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Abstract—The detection of Pulmonary Hypertension
(PH) from the computer analysis of digitized heart sounds
is a low-cost and non-invasive solution for early PH detec-
tion and screening. We present an extensive cross-domain
evaluation methodology with varying animals (humans and
porcine animals) and varying auscultation technologies
(phonocardiography and seisomocardiography) evaluated
across four methods. We introduce PH-ELM, a resource-
efficient PH detection model based on the extreme learning
machine that is smaller (300x fewer parameters), energy
efficient (532x fewer watts of power), faster (36 x faster
to train, 44x faster at inference), and more accurate on
out-of-distribution testing (improves median accuracy by
0.09 area under the ROC curve (auROC)) in comparison
to a previously best performing deep network. We make
four observations from our analysis: (a) digital auscultation
is a promising technology for the detection of pulmonary
hypertension; (b) seismocardiography (SCG) signals and
phonocardiography (PCG) signals are interchangeable to
train PH detectors; (c) porcine heart sounds in the train-
ing data can be used to evaluate PH from human heart
sounds (the PH-ELM model preserves 88 to 95% of the
best in-distribution baseline performance); (d) predictive
performance of PH detection can be mostly preserved with
as few as 10 heartbeats and capturing up to approximately
200 heartbeats per subject can improve performance.

Index Terms—Auscultation, biomedical signal analysis,
pulmonary hypertension, machine learning.
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[. INTRODUCTION

ULMONARY Hypertension (PH) is a hemodynamic con-

dition characterized by an increased pulmonary artery
pressure (PAP) and an increased afterload in the right ventri-
cle [1]. PH affects both the cardiac and the pulmonary function-
ality, it can co-occur with several cardiovascular and respiratory
diseases [2], including heart failure, and it is associated with
increased mortality [3]. Its prevalence was estimated to affect
1% of the global population [2], [4].

Two main challenges in PH screening include: (a) the need
for reliable, low-cost, and non-invasive technology; and (b) the
non-specific symptomatic presentation of the condition [3], [5].
While delayed PH diagnosis has been linked with decreased
survival rate [6], [7], guidelines for PH diagnosis are designed
to balance the benefits of early detection with the economic
healthcare burden that early screening places on PH referral
centers [5]. The diagnosis of PH, according to recent guidelines
from the European Society of Cardiology (ESC) and European
Respiratory Society (ERS) [2], is obtained via the right heart
catheterization (RHC). The RHC is an invasive and expensive
procedure to measure the systolic, diastolic, and mean pul-
monary artery pressure (PAP), and it is therefore not suitable
for screening.

The clinical need for reliable and non-invasive technologies
to raise early suspicion of PH [2] is not well met by current
technological capabilities. A reliable, low-cost, and non-invasive
approach for raising suspicion of PH can reduce risks and
costs, and improve awareness of PH in telemedicine, screening
settings, developing countries, rural areas, and underprivileged
settings. Existing technologies are used together to raise suspi-
cion of PH and justify performing a final diagnosis by RHC [8].
These technologies include electrocardiography (EKG), blood
tests, echocardiography (ECHO), chest radiology, magnetic res-
onance imaging (MRI), and pulmonary function tests such as
spirometry and arterial blood gas [2], [5]. The 2022 ESC/ERS
guidelines recommend ECHO as a main tool for the detection of
PH, to be performed after a thorough physical exam including
blood tests and resting EKG, and before final confirmation with
RHC. The ECHO technology, however, has important draw-
backs: (a) no single ECHO biomarker reliably informs about PH
status [2] and it cannot estimate pulmonary pressure in 10-50%
of patients [9]; (b) a normal ECHO does not exclude PH [5];
and (c) the ECHO procedure is not low resource cost because
it requires a trained sonographer, an analysis by a cardiologist
and typically also a referral to an imaging center or hospital.
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We propose an under-recognized but promising technology for
raising suspicion of PH: digital auscultation and the computer
analysis of heart sounds.

Contributions: This work contributes a PH-ELM predictive
model for PH detection from heart sounds. The model has a
very low resource footprint and higher prediction performance
in out-of-distribution (OOD) tests when compared to competing
heart sound analysis approaches. We also contribute an ex-
tensive methodology and analysis for the in-distribution and
out-of-distribution testing of three heart sound datasets and
four predictive models. We study PH detection in different
and changing data modalities, including heart sounds recorded
with seismocardiography (SCG) and phonocardiography (PCG)
technologies, and heart sounds from humans and pigs. For the
science of heart sound auscultation in pulmonary hypertension,
this work demonstrates that heart sounds auscultated via dig-
ital stethoscopes or via accelerometers can contain sufficient
information for accurate PH detection. Moreover, we provide
evidence that training datasets for PH detection can mix PCG and
SCG signals or use either interchangeably, and that PH detectors
can be trained on porcine heart sounds and evaluated on human
heart sounds.

Section II reviews background material and surveys related
works to contextualize and justify the proposed methodology.
Section III describes the methods and datasets. Section IV
shows results supporting our methodology and scientific claims.
Section V offers insight into the scope of this work and the merits
of the proposed modeling and evaluation methodologies.

II. BACKGROUND AND RELATED WORKS

Background: Within each heartbeat, the closing of the heart’s
four valves creates two main sounds colloquially referred to as
the “lub” and the “dub” sounds. The “lub” sound, known as
the first heart sound, or S1, arises from the closures of the two
atrioventricular valves [17]. The second heart sound (S2) [18],
or the “dub” sound, occurs as a result of the closure of the aortic
valve (A2) and pulmonic valve (P2). The time delay and relative
intensity of the P2 are known to be relevant for pulmonary
hypertension detection [19], while the third and fourth heart
sounds, known as S3 [20] and S4, are often not audible by a
human ear but they can be useful for pulmonary hypertension
detection [10], [12].

