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Abstract 

We propose discriminant methods for deriving two-

dimensional spectrotemporal features for phoneme recognition 

that are estimated to maximize the separation between the 

representations of phoneme classes. The linearity of the filters 

results in their intuitive interpretation enabling us to 

investigate the working principles of the system and to 

improve its performance by locating the sources of error. Two 

methods for the estimation of filters are proposed: Regularized 

Least Square (RLS) and Modified Linear Discriminant 

Analysis (MLDA). Both methods reach a comparable 

improvement over the baseline condition demonstrating the 

advantage of the discriminant spectrotemporal filters. 

Index Terms: phoneme recognition, spectrotemporal filters, 

data driven features 

1. Introduction 

Automatic Speech Recognition can benefit from using 

features that do not merely reflect the short-term spectral 

profile of speech but are derived from longer temporal 

windows [1]. These features can have a fixed temporal 

resolution [1], or perform a multiresolution temporal 

decomposition on each frequency band of the signal [2]. 

The long-term features have also been generalized to 2D 

spectrotemporal patterns [3,4]. One motivation that 

justifies this idea is the known characteristics of the 

neurons in higher order auditory areas that are 

responsive to a wide range of temporal and spectral 

modulations of the auditory stimulus [5]. Many of the 

so-called Spectro-Temporal Receptive Fields (STRF) 

found in the auditory cortex show complex  

spectrotemporal characteristics suggesting their ability 

to perform complex filtering on the input time-frequency 

representation. In addition, recent findings by 

neurophysiologists have shown that the cortical neurons 

are not just static filters with fixed transfer functions [6]. 

In fact, the receptive field of cortical neurons changes 

actively when the brain engages in audio classification 

task to assist the discrimination of the sound classes [7]. 

A recent study has proposed a discriminant model 

generating spectrotemporal filters that closely match the 

observed neural receptive field changes in a variety of 

audio classification tasks [8]. The model in [8] assumes 

that the changes in receptive fields result in increased 

separability between the representations of sound 

classes. 

In this paper, we propose similar discriminant 

algorithms as in [8] that optimize 2D spectrotemporal 

filters for discrimination of each phoneme from the rest. 

The outputs of such filters are used as inputs to a neural 

network trained to generate the phoneme posterior 

probabilities. The proposed 2D filters operate on the 

time-frequency representation of sound in a similar way 

as in [3,4]. In contrast, our spectrotemporal filters are 

found by maximizing phoneme separability in their 

projected space, not by selecting from a fixed set of 

parametric filters similar to [4].  

We utilized two methods for finding the discriminant 

filters: (1) Regularized Least Square technique (RLS) 

[9] and Modified Linear Discriminant Analysis (MLDA) 

[10]. Since the spectrotemporal filters that are optimized 

to discriminate one phoneme from the rest are linear, 

their interpretation becomes very straightforward. This 

enables us to investigate the working principles of the 

system and to gain insights that can be used to improve 

the performance and to determine the sources of error. 

Next, we explain how the filters are derived and describe 

their intuitive operation. 

2. Spectrotemporal filter estimation 

We used two methods to estimate the discriminant 

spectrotemporal filters that were applied to the log 

critical band energies: RLS and MLDA. The 

optimization criteria for the two techniques is different, 

however they result in comparable performance.  

2.1. Regularized Least Square algorithm 

Regularized least square algorithm solves the following 

optimization problem [9]:  
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where X is the data set, Y is the desired labels and w is 

the weight vector that minimizes equation 1. λ  is a 

regularization constant controlling the tradeoff between 

fitting the training set accurately and finding a function 

with small norm (smoothness of the weighting function 

w). Since this is a differentiable convex optimization 

problem, the solution can be found to be  
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The parameter λ  in the solution can be estimated by 

minimizing the leave-one-out (LOO) error. Due to the 

properties of linear regularized least square method, the 

computational cost of searching for the regularization 

parameter is very low, which means that searching for a 

good λ  has about the same computational cost as 

solving the problem for a single λ  [11]. This method 

results in one 2D spectrotemporal filter for each 

phoneme, which is the hyperplane that separates the 

instances of that phoneme from the competitors. Since 

the optimized filters are linear, we can plot them in 

exactly the same way as we plot the input time-

frequency representation to investigate the 

spectrotemporal features of phonemes that are used by 

the filters to discriminate them properly. For example, 

figure 1 displays the average time-frequency 

representation and the optimized 2D filter using RLS 

algorithm for three fricatives /z/, /s/ and /sh/, vowel /ay/ 

(as in bite) and two plosives /t/ and /k/. The average 

spectrograms of different fricatives are known to be 

closely related to their place of articulation [12]. For 

instance, the difference between the more forward places 

of articulation for /s/ compared to /sh/ is mirrored by the 

downward shift of the highpass spectral edge (Fig. 1). 

