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Abstract
How do we understand and interpret complex auditory environ-
ments in a way that may depend on some stated goals or inten-
tions? Here, we propose a framework that provides a detailed
analysis of the spectrotemporal modulations in the acoustic sig-
nal, augmented with a discriminative classifier using multilayer
perceptrons. We show that such representation is successful at
capturing the non-trivial commonalties within a sound class and
differences between different classes. It not only surpasses per-
formance of current systems in the literature by about 21%, but
proves quite robust for processing multi-source cases. In ad-
dition, we test the role of feature re-weighting in improving
feature selectivity and signal-to-noise ratio in the direction of
a sound class of interest.
Index Terms: Scene understanding, Acoustic Event Recogni-
tion, Attention, Bottom-up, Top-down

1. Introduction
One of the most remarkable feats that humans are able to per-
form rapidly and reliably is to recognize and understand the
complex acoustic world that surrounds them. This process, re-
ferred to as ‘auditory scene analysis’ [1] is a multi-faceted prob-
lem which encompasses various aspects of auditory perception.
It encompasses the ability to detect, identify and classify sound
objects; to robustly represent and identify these objects in multi-
source environments; and to guide actions and behaviors in line
with complex goals and shifting acoustic soundscapes. Such ca-
pability can provide much needed robustness and flexibility to
a number of technologies including smart robots, surveillance
and security systems, target tracking in sensor networks as well
as adaptive communication aids for the sensory-impaired.

Unlike visual scenes, the difficulty of parsing auditory
scenes stems from challenges of segmenting and separating
the different components given the complex temporal dynam-
ics that different sound events have, as well as the time-varying
nature of their spectral details. Efforts towards classification
of auditory scenes have focused on extracting informative fea-
tures from the acoustic waveforms, that are then exploited to
learn generative or discriminative statistical models of the sound
classes of interest. Such efforts have led to notable successes in
recognizing different acoustic events [2, 3, 4]. Most approaches
rely on a short-time analysis of the signal and derive time-
varying spectral information, mostly based on Mel Frequency
Cepstral Coefficients (MFCC) and their related statistics. As
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for the statistical analysis of features, various discriminative
approaches such as support vector machines [4, 5], multilay-
ered perceptron [2] and generative approaches such as Gaussian
Mixture Models (GMM) [6] have been proposed. It has further
been suggested that discriminative approaches outperform the
generative approaches [6].

Unfortunately, the applicability of these approaches is hin-
dered by the usefulness of features such as MFCC for a task
like scene classification. By nature, cepstral coefficients capture
only the global spectral details of the signal and fail to analyze
the detailed and subtle changes in the spectrum as it changes
over time. Studies on mammalian auditory processing suggest
that neurons at the level of primary auditory cortex are more di-
rected at analyzing the local spectral and temporal modulations
in the signal; hence capturing both details of spectral profile,
as well as its changing dynamics over time [7]. In this study,
we explore the use of such detailed feature analysis in parsing
informative characteristics of auditory scenes. We propose a
simplified system motivated by processing in the mammalian
auditory system that can perform scene classification in isola-
tion, in an online setting as well as in presence of other sources.
The proposed model is described in Sec. 2

In addition to ‘passive’ scene understanding, we also ex-
plore the role of goal-directed attention in biasing the process-
ing of complex scenes. It is believed that goal-directed attention
modulates sensory processing of relevant features in a scene in
order to improve selectivity of the most informative sensory in-
puts [8]. This process involves a complex interplay between
bottom-up, stimulus-driven analysis of the sound features and
top-down, feedback processes that can adaptively modulate sen-
sory features, either via scaling, re-tuning or scanning prioriti-
zation [9]. Here, we test the role of re-weighting in improving
goal-directed scene understanding in a complex setting when
multiple sources are present. Details of the proposed architec-
ture are presented in Sec. 3.2.