Related Works: Some of the existing PH detection methods
create hand-crafted features that extract information from the
S1, S2, S3, and S4 components of a heart sound recording, and
then evaluate the features using correlation, significance testing,
or linear regression. Yamakawa et al. [10] studied intensity,
complexity, and strength features extracted from each of the
four fundamental heart sounds to show that S2 complexity and
S3 intensity are the most statistically significant features for
PH classification. They also obtained auROC values by training
and evaluating the predictive performance of single features for
different kinds of PH. Huang et al. [11] used reference PAP
estimates obtained from ECHO to partition human subjects into
three levels of PH (mild, medium, severe) and a control group.
They found that: S2 amplitude and frequency alone were predic-
tive of PH; ratios of the S2/S1 energy, amplitude, and frequency

were all higher in subjects with PH; and the amplitude, fre-
quency, and energy of S1 sounds are not correlated with ECHO
readings. In 2010, Dennis et al. [12] utilized a variety of features
on all four fundamental heart sounds and the authors report good
results while investing minimal effort on manual pre-processing.
Kaddoura et al. [13] applied a Gaussian Mixture Model to
features extracted from the Mel-frequency Cepstral Coefficients
(MFCC) of S2 segments. While their experiment was shown
to outperform physician auscultation by a large margin, their
relatively low overall performance (0.74 auROC) compared to
the other works in Table I is possibly due to the choice of features.
MECC features are designed to approximate the human auditory
system’s response, but their result with human auscultators also
suggests the human ear may not provide a good reference model
for PH detection. While hand-crafted features can yield models
with low computational resource requirements and useful inter-
pretations, the predictive performance of models relying on these
methods is often fundamentally limited by the availability of and
ability to encode domain knowledge into the generated features.
Our proposed fixed-weight approach bypasses limitations by
randomly generating features and benefits from the associated
computational improvements.

Data-driven machine learning techniques use a dataset to
optimize model parameters, and they create or utilize features
that are learned or automatically optimized to the data. Wang
et al. [14] tested 10 different Deep Learning models on a set
of heart sound features obtained from a magnitude spectrogram
of the continuous wavelet transform and augmented with ran-
dom noise. While the authors report 0.98 accuracy (averaged
across multiple classifications including PH) and a similarly
high F1 score for PH over a 10-fold cross-validation, they
state that the experiment’s dataset mixed the same subjects in
the training and validation sets. When training data appears
in the validation set, the empirical prediction performance is
arguably over-optimistic due to overfitting. Ge et al. [16] ex-
tracted features from segmented S1 and S2 sounds by utilizing
fixed-weight and data-driven methods, including hand-crafted
features, time-frequency analysis with wavelets, and a convo-
lutional neural network feature extractor. The study partitions
2415 recordings of 438 subjects into train, validation, and test
sets. It was not specified if the subsets were stratified by subject.
Our previous work [15], [19], [21] proposed a CNN-based PH
detection method to evaluate an image representation of S2 seg-
ments. It incorporated a pre-processing method based on blind
source separation to extract A2 and P2 waveforms from each
S2 segment. The empirical analysis claimed that the availability
of separated A2 and P2 components contributes significantly to
prediction, but it was only cross-validated with one dataset, and
10-fold cross-validation performed only once.

[ll. MATERIALS AND METHODS

We propose a methodology for PH detection based on the
extreme learning machine architecture that has the high pre-
diction performance of a deep network with a small com-
putational footprint. We present an evaluation approach that
considers both in-distribution testing and out-of-distribution
testing with two ranking metrics. Section III-A describes the
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TABLE |
PH DETECTION METHODS
Reference Year  Data Analyzed Ground Truth  Approach  Evaluation Performance Num Subjects
Yamakawa et al. [10] 2022  S1, S2, S3, S4 RHC ANOVA Not Specified  0.67 - 0.81 auROC 40
Huang et al. [11] 2023  S1, S2,S3,S4 ECHO LR Not Specified  0.78/ 0.83/ 0.88 auROC 209
Dennis et al. [12] 2010 S1, S2,S3,S4 ECHO NB Train:Test 0.78 auROC 20:31
Kaddoura et al. [13] 2016 S2 RHC MM 5-fold CV 0.74 auROC 164
Wang et al. [14] 2022 S1, S2, S3, S4  Unspecified DNN 10-fold CV 0.99 auROC 74
Gaudio et al. [15] 2022 S2 RHC DNN 10-fold CV 0.95 auROC 42
Ge et al. [16] 2023 S1, 82 ECHO XGBoost Train:Val:Test  0.93 auROC 483

Approach: LR means Logistic Regression; NB is Naive Bayes; DNN is Deep Neural Network; MM is Mixture Model.
Evaluation: CV means cross-validation; Train:Test is a 1-fold CV with the validation set defined as the test set. No results in the table validated results with

an out-of-distribution dataset for the detection of PH.

Performance: auROC means area under the receiver operating characteristic (ROC) curve.
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Fig. 1.

PH-ELM, an extreme learning machine model architecture with small computational footprint designed with three parts: a fixed-

weight, random and non-adaptive feature generation step, a compression step, and a classification utilizing ridge regression. Parallelized block
convolutions, adaptive pooling, and singular value decomposition (SVD) convert each input heart sound recording into a compressed row vector.
Training optimizes a SVD projection matrix and the weights for a final linear layer by direct analysis of a partially compressed representation of the

training dataset.

proposed PH detector model. Section III-B describes the evalu-
ation methodology, including an in-distribution analysis based
on bootstrapped cross-validation and an out-of-distribution
analysis across datasets. Section III-C describes the datasets
used. Section III-D introduces the competing methods and hy-
perparameters.

A. Proposed Model Based on Extreme Learning
Machine

We restrict our focus to machine learning methods based on
deep learning and the extreme learning machine. The model
design, shown in Fig. 1, can be described as a resource-efficient
extreme learning machine composed of three stages: feature
generation, compression, and classification.

Input: The input is a pre-processed image matrix containing
segmented S2 sounds, and it is visualized in Fig. 1. The image

is obtained via the following analysis of a heart sound audio
recording: a 200 ms time window vector of the recorded S2 heart
sound is extracted by a dataset-specific segmentation, and then
the ordered set of time window vectors are stacked as rows of a
matrix. The output of the pre-processing step for each sample is
a matrix with one row for each heartbeat and 200 columns that
represent an aligned 200 ms window of the S2 sound. We assume
each image is a single-channel grayscale image matrix, defined
as C' = 1 channel. Note that our prior works [15], [19] utilized
this image structure and also introduced a C' = 3 input image via
a pre-processing step. The shape of the input is (B, C, H, W)
where B = 1isthebatchsize,! C' > 1 channels, W = 200 audio
samples, and H heartbeats is variable.

