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Abstract

It has been previously suggested that ensembles of central a
ditory neurons optimize a sustained firing criterion as [oédrt
the underlying neural code for representing sound. Mongove
computational studies have shown that optimizing suchta-cri
rion yields ensembles of spectro-temporal receptive fiakils

to those observed in physiological studies. In this study, w
show that these emergent receptive fields contour the high-
energy modulations in speech, defining a boundary thanélisti
guishes between noise-robust and easily corrupted maahsat
in speech-plus-noise mixtures. A simple 2D filter thus detiv
is shown to improve upon the performance of state-of-the-ar
phoneme recognition systems under both additive noisei-cond
tions and reverberation By9% absolute on average.

Index Terms: robust feature extraction, bio-inspired features,
sustained neural firings

1. Introduction

A critical component of automatic speech recognition syste

is the choice of features for representing the acousticasign
Such features should not only be easy to compute but also ex-
hibit some degree of noise robustness to inevitable detioada

to the acoustic signal when used in real environments. How-
ever, it is often the case that the performance of sophtstica
feature extraction schemes, while demonstrating stathesirt
performance in clean acoustic conditions, quickly degsade

the presence of additive noise or reverberation.

Motivated by the robustness of the mammalian auditory
system in degraded acoustic environments, it is believatl th
observations from behavioral and neurophysiological isgid
can inform processing schemes for automated sound pragessi
systems. For instance, it is widely believed that “slow”ctpe-
temporal modulations in speech carry information in a rbbus
manner in degraded acoustic environments [1, 2, 3]. Applica
tion of this principle has recently been shown by Nenwilal.
to identify those spectro-temporal modulations that yiede-
robust features when corrupted by a variety of additive aois
conditions [4].

Additionally, studies of the basis of sound representation
central auditory areas suggest teastained neural responses
form part of the code underlying the perceptual stabilitpof
ditory objects [5, 6, 7]. Indeed, a computational model con-
sidered by Carlin and Elhilali that enforces sustainedaasps
yields ensembles of spectro-temporal receptive fields )R
akin to those measured in physiological studies [8, 9]. ysial
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of the modulation profiles of the emergent STRFs suggests tha
spectro-temporal modulation contours serve to distirfgbis-
tween noise-robust and easily corrupted modulations iadpe
plus-noise mixtures. Importantly, these results complertiee
findings of Nemalaet al., and in this paper we elaborate on this
relationship.

Here we describe how the sustained firing principle can be
used to derive a data-driven 2D spectro-temporal modulatio
filter for preprocessing auditory spectrograms for nowmist
feature extraction. In a phoneme recognition task, we demon
strate that use of these filtered spectrograms outperfata-st
of-the-art mean-variance ARMA (MVA) features in both addi-
tive noise and reverberant conditions.

2. Methods
2.1. Spectro-temporal receptive fields

To characterize the relationship between a stimulus arabits
responding neural response we use the spectro-tempoegl-rec
tive field (STRF) [10]. An STRF models the linear transfor-
mation of a time-varying spectro-temporal input to an inta
neous firing rate, i.e.,

)= [ [ hir pyste = 7. paras ®
whereh(t, f) is an LTI filter that defines the STRF an¢, f)
is a spectro-temporal stimulus. For discrete-time sigaais
assuming thak(¢, f) has a finite impulse response, we can ex-
press Eq. 1 compactly in vector notation as
r(t) =h"s(t), ®)
wheres(t),h € R are vectors denoting the (column-wise
stacked) stimulus and filter, respectively [11]. Furtheredo
express the responsét) = [ri(t)r2(t) --- rr ()T € RE
of anensemblef K neurons, we concatenate the STRFs into
amatrix H := [hy hy --- hg] € R, which allows us to
write theensembleesponse as(t) = H s(t).

2.2. Optimizing a Sustained Firing Criterion

A sustained response can be understood as one whose firing
rate changes relatively slowly and is thus higbbyrelatedover

time. Here we are interested in the characteristics of ensem
bles of model STRF#/ that promote sustained responses over
a specified time intervat — AT, t]. To quantify this principle,

we adapt the model of Hurri and Hyvarinen [12] and define the
following objective function:

K
Jous(H) := ;/AT ar(ri(t)ri(t—7)),dr,  (3)
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Figure 1:(a) Examples of emergent STRFs learned by optimizing thaised firing criterion forAT = 125 ms, (b) the corresponding
STRF ensemble MTF (eMTF), and (c) an estimate of the avepmgeek MTF. In panels (b) and (c) we superimpose normalizsithés
contours derived from the eMTF at variouslevels. For display purposes, the MTF in (c) is compressed factor of1/3.

