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Abstract

Current understanding of speech processing in the brain
suggests dual streams of processing of temporal and spectral
information, whereby slow vs. fast modulations are analyzed
along parallel paths that encode various scales of information
in speech signals. This unique way for the biology to analyze
the multiplicity of information in speech signals along parallel
paths can bare great lessons for feature extraction front-ends in
speech processing systems, particularly for dealing with extrin-
sic degradations and unseen noise distortions. Here, we propose
a multistream approach to feature analysis for robust speaker-
independent phoneme recognition in presence of nonstationary
background noises. The scheme presented here centers around a
multi-path bandpass modulation analysis of speech sounds with
each stream covering an entire range of temporal and spectral
modulations. By performing bandpass operations of slow vs.
fast information along the spectral and temporal dimensions,
the proposed scheme avoids the classic feature explosion prob-
lem of previous multistream approaches while maintaining the
advantage of parallelism and localized feature analysis. The
proposed architecture results in substantial improvements over
standard baseline features and two state-of-the-art noise robust
feature schemes.
Index Terms: multistream, specto-temporal modulations,
speech recognition, noise robustness

1. Introduction
Speech operates on multiple time scales, ranging from a few
milliseconds to hundreds of milliseconds; each with its distinct
acoustic manifestation, neural instantiation and perceptual role.
Classic paradigms for speech processing generally ignore the
intricate interplay between these various time constants, and
process information on one time scale (typically, segment by
segment), only to integrate it at later stages in a feedforward
fashion (via temporal derivatives and contextual information).
In contrast, evidence from neurophysiology and neurolinguis-
tic literature argues for at least a dual parallel processing mode
[1]. In this view, a shorter time scale of the order of 15Hz
(roughly 30-80msec) captures segmental transitions in speech;
while a longer time scale of the order of 5Hz (roughly 150-
300msec) is commensurate with the size of syllable transitions
in speech. This multi-stream framework for speech processing
has the advantage of capturing the multiple, partially redundant,
cues in speech and benefiting from the parallel processing mode
in order to achieve more stable recognition in presence of back-
ground noise and distortions. A similar framework is also ad-
vantageous for processing spectral cues in speech, which also
contain separate yet somewhat redundant information about the

phonetic identity of the signal [2, 3]. In this regard, one can
capture the broad trends of the spectral shape (e.g. formants)
distinctly from the rapidly varying properties (e.g. harmonic
peaks). Put together, we view the dual-mode of processing slow
vs. fast temporal and spectral cues as a propitious framework
for parallel processing of speech information which could bear
great benefits not only for improved automatic recognition, but
more importantly robust performance in presence of degrada-
tions.

Here, we present a multistream framework for automatic
speech recognition (ASR) that integrates multiple streams span-
ning slow vs. fast dynamics of speech, both spectrally and
temporally. In this scheme, the multiple feature streams are
constructed based on bandpass modulation filtering, with each
stream covering a full range of either slow or fast spectral and
temporal modulations. This approach contrasts directly with
previous attempts at incorporating multistream processing in
ASR systems; whereby conventional Gabor filters centered at a
number of specific temporal or spectral modulation frequencies
are used [4, 5, 6]. These past attempts at multistream process-
ing have generally used the rationale of feature division, using
an array of features localized around a set of modulations. Such
architectures have the obvious drawback of dimensionality ex-
plosion of the feature space into several thousands of dimen-
sions or equivalently in several tens of feature streams [4, 5, 6].
In contrast, our proposed bandpass scheme of dual slow/fast
processing maintains the benefits of parallel processing without
any dimensionality expansion in the feature extraction stage.

We evaluate the benefits of this multistream bandpass mod-
ulation feature scheme by comparing its performance with stan-
dard baseline ASR features, Mel-Frequency Cepstral Coeffi-
cients (MFCC), and two state-of-the-art noise robust feature
schemes namely Mean-Variance ARMA (MVA) processing [7]
and Advanced-ETSI noise-robust speech recognition front-end
[8]. In particular, we focus on the robustness of these differ-
ent feature representations as a function of noise distortions in a
speaker-independent phoneme recognition task. The following
section presents motivation and details of the multistream fea-
ture representation. The experimental setup for the recognition
task and results are detailed in section 3. In section 4, we finish
with a discussion of these results and potential improvements
towards achieving further robustness to noise distortions.