Note that B > 1 implies the number of heartbeats is constant across images,
or that all images are zero-padded or cropped to the same number of heartbeats.
Zero-padding may introduce artifacts during feature generation due to the
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Feature Generation: The feature generation step can be in-
terpreted as a kind of time-frequency transform with a fixed
set of random kernels and random fixed bias. A parallel block
convolution layer converts the shape (B, C, H, W) into a shape
(B, 0, 1,1) using a series of convolution layers, the ReLU non-
linear operator, and adaptive average pooling. The convolution
layer evaluates C'O different 5 x 5 kernel matrices with a stride
of 1 and dilation of 2 to attain a shape (B,0,H’,W’), and
it also uses a randomly initialized bias. The bias and kernel
parameters are randomly initialized from uniform distributions
with zero mean, and they are never modified after initialization.
ReLU converts any negative values to zero. Adaptive Average
Pooling converts (B, O, H', W') to shape (B, O, 1, 1). Because
adaptive pooling converts the convolution feature matrix to a
scalar number, it creates a feature generator with fixed output
that accepts variable size input.

In the convolution layer, the kernel size and dilation can be
matched to the sample rate of the represented signal of length
W . Atasample rate of 1000 Hz, a kernel size of & = (5, 5) and
dilation d = (2,2) creates a filter with an effective receptive
field of k + (k — 1)d = (13, 13) pixels, which defines a 13ms
window over 13 consecutive heartbeats.

Adjustable RAM utilization: The parallel group convolution
also introduces a set of G groups, each of which computes %
outputs. Fig. 1 shows a set of O white squares that are divided
into G groups. Each group of white squares is a single convo-
lution layer with % outputs. In this work, we set O = 1000 and
G = 10, therefore each group (of white squares) is responsible
for converting the input (B, C, H, W) into a subset of the outputs
(B,0O/G,H',W'"). Each group is computed in series, and by
tuning G, the total amount of utilized memory is restricted; in-
creasing G decreases memory utilization and increases compute
time.

Compression and Classification: The generated features are
compressed by a principal components analysis and classified
via ridge regression. The training phase and inference phase are
subsequently described.

Training: The objective of the training phase is to solve
a ridge regression on a compressed feature representation. In
(1), the feature representation of each input training dataset
image becomes a row of the matrix Ecnn, where f(I;) is the
feature generation of the given input image. The columns of
Ecnn are reduced via SVD. We assume that zero centering by
ensuring each column has zero mean does not affect downstream
prediction performance because the bias and kernel parameters
have zero mean in expectation.” The first o columns of the
projection matrix V' are used for compression and stored for
inference on the validation set. The value o is a hyperparameter
that determines how many bases to use for compression, and we

presence of a bias term in the feature generation convolution layers, and it is
unknown how or if these artifacts impact performance.

2Itas also found in [22] that zero centering paired with random CNN initializa-
tion did not meaningfully affect performance. However, our final implementation
used zero centering.

use o = 20.
£(1h) U,S, VT = Ecany — Eonn
Ecnn = € RV*XO = V=VI[,: 0
f(In) E = EcnwV € RV*0

ey

A ridge regression model generates a prediction of pulmonary
hypertension with an objective defined in (2). The objective,
defined in (2), does not include a bias term as a column of
L because it is assumed that the bias is zero in expectation,
as a result of the feature generation and SVD. The Lagrange
multiplier A = 0.1 is chosen to avoid degenerate cases that could
occur if a value on the diagonal of the square matrix £ F equals
zero, and 1 is an identity matrix.

argmin ||y — Ew||3 + 2[|w3 )

=w=(E'E+A1)'E"y 3)

Binarization: In the ground truth, if y € [0, 1], then a threshold
on the predicted value § > 0.5 is a reasonable classification
boundary. If y € [—1,1], then § > 0.0 is a reasonable classifi-
cation boundary. The threshold could also be found by standard
analysis in ROC or PR space of a validation set (not a test set).

Training therefore introduces hyperparameter o, the number
of columns of the compressed output, and stores learned param-
eters, w € ROV E € R4 and V e RW:0),

Output Classification: The scalar value § = (f(I) — E)Vw
determines an unnormalized score for PH detection that can be
thresholded.

B. Evaluation

Fig. 2 visually describes the evaluation methodology em-
ployed. This section first introduces the two rank metrics uti-
lized for evaluation, then presents the in-distribution analysis
methodology, and last presents the out-of-distribution analysis
methodology and shows how we combine in-distribution with
out-of-distribution analysis.

Metrics for Empirical Evaluation: We adopt the area under
the ROC curve (auROC) and a variation of the area under the PR
curve that we call AP*, described below and formally introduced
in our concurrent work [23].

The auROC shows a change in score when the classifier
is evaluated on datasets of varying imbalance ratios [24].
Moreover, the auROC is insensitive to model prediction bal-
ance, which means it penalizes all errors equally, regardless of
whether the model outputs large prediction probabilities or small
ones [25]. We adopt the standard implementation from the SciKit
Learn library [26].

The AP* is designed to be sensitive to both class imbalance
and model prediction imbalance because it penalizes prediction
errors to the minority class more than errors to the majority.
Given two models with identical auROC, the AP* gives a higher
number to the model that is better at classifying the majority
class, and it can therefore be useful in model selection. AP*
is a variation of, and improvement upon, the average precision
(AP). While the AP is non-symmetric in the presence of the
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Fig. 2.

class imbalance, the AP* and the auROC are symmetric. The
AP* ranges from [0,1], where the random classifier, all ones
classifier, and all zeros classifier all have the minimum value of