2. Modulation-based System

We employ a model inspired from mammalian processing of
acoustic stimuli [10, 11]. The first stage models analysis from
the ear up to the level of the auditory midbrain. The cochlear
processing is implemented as 128 asymmetric filters (h(t; f)),
equally spaced on a logarithmic axis over 5.3 octaves start-
ing from 180Hz. Next, a first-order derivative along the fre-
quency axis followed by a half wave rectifier provides addi-
tional spectral sharpening. Finally a short-term integration with
µ(t; τ) = e−t/τu(t) and τ = 2ms mimics the loss of phase-
locking at the level of the midbrain. Given an input signal s(t),



the output of the first stage y(t, f) is derived as follows:

ycoch(t, f) = s(t)⊗t h(t; f)

ylin(t, f) = max[∂fycoch(t, f), 0]

ymid(t, f) = ylin ⊗t µ(t; τ)

y(t, f) = (ymid(t, f))
1
3 (1)

where ⊗t represents convolution with respect to time.
The output y(t, f) is then further analyzed to capture the

detailed spectral modulations (or scales s in cycles/octave) and
temporal modulations (or rates r in Hz) along the frequency and
time axes, respectively. This analysis is done using a bank of
modulation-tuned filters (MF ) defined as
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where σt, σf denote the spread of the filter. The filters are a
linear approximation of auditory cortex neurons [12, 13]. The
resulting representation R is a high-dimensional tensor, param-
eterized by time t, frequency f , scale s and rate r; given by:

R(f, t; s, r) = |y(f, t)⊗f,t MF (f, t; s, r)| (3)

where ⊗f,t indicates convolution in time and frequency.
Finally, we integrate R over the duration of the audio seg-

ment considered. We employ 220 MF filters, at 11 scales (0.25
cycles/octave to 8 cycles/octave), 10 positive and 10 negative
rates (between 2 and 250Hz), equally spaced on a logarithmic
scale axis. The final representation is then reduced via Ten-
sor Singular Value Decomposition[14], keeping 336 dimensions
which maintain 99% of the variance in the data.

Each recording is segmented into non overlapping 1s seg-
ments, and features are extracted for each non-silent segment.
A discriminative classifier is then trained to learn the bound-
aries between classes using multilayer perceptron algorithm. It
contains one hidden layer with 1500 hidden nodes with sigmoid
non linearity. The output layer has soft-max non linearity which
yields the estimated posterior probabilities of the classes. 10%
of the training data is used as cross validation during the training
of the classifier. The posterior probabilities are then averaged
over the entire duration of the recording. A simple K Nearest
Neighbor classifier (with K=7) then predicts the class label of
any given test recording using the cosine distance between these
average posteriors.

The scene classification task is performed on data from the
BBC Sound Effects Library [15]. It has 2400 recordings in to-
tal, amounting to 68 hours of audio data. The recordings are
organized into 18 classes for example Ambience, Machine, An-
imal etc. Each recording is resampled to 16kHz sampling rate
and pre-processed through a pre-emphasis filter with filter coef-
ficients [1 -0.97]. 90%(random selection) of the recordings are
used for training and 10% for testing.

Results from the proposed system are compared to standard
features for acoustic event classification, based on statistics of
Mel Frequency Cepstral Coefficients(MFCC) [2, 3]. We com-
pute 13 dimensional MFCC feature for every 10ms with a ham-
ming window length of 25ms. The C0 energy component of the
MFCCs are ignored to yield a 12 dimensional vector [our anal-
ysis shows that C0 exclusion did not affect performance]. We
then derive 2 sets of features: a) MS: Mean and Standard De-
viation of the MFCCs are computed over time to form a 24 di-
mensional vector b) MSS: Mean, Standard Deviation and Skew
of the MFCCs are computed over time to form a 36 dimensional
vector.

Figure 1: The confusion matrix of the classifier with the true
labels on the vertical axis and predicted labels on the horizontal
axis.

3. Results

We test the performance of modulation features and baseline
features using the setup described in Sec. 2. The proposed
features yield an accuracy of 66.3%, compared to 45.5% us-
ing MSS features and 39.43% using MS features. The differ-
ence in performance is directly related to the information con-
tent captured by the features and not their dimensionality; this
has indeed been confirmed elsewhere [16]. This remarkable im-
provement in accuracy of the modulation-based features clearly
demonstrates the need for localized analysis that can better cap-
ture the subtle nuances in sound as well as the co-presence of
specific spectral profiles and time dynamics. It is worth noting
that each class by itself is relatively variable and heterogeneous.

The confusion matrix of the classifier trained on modulation
features in shown in Fig. 1. Some of the common misclassifi-
cations are that of Office with Ambience, Warfare with Trans-
portation, and Music with Science Fiction. These errors are not
unexpected as the classes are themselves ambiguously defined,
for example Warfare class consists of examples recorded from
vehicles used for transportation in war.