However, the optimal 2D spectrotemporal filters for the 

discrimination of these two phonemes reflect the 

differences between them. Since both /s/ and /sh/ 

produce high frequency energy but only /sh/ produces 

mid frequencies, the filters show negative mid-frequency 

weight for /s/, but positive weight for /sh/ as circled in 

Figure 1. The 2D filter for fricative /z/ shows a strong 

low frequency positive weight, signifying the presence 

of low-frequency energy during the production of /z/ 

which is due to its manner of articulation (voicing) [12]. 

For plosive /t/, the 2D filter is selective to a sudden 

change of energy in high frequency channels, compare 

to the /k/ discriminator which detects a change of energy 

in mid frequencies (as circled in figure 1). Finally, the 

2D filter optimized for /ay/ is tuned to a spectrotemporal 

sweep, mostly to upward moving energy reflecting the 

formant transitions in the production of /ay/. This final 

example emphasizes the importance of spectrotemporal 

features for detecting complex patterns that can be 

difficult to detect by spectral or temporal only features.  

The one versus rest spectrotemporal filters described 

above provide 39 spectrotemporal filters each optimized 

for discrimination of one phoneme in standard TIMIT 

phoneme set. To expand this idea, we repeated this 

optimization several times, each time using only the 

portion of the training set that was not correctly labeled 

by the 2D linear filter from the previous step. This idea 

is similar to boosting. However, instead of weighting the 

training samples, we used different subsets of the 

training set.  In practice, this was done by excluding the 

training exemplars that were correctly labeled by the 

linear masks first, and then optimizing a new set of 2D 

filters for the remaining samples. This in effect captures 

the systematic variability that exists in the production of 

a particular phoneme as shown in Figure 2. This figure 

shows the average time-frequency representation of the 

same 6 phonemes as in figure 1, broken into two subsets 

that were correctly classified by the first set of 

discriminant filters (top rows) and the second set 

(bottom rows). Figure 2 shows substantial differences 

between the average phoneme spectrograms of the two 

groups. For example, the average duration of the high-

Figure 1. Average phoneme spectrograms (top rows) and 

optimized spectrotemporal filters using RLS algorithm for 

6 phonemes. The filters are tuned to the discriminant 

features of the phonemes, for example the presence of 

mid-frequency energy for /sh/ that results in positive 

weight for /sh/ but negative for /s/ (highlighted by circles). 

The mask for /ay/ shows sensitivity to the upward and 

downward formant transitions of this vowel.  

Figure 2. Average phoneme spectrograms of training 

samples that were correctly classified by the linear 

spectrotemporal filters in the first set (top rows) and second 

set (bottom rows). The average spectrograms display a 

systematic variability in the production of each phoneme. 

For example, exemplars of /s/ in the first set are longer than 

the ones in the second class (dashed lines). 

 



frequency energy in the production of /s/ phonemes in 

the first group (54 ms) is longer than in the second one 

(36 ms), an effect that can only be captured by masks 

that span long temporal windows. For /z/, the first set 

shows a shorter high frequency burst in addition to 

stronger low frequency energy. Plosives /k/ and /t/ in 

two groups also display a different average spectral 

shape which may reflect the contextual effects. For 

example, the /t/ phonemes in the first group have more 

high frequency energy before the stop. The percentage 

of the training set that can be classified correctly using 

the 2D linear masks is shown in figure 3 as a function of 

filter numbers.   

2.2. Modified linear Discriminant Analysis 

Fisher Linear Discriminant Analysis (FLDA) is a 

standard technique for discriminant analysis and 

dimensionality reduction in pattern classification [13]. 

FLDA can be used to project the original high-

dimensional data onto a low-dimensional space where 

the classes are well separated by maximizing the ratio of 

between-class ( bS ) to within-class scatter matrix ( wS ):  
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Due to the rank limitation of bS , for a two-class 

problem, we can only get one optimal discriminating 

vector. This shortcoming, when used for dimensionality 

reduction, limits us to a low-dimensional space of one 

and thus may hinder classification performance. 

Modified Linear Discriminant Analysis (MLDA) [10] is 

a generalization of FLDA that overcomes this limitation. 

MLDA uses the same optimization criteria as FLDA, 

however the definition of the between-class scatter 

matrix ( bS ) is modified as follows: 

∑ ∑ ∑
= = ∉=

−−=
c

p

N

j

N

Ikk

T

kpjkpj

p

b

p

p

xxxx
N

N
S

1 1 ,1

))((  

where c is the number of classes, N is the total number 

of training samples, pN is the number of samples in the 

thp class pC , pjx is the
thj training sample in the 

thp class, kx is the thk sample in the training set  and 

pI  is the index set of class pC  [10]. We can vary the 

number of discriminant projections (d) by choosing the 

first d Eigen vectors of the following equation 

corresponding to the d largest Eigen values:  

       dddbw SS Λ=− φφ1
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where dΛ  contains the Eigen values. Using this 

technique, we found multiple projections for the 

discrimination of each phoneme from the rest.  