AP* = U0 S“m‘(’jl;;;‘e‘t‘;‘ii;é’my cass ¢ [0,0.5]. It is defined as:
p,rT,t = PR_curve(y,y) @
p ,r ,t =PR_curve(l—y,1 —¥) 5)
p,r* = emin(p™,p ), emin(rt,r") (6)
APy, 9) = Y. (- (7
ie{1,...,|T|}

where y € {0,1}" is a vector of the n ground truth PH annota-
tion labels and ¥ € R" is a corresponding vector of the model’s
predictions. The function emin(-, -) computes the element-wise
minimum between two vectors. The vectors p*,r™, p~,r~ con-
tain the precisions and recalls computed at each of the thresholds
(in vector t) emitted by a precision-recall curve function on the
defined input. If (7) used p* and r ™ instead of p* and r*, it would
be identical to the average precision score presented in the SciKit
Learn library [26] and [27]. Whereas the average precision score
assigns a larger penalty when the prediction probability is large,
the AP* assigns a larger penalty to the minority class. A detailed
introduction to the AP* is described in concurrent work [23].
In-distribution Analysis Methodology: Bootstrapped Cross-
Validation describes model performance using one dataset. On
small datasets, such as all datasets used in this paper, cross-
validation analysis (CV) alone may be insufficient because the
way the folds are generated may have a significant impact on
model performance. Bootstrapped cross-validation improves the
reliability of the reported performance. By bootstrapping, we
mean to compute K-fold CV multiple times independently,
where each time, the folds are randomly generated using a
different random seed. In the special cases of cross-validation
with no variation in the folds, such as group cross-validation
where each group is fixed, bootstrapping can capture possi-
ble random variations in model initialization or training. The
following notation is used: in a given dataset D, we define
each k™ fold, k € {1,..., K} and each b™ bootstrap iteration,
b e {1,...,B}. For each fold and bootstrap iteration, we have

Evaluation Methodology with in-distribution and out-of-distribution testing.

two disjoint sets: the training set Dy j ¢ain C D and validation
set Dy 1var C D. After training the model on Dy i irain, the
evaluation on Dy . va yields a ground truth vector yj ; and
model predictions ¥ ,. These vectors will be aggregated and
evaluated with a scoring function, s(y,¥). The two scoring
functions considered are auROC and AP*.

The empirical in-distribution performance, P, gist,s(.), (D),
of the predictive model f on the given dataset D using scoring
function s(-) is:

Ymicro-ave,p = concat(ygp V k) (8)

ymicro»avg,b = Concat(yk,b v k) (9)

Pidist,s(),£(D)

1 Z .
E S (Ymicro—avg,ba Ymicro—avg,b) . ( 1 0)
b

Out-of-distribution Analysis Methodology: To evaluate how
well a model generalizes across datasets, we define a training
dataset Dy,in and a test dataset Dy.g. Training and evaluation
are repeated B times independently. Re-using notation from
the previous section (and redefining a new number of boot-
strap iterations B and b € {1,..., B}), this bootstrapped out-
of-distribution evaluation on the test set gives scalar numbers of
the form s(Yiest,b, Yrest,n) Where Yies,p contains the ground truth
test dataset annotations, and ¥, contains the trained model’s
test set predictions.

We compare the model’s performance to the performance of a
separately trained in-distribution baseline model by computing
aratio. This ratio is averaged over B bootstrap iterations:

1 .
Pout—of—dist,s()7Dlm;“7f(Dtesl) = E Z S(Ytesl,ba Ytest,b) (1 1)
b

out-of-distribution score

12)

Pooduratio, Dy D . f = ————————
00d-atio, Dizsn, Deest, f in-distribution score

- Pout»of—dist,s(-),Du-ain-,f(Dtest)

,(13)
]Din—disl,s(),f (Dtest)

where we have a given scoring function s(-) implementing the
auROC or AP¥*, a training dataset Dy;,, an evaluation dataset
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TABLE Il
DATASET SUMMARY

Dataset Domain  Mode  Subjects Samples PH Samples
H-PCG [15] Human PCG 42 42 29 (69%)
P-Both [28]  Porcine  PCG 10 32 16 (50%)
Porcine SCG 10 93 42 (45%)
H-SCG [29] Human  SCG 73 82 63 (76%)

Dyes, a predictive model f, and an in-distribution evaluation
function P, _gst,s(.), ¢ from (10).

Note that the denominator of (11) is effectively a baseline
against which the out-of-distribution score is compared. The
baseline can be chosen arbitrarily, or in a way that aids interpre-
tation. For instance, for model selection, the denominator can
show how much performance is lost when compared to the best
model. More specifically, given a set of models G, where each
model g € G istrained on Dy.,;, and evaluated on Dy, we define
the denominator as the maximum in-distribution score of the test
dataset across all models. This variation of the score is used in
our experiments, and is shown below:

Pout—of»dist7s(-),Dlmin,f (Dtest)
maXgeg ‘Pin—dist,s(<),g (Dtest)

Pood—ralio,D"am,f,G = (14)

Given the predictive model f and scoring function, the (14)
gives one measurement for each pair of datasets. To give a
general sense of performance comparable across all datasets, we
propose to compute the median over the pairs of datasets in order
to have a single number for each model and scoring function.
We define a set of pairs of train and test datasets as D, and
compute the median score, where m(+) is the median function:

Pood—avg,s(-),f,G = m({Pood—ratio,Dlmm,f,GH(Dtraim Dtest) S D})
(15)

C. Datasets

We evaluate three different datasets. The datasets vary in
recording modality, animal species and hospital location. The
modalities considered include phonocardiography (PCG), and
seismocardiography (SCG); PCG uses microphones while SCG
uses accelerometers. Two datasets contain data from humans
and one dataset is from pigs. All datasets are from different
hospitals. All three datasets record subjects undergoing right
heart catheterization. The datasets are described in the following
paragraphs and summarized in Table II.

1) Dataset H-PCG: Human PCG data was acquired from 42
subjects at Centro Hospitalar Universitario do Porto, Portugal.
29 subjects have PH and 13 subjects do not have PH. The dataset
was previously introduced with the name HSA [15] and it is not
publicly available.

For each subject, ground truth pulmonary artery pressure
was obtained from a right heart catheterization (Swan-Ganz
catheter), and an accompanying five-minute PCG heart sound
recording was collected. The recording was obtained in a quiet
clinical setting with the patient supine and at rest. Auscultation
was performed over the second left intercostal space using a
custom cable stethoscope connected to a Rugloop Waves system.