3.1. Parsing a natural scene

Next, we test the robustness of the proposed model in a more
realistic uncontrolled setting using an example recording from
the web (youtube), due to lack of annotated databases of this
nature. In this analysis, we perform a continuous parsing of the
audio into 1s windows, with an overlap of 0.75s. Each segment
is then analyzed through the scene classification system and the
class with maximum posterior probability is chosen as the label
for the segment. Fig 2 shows the recording of a visit to a zoo
[17] where the acoustic scene is generally a mixture of differ-
ent sources and these scenes change over time. Examples of
time durations where there is predominance of human, vehicle,
animal or water sounds are depicted. The histograms of labels
for these time durations clearly shows that the model is able to
capture the sources in the changing acoustic scenes remarkably
well even though the classifier was never trained on the these
kinds of examples. This indicates that the modulation features
capture the inherent characteristics of different acoustic scenes.
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Figure 2: An audio recording collected from youtube as a function of time(in seconds) is shown here. Examples of histograms of
labels derived from the classifier over different segments of time are also shown. The duration between 17s to 22s has human speech
along with a background of other speakers. The sound of a train from 94s to 120s and water sounds from 128s to 134s is heard along
with the babble of other speakers. Similarly, animal sounds occur from 158s to 164s.

3.2. Goal-oriented scene understanding

As is often the case, sound sources never occur in isolation.
Natural recordings are often a mixture of different sources, and
cannot be given a simple class label. We therefore test the ro-
bustness of the proposed model in multi-source mixtures. Two
samples from different classes in the BBC database are mixed
together at one of the following SNRs: −20db, −10db, 0db,
10db, 20db. Fig. 3(a) shows examples of the model perfor-
mance for recognizing transportation and animal classes as a
function of SNR. The figure highlights the fact that the model
performance degrades significantly for SNR values below 10db.

Next, we explore the role of attention in the process of scene
analysis. Humans demonstrate the ability to pay attention to a
given goal using some prior knowledge and do a better job at
recognizing or identifying the occurence of that goal [18].

Studies have shown that the gain of the auditory cortex
neurons is enhanced when attention is being paid to a target
[19, 20]. In a simplistic attempt to model this, we use the mean
representation of R(f, t; s, r) from Sec. 2 as the prior knowl-
edge the system has about a class. Attention is modeled as a
simple weighting along either the frequency, rate or scale axis.
For example the weights for the frequency are calculated as
W (f) =

∑
t,s,r M(f, t; s, r) where M indicates the mean of

R over all training examples in the class. The weights W (.)
are then scaled and shifted to be in the range 0.8 to 1 to limit
the mismatch in representation presented to the classifier. This
attentional weighting is then applied as shown in (4).

Rw(f, t; s, r) = |y(f, t)⊗f,t MF (f, t; s, r)| ∗W (f) (4)

where Rw is the representation upon applying the attention
weighting W .

Mixing of natural scenes leads to a spreading of energy to
a wider region. Applying the attention weighting as described
would nullify this effect and enhance the regions of interest.
The effect of applying attention weighting for the transportation

and animal classes, along rate and frequency axis respectively,
is shown in Fig. 3a). On average, over all SNRs, the model
performance improved by 22.9% for transportation and 4.7%
for animal class. Note that even though this simplistic approach
has shown significant promise, it does not always yield an im-
provement in performance. For example weighting on the scale
axis resulted in an improvement of 0.7% for transportation but
decreased the accuracy of animals by 6.5%.

4. Conclusions

We proposed a novel approach to scene classification based on
biologically inspired models of auditory processing. We show
that the global analysis of modulations as done by MFCC is
not sufficient for scene classification. Further we show that a
more detailed local analysis of the spectral and temporal modu-
lations in a joint manner is able to capture the identity of acous-
tic scenes more successfully. We also show the high degree of
generalizability of this model to new unseen recordings in Sec.
3.1.

Attention is known to be a complex mechanism where the
top-down prior knowledge is imposed on the bottom-up anal-
ysis. In the visual domain, top-down attention has been incor-
porated into computational models [21, 22, 23] to successfully
enhance task performance. Attention in the auditory modality is
even more challenging since an acoustic scene is non-stationary
and dynamic, with multiple events occurring simultaneously.
Nevertheless, the proposed attentional mechanism in Sec. 3.2
based on weighting the appropriate features for the given task
improves the performance significantly. We are currently ex-
ploring alternative models of attention, guided by neurophysio-
logical evidence that attention can not only change the gain of
the auditory cortex receptive fields [19, 20] but also change its
selectivity and tuning properties [24, 25, 26].
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Figure 3: The accuracy of the classifier for animal class and
transportation class when mixed with other classes, with and
without weighting on the frequency and rate axis respectively is
shown as a function of SNR.
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