2. Multistream modulation features
The parametrization of speech sounds is achieved through a
multistage model that captures processing taking place at var-
ious stages along the auditory pathway from the periphery all
the way to the primary auditory cortex (A1). The input acous-
tic signal is first processed through a pre-emphasis stage, im-



plemented as a first-order highpass filter with pre-emphasis co-
efficient 0.97. An early stage then maps the one-dimensional
acoustic signal to an auditory time-frequency spectrographic
representation detailed in [9]. The first step consists of cochlear-
filtering, using a bank of 128 constant-Q (Q = 4), highly
asymmetric, bandpass filters, equally spaced on a logarithmic
frequency axis (24 filters/octave over a 5.3 octave range). A
subsequent step performs a sharpening of the filterbank fre-
quency selectivity (from Q = 4 to 12) via a first-difference
over neighboring channels, followed by half-wave rectification
and short-term integration over 10msec windows, and a cubic-
root compression of the spectrogram. Finally, the number of
frequency channels is decimated by a factor of 4, resulting in
32 frequency channels with a resolution of 6 channels/octave
over 5.3 octaves.

A central stage further analyzes the auditory spectrogram
to form multiple feature streams. Each individual feature
stream is obtained by filtering the auditory spectrogram using
a set of bandpass spectral and temporal modulation filters.
The filtering is done in the Fourier domain of the modulation
amplitude. For the spectral (or temporal) modulation filtering,
first the Fourier transform of each spectral (or temporal) slice
in the spectrogram is taken, then is multiplied by a bandpass
modulation filter H(w; [wl, wu]) capturing entire modulation
content within the specified range of wl and wu (wl < wu).
The inverse Fourier transform then yields the modulation
filtered version of the auditory spectrogram. The bandpass
modulation filter H(w; [wl, wu]) is defined as follows:

H(w; [wl, wu]) = (G2) ∗ exp(1−G2)

where G is a montonically non-decreasing function given
by G = g(w; [wl, wu]) = mw, with

m =

8<: 1/wl for 0 <= w < wl

1/w for wl <= w <= wu

1/wu for wu < w <= wr

where wr is the modulation frequency resolution and wl, wu

are the lower and upper frequency cutoffs for a given bandpass
modulation frequency range. With 10ms frame rate and 6 fre-
quency channels per octave used in the auditory spectrogram
computation, wr is 50Hz for temporal modulations and 3 Cy-
cles/Octave for spectral modulations. Note that for wl = 0, the
filter is lowpass.

In this work, we defined 4 different feature streams using
two ranges of spectral and temporal modulations (shown in Ta-
ble 1). The ranges are chosen carefully considering three impor-
tant aspects; (i) each stream needs to carry sufficient information
about the underlying signal (ii) there is complimentary informa-
tion between different streams in terms of signal encoding (iii)
constraining modulation bandpass cutoffs to ranges shown to
be crucial for speech comprehension and highly robust to noise
[10]. The aspects (i) and (ii) are crucial when combining infor-
mation from the different feature streams, while (iii) is crucial
to obtain high overall noise robustness performance. Figure 1
shows the four different feature streams for an example speech
utterance.

3. Experiments and results
3.1. Recognition setup

Speaker independent phoneme recognition experiments are
conducted on TIMIT database (excluding ’sa’ dialect sen-

Table 1: Range of spectral and temporal modulations captured
by each of the 4 streams

Stream No. Spectral modulations Temporal modulations
(Cycles/Octave) (Hz)

1 0 to 1 (slow) 0.5 to 12 (slow)
2 0.5 to 2 (fast) 0.5 to 12 (slow)
3 0 to 1 (slow) 10 to 22 (fast)
4 0.5 to 2 (fast) 10 to 22 (fast)

Figure 1: Illustration of the four different feature streams for the
utterance “come home right away” taken from TIMIT speech
database. The ordering of the streams 1-4 is from top to bot-
tom. The top panel also shows the underlying phoneme label
sequence.

tences), using the hybrid Hidden Markov Model / Multilayer
perceptron (HMM/MLP) framework [11]. The training, cross-
validation and test sets consist of 3400, 296 and 1344 utter-
ances from 375, 87 and 168 speakers respectively. For the pur-
pose of training and decoding, 61 hand-labeled symbols of the
TIMIT training transcription are mapped to a standard set of 39
phonemes along with an additional garbage class [12].