Heart sounds were recorded at a sample rate of 8 kHz and
their amplitudes were quantized with 16-bit resolution. We
sub-sample the signal to 1 kHz. The 200 ms time window
vectors for each recording were obtained by the CNN-based
method of Renna et al. [30]. The subjects in the dataset are
labeled as PH positive if have Mean Pulmonary Arterial Pres-
sure (MPAP) above 25 mmHg, or Pulmonary Arterial Systolic
Pressure (PASP) above 30 mmHg.

2) Dataset P-Both: Porcine PCG data (P-PCG) and SCG
data (P-SCG) were acquired at Aalborg University Hospital,
Aalborg, Denmark [28]. The pigs were sedated, ventilated, and
subject to catheterism both in the aorta and the right ventricle us-
ing Swan-Ganz catheters. The SCG acquisition was carried out
using an iWorx commercial system equipped with two triaxial
accelerometers, located respectively over the fourth intercostal
space next to the sternum and over the lower border of the ster-
num. The PCG acquisition was carried out using a multi-channel
wearable system designed at Politecnico di Torino, which em-
beds 48 electret condenser microphones with a 12-mm spatial
resolution [31]. A simultaneous ECG was collected by both
instruments. The sampling frequency while recording was set to
5 kHz for SCG and to 1 kHz for PCG, and then we downsampled
the SCG signal to 1 kHz using nearest-neighbor interpolation.
A PH condition was triggered in the animal by subjecting it
to either nitrogen asphyxiation (to cause hypoxemia) or carbon
dioxide asphyxiation (to cause hypercapnia). The experiment
was reversible, and therefore when the trigger was removed,
the animal reached a baseline condition again and could be
subjected to multiple experiments. A total of 59 experiments
were carried out on ten pigs. The dataset for this study was
created by considering, for each recording, two one-minute
segments: one at the beginning of the recording, labeled as “no
PH”, and one at the peak of the effect of the trigger, labeled as
“PH”. Poor-quality recordings were manually discarded. There
were 67 “no PH” and 58 “PH” samples. For the segmentation
pre-processing steps, we applied a band-pass of 20 Hz to 200 Hz
using a second-order IIR Butterworth filter, then the signals
were segmented into heartbeats using the R-wave ECG, and
then a 200-millisecond S2 segment was extracted from each
heartbeat using time thresholding and peak detection. The full
dataset P-Both is a union of the P-SCG and P-PCG datasets,
where P-SCG and P-PCG share the same physiological basis
but have different modalities. The P-Both dataset is analyzed
only as a training dataset in the context of out-of-distribution
experiments with human test datasets, and it enables the analysis
of whether training on only PCG data, only SCG data, or a
mixture of both modalities from the same set of subjects can
improve generalization performance on humans.

The dataset is not publicly available.

3) Dataset H-SCG: The dataset was acquired at the catheter-
ization laboratory at the University of California and is publicly
available on PhysioNet [29] with the name SCG-RHC. The
dataset includes 83 recordings of 72 patients referred for the
hemodynamic assessment of their heart failure status. While the
dataset includes data from a pharmacological experiment, we use
only data from the end of the 10 minute patient resting period
that occurred before any pharmacological intervention. ECG and
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triaxial SCG were simultaneously recorded using a wearable
patch located over the sternum. The sampling frequency is
500 Hz. A subject was labeled as PH positive if the PASP
was greater than 30 mmHg or if the MPAP was greater than
25 mmHg. The segmentation pre-processing obtained 200 ms
windows of each recorded S2 by the method used for the P-Both
dataset, and the S2 segments were aligned in time by selecting
a lag index that maximizes the cross-correlation between the
homomorphic envelogram of the segment and the homomorphic
envelogram of the first S2 segment of the recording.

D. Hyperparameters and Competing Methods

A total of four methods are evaluated: PH-ELM, Dense-
Netl21, Scattering-SVM, and STFT-SVM. The reasoning for
the choice of models and description of their construction is
presented below. The DenseNet121 deep network [32] was cho-
sen for two reasons: a) our previous work found DenseNet121
to outperform the in-distribution performance of several other
models on the H-PCG dataset [15]; and b) the PH-ELM model’s
fixed-weight convolutional feature generator is similar to a
deep convolutional network. The Scattering-SVM consists of a
wavelet scattering feature generator and support vector machine
(SVM). The wavelet scattering component was chosen due to
the similarity of scattering to the PH-ELM’s feature generation,
and the SVM was chosen because literature comparing SVM
to ELM has found that SVM can outperform ELM models on
small datasets [33]. The STFT-SVM model, previously intro-
duced in [15], utilizes a short-time Fourier transform for feature
generation followed by an SVM. It was chosen because it is a
resource-efficient method that can perform well.

Hyperparameters for DenseNet121: The models utilizing the
DenseNet121 architecture were randomly initialized (they were
not pre-trained) and optimized with the AdamW optimizer [34]
with learning rate of le-5 and weight decay of either 1-e5 (P-
Both) or 1e-6 (H-PCG and H-SCG). Because the model cannot
handle images with less than 61 rows or columns, the input to
DenseNet121 was zero padded to a uniform size of 454 rows
(H-PCG) or 157 rows (P-Both, P-SCG, and P-PCG). Padding
on H-SCG required additional treatment, as some patients have
too few rows, and others have too many rows. Each input image
recording was zero padded to 400 rows, and recordings with
too many rows were cropped to 400 contiguous rows. When
cropping, the crop region was randomly chosen during training
in order to use the entire dataset, and fixed to the last 400 rows
of the recording (but before the H-SCG chemical experiment
began) during testing.

Hyperparameters for Scattering-SVM: Since the SVM re-
quires a fixed-size input that is the same in both training and
testing, the input to Scattering-SVM was also zero padded. We
adopt the padding approach and random cropping approach used
for DenseNet121, but fix all datasets to 400 rows. Moreover, the
columns of each padded (or cropped) image were normalized
to variance 1 because we found empirically that this improved
performance. The scattering layer used 2 orders, wavelet scale
J = 2, L = 8angles, the Morlet wavelet family, and the standard
implementation from the Kymatio library [35]. After scattering,

each input was reshaped into a row vector. For training, all
inputs are stacked into a matrix and each feature column was
normalized to zero mean and unit variance. This matrix was
passed to the support vector regression from SciKit Learn [26]
initialized with C' = 1.0, RBF kernel, and v = m (also
known as “scale” in SciKit Learn) where C'(X) is the number
of training set columns (C'(X) = 200 in all datasets) and o2 is
the variance of the training dataset.