where(-); denotes time average. Observe thiat.(H) rep- 2.3. Modulation Analysis of the Emergent STRFs
resents the sum of correlations between signal energidseof t
k'th neuron over a time interval defined kYT across an en-
semble of K neurons. If a neuron yields a sustained response,
then each of they (¢) vary smoothly over the specified interval
and we expecls.,s(H) to be large. Moreover, choice &7’
allows us to directly explore the effect of different timakas on
the ensembledl that optimize Eq. 3. Finally, the weights,
are chosen to reflect the intuition that recent activity otanon
likely has more influence on the current output than the frast;
this work thea. are set to be linearly decaying.

Since the ensembl# is not specifieda priori, the goal is

A useful characterization of the spectro-temporal moduat
sensitivity of an STRF is made by considering rit@dulation
transfer function(MTF). The MTF is simply the magnitude of
the 2D Fourier transform of a given STRF and describes the
joint distribution of sensitivity to temporal modulatioifsate,

in Hz) and spectral modulationsdale in cyc/oct). Further-
more, by averaging the MTFs obtained from each STRF, we
obtain anensemble MTReMTF) that characterizes the aver-
age spectro-temporal modulation sensitivity of the givesesn-

ble [14]. The eMTF can then be used to relate the average mod-

to vary the shapes of the STRFs so asraximizesustained uI_ation tuning of an ensemble to the modulations presettdn t
firing rates according to the objective function defined in &q stimulus.

subject to constraints thdtound the responses anainimize Shown in Fig. 1(b) is the normalized eMTF for an ensem-
redundancyin the learned ensemble. Such constraints can be ble of K" = 400 STRFs, again foAT = 125 ms. Interestingly,
satisfied by enforcing the responses have unit variance and b  the eMTF shows that the emergent STRF ensemble has little-
mutually uncorrelated [8, 12]. Thus, we wish to solve the fol ~ to-no sensitivity to “slow” modulations (i.e., no energyst

lowing optimization problem: to the origin), exhibiting instead a distinct “contouringffect
. for rates between approx: 15 Hz and scales between 0 and
arg max Jsus(H) subjectto(r;(t)ru(t)), = djx,  (4) 2 cyc/oct. It is known, however, that speech has an abundance

of modulation energy in these modulation ranges [2], and in-
deed this is observed when we compute the average MTF of the
speech stimulus (Fig. 1(c)).

To compare the extent to which the modulation energy of
the STRFs contours the modulations of the speech stimuks, w
computed normalized isoline contours at thievel (Fig. 1(b)),
and considered those portions of the contours closest tarthe
gin (Fig. 1(c)). Indeed, when superimposed on the speech MTF
we observe that the contours form a tight boundary arourgktho
rates and scales where most of the speech modulation energy
is concentrated. This is an especially interesting obsierva
given the recent results of Nemadtal. [4], who have demon-
strated that auditory spectrograms bandpass filtered t@micon
only “slow” rates and scales in this region yield noise-rstbu
features for automatic speech recognition. To complenieset
results, we hypothesize that the observed contouringteffex
to the eMTF serves to define the band edges of a 2D bandpass
modulation filter in adata-drivenfashion. We describe next
how this principle is used to design such a filter.

forj,k = 1,2,--- , K and wherej;, is the Kroenecker delta
function. For brevity’s sake, we omit a detailed descriptad

the optimization procedute However, it suffices to say that
the matrix of STRF4T is updated via projected gradient ascent
whereby a projectio(-) : R™** — R4*¥ js applied to each
gradient updated (V) so that the required response constraints
are satisfied; the interested reader is directed to [12] forem
details.

To learn STRFs that optimize the sustained firing criterion,
we used auditory spectrograms [13] computed from approx.
three minutes of speech from the TIMtT ai n corpus, using
an equal proportion of male and female speakers. The tono-
topic axis was sampled using 10 channels/octave over 6extav
at a frame rate of 5 ms. We extracted 250 ms spectro-temporal
segments once every 5 ms. Each segment was stacked column-
wise into a vectos(t) € R? whered = 3000 (i.e., 50 vec-
tors/segmeni 60 channels), yielding a total e¥30k spectro-
temporal input vectors. An ensemble of STREFsvas initial-
ized at random and varied so as to solve the problem posed in
Eqg. 4 above. Examples of STRFs learned using the above pro- ) o
cedure forAT = 125 ms are shown in Fig. 1(a). As observed, ~ 2.4. 2D Spectro-Temporal Modulation Filtering
the STRFs exhibit sensitivity to a variety of localized, cipal,