3. Experiments  

We conducted speaker independent phoneme 

recognition experiments on TIMIT to test the 

effectiveness of the proposed features. The training data 

set consists of 3000 utterances from 375 speakers, cross-

validation data set consists of 696 utterances from 87 

speakers and the test data set consists of 1344 utterances 

from 168 speakers. The power spectrum of the speech 

signal was estimated using the magnitude of short-time 

Fourier transform (STFT) with a typical window of 

length 25 ms and a frame shift of 10 ms. Critical band 

energies are then estimated from the power spectrum 

using bark frequency weights. The features are then 

obtained by convolving the 2D log-critical band 

representation with the proposed discriminant filters. 

These projected log critical band energies onto the 

spectrotemporal filters were used to train a Multi-layer 

perceptron (MLP) with a single hidden layer to convert 

input features into posterior probabilities of phonemes 

(standard set of 39). These probabilities are converted to 

scaled likelihoods, which are then decoded by applying 

Viterbi algorithm with a minimum duration of three 

Figure 3. Phoneme error rate on the training examples vs. 

the number of spectrotemporal filter sets used. Each set is 

optimized for the classification of the samples that were not 

correctly recognized by the previous sets.  

Figure 4. Phoneme error rate vs. number of feature sets 

obtained from MLDA and RLS algorithms. The system 

from RLS reaches a better performance for the same 

number of features; they both converge to about the 

same performance. 



states per phoneme. In all of our experiments, the 

number of hidden nodes of MLP is chosen such that the 

total number of free parameters remains constant to 

minimize the effect of classifier complexity. The 

performance of a feature set is evaluated using Phoneme 

Error Rate (PER). We used Asymmetric MRASTA 

(AMRASTA) [14] as our baseline. These recently 

developed features are an alternative to MRASTA [2] 

features that are obtained from a temporal trajectory of 

the log-critical band energies by filtering it using a bank 

of multiresolution filters. The difference between 

AMRASTA and MRASTA is the asymmetric shape of 

the impulse response of AMRASTA which results in 

their improved performance [14]. The performance of 

the baseline and two proposed spectrotemporal features 

are shown in Table I. Also, Table I includes the 

performance of the system trained using 9 frames of PLP 

which include delta and double delta features 

(dimensionality = 351). The discriminant features from 

RLS (10 set of 39 spectrotemporal filters, dimension = 

390) and MLDA (13 set of 39 spectrotemporal filters, 

dimension = 507) perform well compared to the 

AMRASTA (dimension = 504) features. Both these 

algorithms show an absolute improvement of about 

1.0% and 1.3% respectively, over the baseline. 

To study how the number of spectrotemporal 

discriminant filters affects the classification accuracy, 

we conducted phoneme recognition tests using variable 

number of filter sets (each set contains 39 

spectrotemporal filters optimized for the 39 phonemes). 

For RLS, the number of filters is increased by 

eliminating the correctly classified training samples and 

estimating a new set of filters on the remaining training 

samples (section 2). For the MLDA filters, we changed 

the number of projections for each phoneme as 

described in section 2.  

Figure 4 summarizes the effect of number of filters on 

the recognition accuracy of the test set. The performance 

of both systems improves as the number of discriminant 

filters increases. Figure 4 also demonstrate that for the 

same number of features, the discriminant features from 

RLS algorithm outperform the ones from MLDA 

algorithm, suggesting a better separation between the 

projections of phoneme classes for RLS filters. 

4. Discussion 

We proposed a spectrotemporal feature extraction 

method based on optimized discriminability of phoneme 

representations. The features increased the performance 

of system compared to the baseline condition. Each filter 

is estimated to discriminate one designated phoneme 

from the rest and by repeating this procedure over the 

portions of the misclassified training data we derive 

multiple filters for each phoneme. The various filters 

presumably capture the variability in the production of 

each phoneme due to context and speaker effects. There 

are several directions that in the future can be explored. 

First, motivated by results of psychoacoustic 

experiments [15], it may be beneficial if each filter is 

constrained to a limited frequency region of the input 

spectrogram, which may particularly be important for 

noise robustness. To achieve this goal, several filters can 

be estimated for each phoneme by limiting the 

optimization to certain frequency bands, or temporal 

windows. The performance of the spectrotemporal 

features in noise remains an issue of study. In the current 

work, we estimated the 2D filters considering only the 

phoneme templates that are centered at the middle of the 

phoneme. To achieve translational invariance, it may be 

useful if adjacent time-frequency patterns are also 

included in the estimation of spectrotemporal filters. In 

addition, we would like to explore the possibility of 

adding spectrotemporal filters that target certain 

phoneme confusions as a way to improve the accuracy 

of the system.  
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AMRASTA RLS 

filters 

MLDA 

filters 

9 frame 

PLP 

33.8 32.8 32.5 33.1 

Table I. PER for the baseline (AMRASTA), spectrotemporal 

features (RLS and MLDA) and 9 frame PLP. 