Hyperparameters for STFT-SVM: The padding methodology
was identical to Scattering-SVM.? The STFT was performed by
computing a spectrogram from the PyTorch Audio library [36]
for each row (each heartbeat), using FFT of size 64 (giving 33
frequency bins), hop length 2, and power 1 for the magnitude
spectrum. The spectra from all heartbeats were aggregated by
computing the 98% and 100% quantiles across rows, reducing
the size of each subject’s recording from (H, 200) to (33, 101),
where rows are frequency bins, and columns are time. The
columns of this matrix were normalized to unit variance and
then flattened into a row vector. The SVM (from SciKit Learn)
used C' = 1, RBF kernel, and vy = ﬁ (also known as “auto”
in SciKit learn). This model was previously introduced in [15].

Hyperparameters for PH-ELM: The PH-ELM’s convolu-
tional feature generator used O = 1000 output channels, kernel
size 5 x 5, dilation 2 x 2, G = 10 groups, and 20 principal
components. The linear regression used A = 0.1. Padding was
not necessary for this model because the feature generator stan-
dardizes all inputs to the same size.

V. RESULTS

We evaluate the four PH detection models and three datasets
described in Section ITI-C. Sections IV-A and I'V-B respectively
present the observed in-distribution and out-of-distribution pre-
diction performances, Section IV-C presents the computational
performance, and Section IV-D examines the effect of varying
heartbeats per subject.

A. In-Distribution Prediction Performance

Table III is useful primarily to give a sense of the overall
best prediction performance a model might expect to achieve
on a given dataset. The calculation for auROC and AP* scores
is defined by (10). The DenseNet121, followed by PH-ELM,
tends to have the highest prediction performances in both AP*
and auROC across the three datasets. The PH-ELM model has
the lowest standard deviation of all models on the H-PCG and
H-SCG. Moreover, we can observe that the datasets can be
ranked based on performance in this order: H-PCG (highest),
P-Both, and H-SCG (lowest). Possible reasons for H-SCG’s low
performance might be related to the placement of the SCG sensor
on the sternum, or to the dataset’s 500 Hz sampling rate. The
other datasets utilized the second and fifth intercostal spaces,
respectively, and they were sampled at 1000 Hz. We do not
make comparisons of PCG and SCG signals for PH detection
based on this in-distribution analysis.

3The computational footprint tests in Table VI do not use padding, as padding
is not necessary for this model and would increase the resource footprint.
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TABLE IlI
IN-DISTRIBUTION PREDICTION PERFORMANCE — VIA (10)

Dataset ~ Model auROC AP*  o(auROC) o(AP¥)
H-PCG  DenseNetl21 0932  0.728 0.029 0.038
H-PCG PH-ELM 0.922  0.726 0.012 0.015
H-PCG STFT-SVM 0.891  0.695 0.023 0.024
H-PCG  Scattering-SVM 0.827 0.573 0.019 0.047
H-SCG  DenseNetl21 0.547  0.274 0.062 0.038
H-SCG PH-ELM 0.650  0.335 0.024 0.021
H-SCG  STFT-SVM 0.541  0.271 0.032 0.012
H-SCG  Scattering-SVM 0.537  0.233 0.039 0.027
P-Both  DenseNet121 0.874  0.820 0.019 0.024
P-Both  PH-ELM 0.816 0.765 0.001 0.002
P-Both ~ STFT-SVM 0.656  0.622 0.000 0.000
P-Both  Scattering-SVM 0.694 0.574 0.000 0.000
P-PCG  DenseNet121 0.924  0.916 0.023 0.024
P-PCG  PH-ELM 0.894 0.872 0.007 0.019
P-PCG  STFT-SVM 0.720  0.741 0.000 0.000
P-PCG  Scattering-SVM 0.934 0.903 0.000 0.000
P-SCG  DenseNet121 0.860 0.784 0.024 0.045
P-SCG  PH-ELM 0.784  0.732 0.002 0.004
P-SCG  STFT-SVM 0.609  0.509 0.000 0.001
P-SCG  Scattering-SVM 0.697  0.546 0.000 0.000

Each row shows the average performance of 12 independent bootstrap iterations with
cross-validation. P-Both had leave-one-pig-out CV (10 pigs), H-PCG had 10-fold CV,
and H-SCG had 10-fold grouped CV to ensure that each subject’s data was entirely in
either the train or the validation set.

B. Out-of-Distribution Prediction Performance

Out-of-distribution testing shows the prediction performance
when training a model on one dataset and evaluating it on a
different dataset.

PH detection with SCG and PCG datasets: Table IV shows PH
detection performance when training with PCG signals to eval-
uate SCG signals, and vice versa, in either humans (comparing
H-SCG to H-PCG) or pigs (comparing P-SCG to P-PCG). While
the human datasets are independent, the porcine datasets are
generated from the same ten pigs. To ensure the train and test sets
do not share the same physiological basis, we utilized a leave-
one-pig-out cross-validation, with an additional constraint that
the PCG and SCG data are disjoint across train and test sets (i.e.,
either Dy, C P-PCG and Dy C P-SCG, or Dy, C P-SCG
and Dy, C P-PCG), and the reported results are obtained from
the in-distribution (10). We identify the porcine experiments
as out-of-distribution because we analyze generalization across
modalities (PCG and SCG), but the non-independent nature
of the datasets requires cross-validation and the in-distribution
evaluation equation.