S : ; The 2D filters we consider are designed in the modulation do-
temporal, and joint spectro-temporal events in the stiswlu

main using a given contoWr’ at thea level. We set the magni-
1A detailed description of this procedure along with full Bsés on tude response of the filter at rates and scales inside thewont
a broader set of natural sounds will appear in a future paper. to unity. We then set the roll-off of the filter to be exponanti




as

Mi(w,9) = exp {— < (@ ;Q))} )

where (we, Q) is the point fromC' that is closest to the point
(w, §2) being considered. Herey. and(2, are the roll-off pa-

rameters along the rate and scale axis, respectively. Touvem
temporal modulations nefirHz, we define a wedge function as

(w = we)?

—+

Wr

TW

W(w) = { sin (%W)

ol < ww 6)
1 otherwise

wherewyy is the wedge roll-off along the rate axis [3]. Thus, we

obtain the desired 2D filter af (w, Q) = M (w, ) - W(w).

A given auditory spectrogram is filtered by first transforgio

the modulation domain via the 2D Fourier transform, and the

magnitude is multiplied with the filted/ (w, Q). Finally, we

perform the inverse 2D Fourier Transform, keeping the rael p

only, to obtain the filtered auditory spectrogram.

3. Experiments and Results
3.1. Corpora and Recognizer Setup

Hand-labeled data from the TIMIT corpus was used to train
a speaker-independent phoneme recognition system using th
Hybrid Multi-layered Perceptron / Hidden Markov Model
(MLP/HMM) setup [15]. 3696 utterances were used for tragnin
out of which 8% were used as cross validation data. A separate

set of 1344 utterances were used for testing. The 61 phoneme

labels in the TIMIT corpus were converted to a standard set of
39 labels [16].

A multi-layered perceptron (MLP) was trained discrimina-
tively to estimate the posterior probabilities of the phoee
classes given an input feature vector. The MLP had a hidden
layer with 1500 nodes with a sigmoid non-linearity. The aitp
layer consisted of 40 nodes (with a softmax non-linearity} ¢
responding to the 39 phonemes and an additional garbage clas
A second MLP was then trained to include a temporal context
of 23 frames (11 frames before and after the current framg) an
helped to enhance the posterior probability estimates.s€he
ond MLP had the same hidden layer and output layer structure
as the first [17].

The HMM system consisted of a three-state feed-forward
HMM for each phoneme, with equal probability of transition
to itself or the next state. The posterior probabilities evei-

vided by the relative counts of each phoneme and were used as

the emission probabilities for the HMM. Finally, the phoreem
sequence was decoded using the standard Viterbi algorithm.

Table 1: Phoneme recognition rate (as %) for utterances cor-
rupted by additive noise (higher is better).

. . Feature
Noise Type | SNR (in d8) grecesmvA [ 2D Fitered
[ Clean ] 00 | 68.2 | 69.6 |
20 56.6 63.8
15 49.6 57.7
Babble 10 40.7 47.8
5 29.8 34.6
0 19.6 21.8
Average 39.3 451
20 57.1 62.4
15 50.8 56.5
F16 10 43.3 47.4
5 34.6 37.2
0 27.0 27.2
Average 42.6 46.1
20 55.8 61.6
15 48.5 55.1
Factoryl 10 39.5 46.2
5 30.2 35.6
0 21.2 25.9
Average 39.0 449
20 57.8 67.1
15 54.5 64.7
Tank 10 50.7 60.3
5 46.4 54.4
0 41.4 46.5
Average 50.1 58.6
20 63.6 69.6
15 62.0 69.3
\olvo 10 60.2 68.6
5 58.1 67.2
0 54.8 64.7
Average 59.7 67.9

3.2. Proposed and Baseline Features

For the proposed features, the auditory spectrogram of each
terance was calculated at a spectral resolution of 24 clenne
per octave over 5.3 octaves (128 channels in total) at a frame
rate of 100 frames/second. We used the contour derived for
a = 0.7, and 2D filtering (as described in Sec. 2.4) was applied
with w, = 1,Qs = 0.12, andww = 1.25. These constants
were empirically determined to maximize performance on the
cross validation data set. After applying the 2D filter, we ap
pended first-, second-, and third-order dynamic featuriesl-y
ing a 512-dimensional input feature vector (i.e., ¥28.

