely play a role in formant transition detection.

  

Figure 5: Histograms of STRF’s inseparability. 

Figure 6 shows histograms of STRF characteristics in terms 

of additional metrics. In the first row, the histograms show BF 

distributions of the four languages. From the fact that the energy 

in power spectrum of human voice is concentrated in the 

frequency band less than 1 kHz, we can expect that BFs are 

spread in the same band. As expected, BF in about 60% of the 

STRFs is less than 1.1 kHz in all four languages. Still, the 

frequency selectivity of some nodes extends beyond 1.1 Khz 

since the RBM used a fully-connected structure between the 

input and the hidden layer, though the spread of BF 

distributions is variable across languages. 

 

Figure 6: Histograms of STRFs characteristics. 

The histograms in second and third rows show distributions 

in terms of BS and BR, respectively. For an assessment of 

similarity, we performed t-test between English and other 

languages. In BS, we found statistically significant differences 

with t-values were 3.8070, 4.6223, and 4.9035 compared to 

Korean, Chinese, and Japanese (critical value=2.81, when 

0.001� �  for three cases). On the other hand, t-values were 
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0.8541, 2.0864, and 2.7281 in BR indicating no significant 

differences. This lack of difference can be explained by the 

relationship between rates and speech tempo; and noting that 

the data used in this study included constrained articulation of 

speech such as broadcast news and read speech. 

3.3. Phoneme classification 

Finally, we perform English phoneme classification with the 

other three biomimetic STRFs. Because the number of test 

phoneme samples is different to each other in the TIMIT 

database (unbalanced data), we consider a class average 

classification rate, which is obtained by averaging diagonal 

elements in the confusion matrix, for an assessment. Table 2 

and 3 shows the classification results for 12 vowels and 15 

consonants, respectively. In both tables, class average 

classification rates are listed in the right column.  

As expected, English sensitive STRFs shows the best 

results in both tests among the four STRFs. In vowels 

classification, the case of using English sensitive STRF shows 

the best in most of the vowels (9/12). On the other hand, the 

classification results of the other are similar among the four 

STRFs although the English sensitive STRF show the best 

average result. The differences of performances in consonant 

classification are smaller compared to that of the vowels. As 

shown in figure 4, the excitatory and inhibitory regions 

represented in STRFs resembles that of harmonics in speech 

spectrograms, and these shapes help extract formant features 

represented in vowels rather than consonants. As such, it is not 

surprising that vowel results are much better than the results of 

consonant classification.  

It may be argued that a weakness of the experiment is the 

potential correlation between vowels and the speaker. However, 

the English sensitive STRFs are trained using LibreSpeech that 

is different from TIMIT; while the language databases included 

a wide variety of speakers. Many speakers participated in 

recording for the language database, thus the result supports our 

hypothesis. 

4. Discussion 
A human perceives speech through a complex process where it 

uses much higher-level information such as linguistic structures 

and contexts rather than just acoustic features. In studies of 

speech recognition, several modules called by language and 

lexicon model are additionally used for a natural language 

processing. In the current work, we only considered acoustic 

features in training of the biomimetic STRFs since the auditory 

model is the first step in the integrated framework of speech 

recognition. When an error occurs in the first step, its 

propagation downstream creates greater degrees of ambiguity. 

As far as phoneme classification, the results reported here 

in table 2 and 3 are less than other state of the art studies. To a 

large degree, there is a great degree of mismatch between data 

used to train STRFs and test data. In [10], this issue was 

circumvented by using STRFs trained with TIMIT dataset by 

using a reverse correlation method, therefore avoiding issues of 

mismatch. Additionally, our approach trains STRFs without 

any phoneme labels and merely aims to infer general statistical 

structures prevalent in each language. As our focus was on 

subtle differences between language-sensitive STRFs, the 

approach used here employ a simple MLP rather than more a 

complex hierarchical structure.  

5. Conclusions 
This paper demonstrates why people have difficulties of 

recognizing non-native phonemes when learning a new 

language. From a cortical model that represents the neural 

response using a convolution between acoustic stimulus and 

STRFs, we explored that speech perception can be different 

depending on the learned STRFs. In order to demonstrate this 

hypothesis, we first developed an RBM based method for 

training biomimetic STRFs. After training biomimetic STRFs 

for four different languages, we found that their BF and BS 

depend on the language. We then performed English phoneme 

classification using these language sensitive STRFs. The 

English sensitive STRFs showed the best performance among 

the four languages supporting our hypothesis.  
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Table 2: English phoneme classification rate: 12 vowels.  

% /ow /ao /aa /ah /ae /eh /ey /ax /iy /ih /ix /ux Avg. 
English 59.91 75.88 79.36 66.02 71.47 49.84 72.43 69.36 67.13 54.67 56.57 83.85 67.21 

Korean 63.27 75.00 75.27 57.14 69.97 52.00 60.55 65.32 63.64 47.66 49.86 76.69 63.03 

Chinese 54.84 70.83 73.17 59.79 64.89 52.68 58.62 66.30 68.97 45.42 44.03 82.09 61.80 

Japanese 67.11 69.04 68.40 50.26 68.72 43.11 57.59 51.09 56.37 46.02 47.70 76.72 58.53 

Table 3: English phoneme classification rate: 15 consonants.  

% /p /t /k /b /d /g /f /s /sh /v /dh /z /m /n /ng Avg. 
English 56.36 49.24 42.69 84.21 50.77 70.37 40.25 57.81 84.88 68.18 56.99 45.74 64.38 48.45 95.77 61.07 

Korean 57.52 43.02 41.00 79.07 50.88 79.17 42.06 61.03 74.10 56.59 63.54 43.51 54.98 52.92 86.96 59.09 

Chinese 66.67 31.98 43.14 87.23 46.48 70.45 42.28 57.91 76.47 63.64 50.00 43.91 64.04 48.17 85.37 58.52 

Japanese 42.86 46.27 36.65 72.73 61.43 60.98 47.89 59.06 79.29 58.65 61.11 44.08 61.32 52.87 87.34 58.17 
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