Regarding model selection, the PH-ELM model has the
highest scores (in bold) for all pairs of datasets except when
(Dyain, Diest) is (H-SCG, H-PCG), in which case the model ranks
second to Scattering-SVM (with auROC of 0.55 versus 0.83).
DenseNet121 and STFT-SVM both become no better than ran-
dom from H-SCG to H-PCG (auROC of 0.5 + .01). Moreover,
of the three instances in which a model gives higher out-of-
distribution performance than in-distribution performance, two
of these occur with the PH-ELM, and these are shown by an AP*
Ratio or auROC Ratio greater than one. The results suggest that
the PH-ELM generalizes well across PCG and SCG signals with

DenseNetl21

PH-ELM

Model

Scattering-SVM

i B
o B |
STFT—SVM0 *1 0 }—I—{ ;

auROC Ratio AP* Ratio

Fig. 3. Model Selection: All models have similar prediction perfor-
mance, and the PH-ELM has the highest median out-of-distribution
performance when evaluating H-PCG or H-SCG test sets with any of
the training sets {P-Both, H-PCG or H-SCG}, with median auROC ratio
and median AP* ratio of +0.09 (in both cases) over DenseNet121.
Each boxplot shows 0%, 25%, 50%, 75%, and 100% percentiles of 12
bootstrap iterations. This figure summarizes rows from Tables IV and V.

little loss in prediction performance. In summary, the PH-ELM
shows the best out-of-distribution generalization performance
overall.

The table also offers some insight into dataset selection. Since
the H-SCG dataset has the overall lowest in-distribution scores in
Table II1, it may not be a high-quality training dataset for PH de-
tection, since three of the four models (DenseNet121, PH-ELM,
and STFT-SVM) give performances that are effectively no better
than random when training H-SCG to evaluate H-PCG. The
fact that Scattering-SVM gave good performance on H-SCG,
though, means the dataset does retain information about PH.
On the other hand, P-SCG — P-PCG shows comparably good
generalization with three of the four models. Both results can
be interpreted to suggest that SCG signals can provide a useful
training dataset for PH detection in PCG signals. Finally, the
evaluation PCG — SCG, using either human or porcine datasets,
gives useful models. In summary, the results show that both PCG
and SCG data can be useful as training sets.

PH detection from pigs to humans: Table V shows that porcine
heart sounds can provide useful training data to predict PH in
human heart sounds. The performance from humans to pigs was
excluded from the table because we assume that the generaliza-
tion from humans to pigs is not relevant. The generalization
to pigs has auROC values less than 0.6 in nearly all cases,
possibly due to the way the P-Both dataset defines PH as a
part of its experiment design. From a model selection point of
view, the PH-ELM is best for generalizing to H-PCG, and for
generalization to H-SCG, it is unclear which model is preferable.

Regarding dataset selection, we interpret the results to suggest
that more data can improve performance because using the full
P-Both training dataset gives higher performance than either
P-SCG or P-PCG alone. This result may suggest that combining
modalities (both PCG and SCG) may improve performance.

The PH-ELM generalizes the best: Fig. 3 summarizes the
prediction performance of the evaluated models by showing box
plots of the min, 25%, median, 75%, and maximum prediction
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TABLE IV
SCG «+ PCG, OUT-OF-DISTRIBUTION PREDICTION PERFORMANCE

Diain Diest Model AP* Ratio  auROC Ratio AP*  auROC  o(AP*) o (auROC)
H-SCG H-PCG  DenseNetl21 0.401 0.506  0.292 0.471 0.042 0.068
H-SCG H-PCG PH-ELM 0.452 0.553  0.329 0.515 0.020 0.020
H-SCG H-PCG  STFT-SVM 0.418 0.491  0.304 0.458 0.036 0.002
H-SCG H-PCG  Scattering-SVM 0.746 0.828  0.543 0.771 0.068 0.094
H-PCG H-SCG  DenseNetl21 0.897 0917  0.300 0.596 0.027 0.028
H-PCG H-SCG PH-ELM 1.082 0.978  0.362 0.636 0.004 0.005
H-PCG H-SCG STFI-SVM 0.819 0912 0.274 0.593 0.000 0.000
H-PCG  H-SCG  Scattering-SVM 0.689 0.897  0.231 0.583 0.000 0.000
P-SCG  P-PCG  DenseNetl21 0.817 0.944 0.748 0.872 0.017 0.007
P-SCG  P-PCG PH-ELM 0.650 0.821  0.595 0.759 0.005 0.003
P-SCG  P-PCG  STFT-SVM 0.491 0.585  0.450 0.540 0.001 0.001
P-SCG  P-PCG Scattering-SVM 0.545 0.636  0.499 0.588 0.009 0.015
P-PCG  P-SCG  DenseNetl21 1.136 1.057 0.891 0.909 0.047 0.041
P-PCG P-SCG PH-ELM 1.213 1.125 0951 0.967 0.030 0.021
P-PCG  P-SCG  STFI-SVM 0.509 0.530  0.399 0.456 0.000 0.000
P-PCG  P-SCG  Scattering-SVM 0.694 0.619  0.544 0.532 0.023 0.006

Each row shows the average performance of 12 independent bootstrap iterations for the given training dataset, test dataset,

and model.
TABLE V
PiG — HUMAN, OUT-OF-DISTRIBUTION PREDICTION PERFORMANCE
Dirain Diest Model AP* Ratio  auROC Ratio AP*  auROC  o(AP*) o (auROC)
P-Both H-PCG  DenseNetl21 0.630 0.735 0.458 0.685 0.059 0.052
P-Both  H-PCG PH-ELM 0.781 0.883  0.568 0.822 0.013 0.007
P-Both H-PCG STFT-SVM 0.576 0.642 0419 0.598 0.001 0.001
P-Both  H-PCG  Scattering-SVM 0.468 0.555  0.341 0.517 0.000 0.000
P-PCG H-PCG  DenseNetl21 0.464 0.642  0.338 0.598 0.031 0.030
P-PCG H-PCG PH-ELM 0.544 0.682  0.396 0.635 0.006 0.006
P-PCG H-PCG STFT-SVM 0.430 0473  0.313 0.440 0.000 0.000
P-PCG H-PCG  Scattering-SVM 0.000 0.518  0.000 0.483 0.000 0.000
P-SCG H-PCG  DenseNetl21 0.519 0.649  0.378 0.605 0.069 0.080
P-SCG H-PCG PH-ELM 0.517 0.684 0.376 0.637 0.032 0.034
P-SCG H-PCG STFI-SVM 0.490 0.640  0.357 0.596 0.001 0.001
P-SCG H-PCG  Scattering-SVM 0.468 0.555  0.341 0.517 0.000 0.000
P-Both  H-SCG  DenseNetl21 0.897 0.991  0.300 0.645 0.030 0.026
P-Both H-SCG PH-ELM 0.928 0.954  0.311 0.620 0.020 0.004
P-Both  H-SCG  STFT-SVM 0.620 0.763  0.207 0.496 0.001 0.001
P-Both  H-SCG  Scattering-SVM 1.415 0.796  0.474 0.518 0.000 0.000
P-PCG H-SCG DenseNetl21 0.821 0.896 0.275 0.582 0.019 0.018
P-PCG H-SCG PH-ELM 0.822 0.927 0.275 0.603 0.001 0.002
P-PCG H-SCG STFI-SVM 0.618 0.645  0.207 0.419 0.000 0.000
P-PCG H-SCG  Scattering-SVM 1.415 0.796  0.474 0518 0.000 0.000
P-SCG H-SCG  DenseNetl21 0.815 0916 0.273 0.596 0.043 0.050
P-SCG H-SCG PH-ELM 0.813 0.885 0.272 0.575 0.013 0.014
P-SCG H-SCG STFI-SVM 0.792 0.849  0.265 0.552 0.001 0.001
P-SCG H-SCG  Scattering-SVM 1.415 0.796  0.474 0.518 0.000 0.000