We compared the proposed features with state-of-the-art
noise robust features based on MVA processing of MFCC fea-

This decoded sequence of phonemes was compared to the hand-yres [20]. These features were obtained by first extracting

labeled sequence, with recognition rate determined byuhg n
ber of insertions, deletions, and substitutions.

a standard set of 13-dimensional MFCCs including their-first
, second-, and third-order temporal derivatives. Nextstrap

To assess the noise-robustness of the proposed features, wWe mean subtraction and variance normalization was applied, a

tested the system under various mismatched conditionghBor
we corrupted the test set with additive noise and reverioerat
Five types of additive noises from the NOISEX92 corpus [18]
were added to the test data at various SNRs from 0-20 dB (at
steps of 5 dB) using the FaNT tool [19]. The noises considered
were speech babble (Babble), fighter jet cockpit (F16)ofgct
floor (Factoryl), military tank (Tank), and automobile iroe
(Volvo). For reverberation, we synthesized artificial rooea
sponses at five different reverberation time constaRt®s()

the temporal trajectory of each feature dimension waséittén

a RASTA-like manner, further enhancing noise robustnesk [2
Finally, a nine-frame context was appended, resulting i6& 4
dimensional feature vector (i.e., ¥3x9).

3.3. Results

Shown in Table 1 are phoneme recognition results for test ut-
terances corrupted by additive noise at a variety of SNRis. It

from 100-500 ms in steps of 100 ms. These responses were immediately clear that for clean as well as for all noise §ype

generated by convolving Gaussian white noise with an expo-
nentially decaying envelope.

and noise levels the proposed features outperform theibasel
MFCC+MVA features, with an overall average absolute gain



Table 2: Phoneme recognition rate (as %) for utterances cor-
rupted by artificial reverberation (higher is better).

. Feature
Reverb. ime £Ts0) -recc+MVA | 2D Filtered
100 ms 50.1 53.4
200 ms 37.3 40.6
300 ms 30.5 34.3
400 ms 27.1 30.9
500 ms 24.6 28.3
Average 33.9 37.5

of 6.4% for the noise cases. This improvement in performance
even at 0 dB SNR suggests that the 2D filter is indeed able to
capture the high energy regions of speech and discard tee noi
regions effectively.

Shown next in Table 2 are phoneme recognition results for
test utterances corrupted by artificial reverberation. iAgea
all cases, we observe that the proposed features outpettfierm
baseline, with an average absolute gain of 3.6%. This furthe
validates the robustness of the filter in capturing the higgrgy
speech regions.

4. Discussion and Conclusions

We have demonstrated that by optimizing a neurophysiologi-
cally plausible sustained firing objective, we observe there
gence of an ensemble of STRFs that collectively define a tight
boundary for speech in the modulation domain. By isolating
spectro-temporal contours from the emergent ensemble MTF,
we have described a framework for designing a 2D spectro-
temporal filter for preprocessing spectrograms for notdmist
feature extraction. Moreover, the proposed features oigtpe
state-of-the-art MVA-processed MFCCs both in clean condi-
tions and in all additive noise and reverberation scenaros
sidered here.

While we could have derived the filter contours directly
from the speech MTF, we consider the question of the infor-
mation content of spectro-temporal modulations from aeralt
native but complementary perspective. In particular, thgts
of the work of Nemaleet al. was to focus resources on sub-
sets of rates and scales that were somehow “linguisticatdly i
portant” and presumably carried the message-bearing compo
nents of speech. This was achieved by choosing modulation
filter parameters that reflected this intuition in the joipéstro-
temporal modulation domain, and is indeed consistent wiigh t
RASTA filtering framework of Hermansky and Morgan [21].

It is therefore noteworthy that the sustained firing objexcti
function and associated constraints arrive at a similapnaif
data-driven filter design. In this work, rather than desigrthe
shape of the modulation filter by hand, we arrived at a noise-
robust representation for speech by considering more gliyer
the form of a neural coding strategy used in central auditory
areas. Additionally, the emergent neural ensemble, while i
plicitly capturing the extent of the slow spectro-temparaid-
ulations in the stimulus, primarily exhibits sensitivity fast
modulations relatively far from the origin. Such a disttibn
may reflect more generally a form of unsupervised learniag th
discriminates among the various classes of sounds present i
speech [22]. Future work is needed to further elucidate ¢he r
lationship between the form of the objective function and-co
straints, the modulation spectra of the emergent STRFshend
distribution of the speech MTF.
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