MLP with a single hidden layer is trained to estimate the
posterior probabilities of phonemes (conditioned on the input
acoustic feature vector) by minimizing the cross entropy be-
tween the input feature vectors and the corresponding phoneme
target classes [13]. These estimates are further refined by train-
ing a second MLP (in a hierarchical fashion) [14] which oper-
ates on a longer temporal context of 23 frames of posterior prob-
abilities estimated by the first MLP. Both MLPs have a single
hidden layer with sigmoid nonlinearity (1500 hidden nodes) and
an output layer with softmax nonlinearity (40 output nodes). In
the proposed multistream system, phoneme posteriors obtained
from individual streams are integrated using a combination rule



Table 2: TIMIT ASR results in terms of phoneme recognition rate (in percentage) for different types of noise

Noise Type SNR (in dB)
Features

MFCC39 MFCC+9FTC MVA ETSI Multistream

Clean ∞ 70.1 71.4 68.2 70.6 72.7

Factory1

20 48.5 48.2 55.7 61.5 66.4
15 38.8 38.1 48.4 54.9 60.3
10 27.2 28.3 39.4 45.1 51.3
5 16.1 19.5 30.2 34.5 38.4

Average 32.6 33.5 43.4 49 54.1

Babble

20 48.5 48.1 56.5 62.1 68.4
15 36.6 37.3 49.5 55.6 62.9
10 26.6 27.6 40.7 46.1 52.9
5 18.4 19.5 29.7 34 36.9

Average 32.5 33.1 44.1 49.4 55.3

Volvo

20 60.4 60.8 63.5 68.1 72.5
15 55.6 55.7 62 66.7 72.4
10 50.1 49.9 60.2 64.8 72.1
5 41.8 42.9 58.1 61.7 71.1

Average 51.9 52.3 60.9 65.3 72

F16

20 48.3 48.5 57.1 63.3 66.7
15 37.3 37.8 50.8 57.9 61.1
10 24.7 27 43.2 49.4 51.9
5 14.3 18.2 34.6 38.5 40.3

Average 31.1 32.9 46.4 52.3 55

based on the Dempster-Shafer (DS) theory of evidence [15]
which has been shown to be related to human way of processing
multiple feature streams. The final posterior probability esti-
mates are converted to scaled likelihoods by dividing them with
the corresponding prior probabilities (unigram language model)
of phonemes. An HMM with 3 states, with equal self and tran-
sition probabilities associated with each state, is used for mod-
eling each phoneme. The emission likelihood of each state is
set to the scaled likelihood. Finally, the Viterbi algorithm is
applied for decoding the phoneme sequence. Note that the hy-
brid HMM/MLP system achieves better phoneme recognition
performance than the standard HMM/GMM systems [16].

3.2. Recognition results

The phoneme recognition performance for the proposed mul-
tistream system is compared against the performance obtained
with a standard baseline features and two state-of-the-art noise
robust feature schemes. The baseline features are MFCC39,
obtained by taking the standard 13 Mel frequency cepstral co-
efficients along with their first and second order dynamic fea-
tures (standard 39 dimensional MFCC features). A modified
version of the baseline features, referred to as MFCC+9FTC,
are obtained by taking a 9-frame temporal context on the stan-
dard 13 Mel frequency cepstral coefficients along with their
first, second, and third order dynamic features (dimensional-
ity is 9 x 13 x 4 = 468). Note that the modified version of
the baseline features improves over the standard MFCC39 fea-
tures in the hybrid HMM/MLP recognition framework. The
first noise robust feature scheme compared against is Mean-
Variance ARMA (MVA) processing of MFCC features [7]. The
MVA processing is applied on the MFCC+9FTC features, and it
combines the advantages of multiple noise robustness schemes:

cepstral mean subtraction, variance normalization, and tempo-
ral filtering techniques like RASTA [17]. The second robust
feature scheme compared against is the Advanced-ETSI dis-
tributed speech recognition front-end [8]. A 9-frame tempo-
ral context is taken on the ETSI features along with their first,
second, and third order dynamic features, resulting in an in-
put feature dimensionality of 4681. Both MVA and ETSI have
been shown to provide excellent robustness for additive noise
distortions, and form the state-of-the-art in noise robust feature
schemes. For the multistream features, a 3-frame temporal con-
text is taken on the base features along with their first, second,
and third order dynamic features, resulting in an input feature
dimensionality of 384 (3 x 32 x 4).

To evaluate the noise robustness aspect of the different fea-
ture representations, various noisy versions of the test set are
created by adding four types of noise at Signal-to-Noise-Ratio
(SNR) levels of 20dB, 15dB, 10dB and 5dB. The noise types
chosen are, Factory floor noise (Factory1), Speech babble noise
(Babble), Volvo car interior noise (Volvo), and F16 cockpit
noise (F16), all taken from NOISEX-92 database [18], and
added using the standard FaNT tool [19]. In all the experiments,
the recognition models are trained only on the original clean
training set and tested on the clean as well as noisy versions of
test set (mismatch train and test conditions).

The phoneme recognition accuracy of various features is
listed in Table 2. The proposed multistream features achieve
performance comparable (or better) to that of MFCC, MVA, and
ETSI features, under clean (matched) conditions. With addi-
tive noise conditions reflecting a variety of real acoustic scenar-
ios, the multistream features perform substantially better than
the baseline MFCC features, and significantly better than the

1For both ETSI and MFCC, the 9 frame context window and the 468
dimensional feature representations achieved best ASR performance



MVA and the ETSI features; an average relative improvement
of 55.7%, 21.3%, and 9.5%, respectively. Note that the ETSI
features have an additional advantage of using voice activity
detectors (VAD) to identify noise-only frames and use the in-
formation to enhance the signal representation.

4. Discussion
In this work, we propose multistream bandpass modulation fea-
tures for noise robust speech recognition. Multiple streams of
features are constructed based on bandpass modulation filtering,
with each stream covering an entire range of temporal and spec-
tral modulations within carefully chosen modulation frequency
bands. The rationale for multistream processing of speech fea-
tures is highly grounded in the functional neuroanatomy of
sound processing in the brain. Not only are neuron ensem-
bles tuned to multiple scales of spectro-temporal modulations
in the signal [20], there is also neurophysiological evidence
of multiple streams of sound processing in the temporal lobe
[1, 21]. The proposed scheme builds on this notion of parallel
paths of processing to carefully devise four processing paths,
divided along a slow vs. fast duality in both spectral and tem-
poral modulations. Each stream provides a complimentary view
of the modulation content in the speech signal, highlighting its
fast vs. slow temporal dynamics or fast vs. slow spectral varia-
tions. This bisection of the modulation space is motivated by the
duality of processing time constants in speech signals; as well
as the contrast between subharmonic and broad spectral infor-
mation. Perceptual studies have shown that concurrent streams
of speech information along this dual slow vs. fast divide add
up supra-linearly, leading to improved intelligibility relative to
each stream by itself [22]. Such result is also observed here
in our ASR experiments, with significant improvements over
state-of-the art systems, both in clean and noise/mismatch con-
ditions2.

Note that in this work, we have not used any noise compen-
sation techniques that involve voice/speech activity detectors
to identify noise-dominated frames or subtract the noise com-
ponent from the signal representations. The noise robustness
improvements are purely due to the underlying feature repre-
sentations, and are applicable to cases where noise compensa-
tion and/or signal enhancement techniques are not practical or
feasible. However, we anticipate further improvements in the
robustness by applying the proposed multistream approach on
enhanced signal representations obtained from speech enhance-
ment techniques [23]. It is also worth noting that the noise
robustness obtained here from the multistream framework on
a hybrid HMM/MLP system could be easily extended to other
large scale speech recognition tasks in the TANDEM frame-
work [24].
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