Each row shows the average performance of 12 independent bootstrap iterations for the given training dataset, test dataset,

and model.

performances over selected rows of Tables IV and V (the rows
corresponding to the P-SCG and P-PCG datasets are excluded
since they are covered by P-Both). The median is derived via
(15). The results show that the PH-ELM model has the highest
median performance by +0.09 in both auROC Ratio and AP*
Ratio over the closest model, DenseNet121. Indeed, the median
auROC scores are 0.884 (PH-ELM), 0.815 (DenseNetl21),
0.796 (Scattering-SVM), and 0.643 (STFT-SVM). In general,
the PH-ELM model does the best job of preserving general-
ization performance that could be obtained by in-distribution
analysis.

C. Computational Performance

Table VI shows the computational footprint of the four
models. Two columns in the table count the total number of
learned and fixed (not learned) parameters for each model. To
count parameters in an SVM model, we count the number of
coordinates across all support vectors of the SVM trained on
the entire H-PCG dataset. Since the number of support vectors
depends on dataset size, this measurement can vary, but there
were 42 support vectors after training on H-PCG (one per
subject in the dataset) for both STFT-SVM and Scattering-SVM.
The values reported in columns Time to Train and Power to
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TABLE VI
COMPUTATIONAL RESOURCE FOOTPRINT

Model Learned Parameters  Not Learned Parameters  Time to Train! (s)  Power to Train! (W)  Inference Time per Subject2 (s)
DenseNet1213 6.95e6 0.084¢6 318.8 £ 1.16 89,481 + 92 0.062 £ 0.044

PH-ELM 0.02¢6 0.03e6 8.80 + 0.04 168 + 17 0.0014 4+ 0.0014
Scattering-SVM  17.8e6** 1.46e6 19.74 £+ 0.14 2020 + 36 0.0356 + 0.0011

STFT-SVM 0.14e6** 64 12.15 £+ 0.05 370 + 8 0.00016 + 0.00002

#% The parameter count in SVM models depends on the number of support vectors, which depends on the training set and hyperparameter constraint C, and
is therefore variable. The full H-PCG dataset was utilized to give parameter count estimates, and the SVM models learned 42 support vectors after training.

The Scattering parts of Scattering-SVM contribute non-learned parameters.

1. Time to Train and Power to Train computed on a server with NVIDIA RTX 2080 GPU and AMD Ryzen Threadripper 2920X 12-Core Processor. Power
is obtained by sampling the CPU and GPU watt usage every second, summing over the number of seconds of training time, and averaging across 3 runs.
2. Inference Time per Subject computed on a notebook with 13th Gen Intel(R) Core(TM) i7-13700H CPU and NVIDIA RTX 4060 GPU. SVM models are
evaluated on the CPU, though the wavelet scattering for ScatteringSVM is computed on the GPU. Time may vary widely from system to system. Results

average the performance across all samples in the H-PCG dataset.

3. DenseNet121 evaluated for 500 epochs. Training could be completed in as few as 150 epochs, at negligible performance loss, for most datasets.

Train each report the average and standard deviation of three
measurements. Each measurement was performed on the same
dedicated Linux server, running no other jobs, with an NVIDIA
RTX 2080 GPU and AMD Ryzen Threadripper 2920X 12-Core
CPU. The time estimate for each measurement was obtained by
training on H-PCG and evaluating on H-SCG (we assume the
added overhead of time spent evaluating H-SCG is negligible).
Independently of the timing estimates, each wattage estimate
was obtained by sampling the Linux operating system (at loca-
tion /sys/class/powercap/ x /energy_uj) for CPU power
usage and by sampling the NVIDIA graphics card (via the Linux
tool nvidia — smi) for power usage. The watt numbers were
recorded once per second during the period of time when the
model was training (not evaluating) and then summed together.
The Inference Time per Subject was computed by averaging the
elapsed real time spent to generate a prediction of a single sample
(i.e. batch size of one sample), using a notebook computer,
Lenovo P1, with a 13th Gen Intel(R) Core(TM) i7-13700H CPU
and NVIDIA RTX 4060 GPU. All variations in the table show
one standard deviation.

The PH-ELM trains most quickly, requires the least amount
of power to train, has the smallest number of learned parameters,
the smallest number of parameters (0.047e6) overall, and is fast
for inference. In contrast, the DenseNet121, which is the most
competitive model with regards to classification performance,
has over 300x more learned parameters, takes 36x longer to
train on a decent quality GPU, and utilizes over 500 x more watts
of power to train. Note also that the PH-ELM is non-iterative. As
the dataset size increases, the time and power required to train a
deep network (or SVM model) will increase significantly due to
the iterative nature of the algorithms, whereas the PH-ELM is
bounded by the time needed to compute features from a single
convolution layer. Finally, the STFT-SVM model is notable
for extremely fast inference speed and nearly zero not learned
parameters, but it ranks last by a large margin with regards to
the the median prediction performance shown in Fig. 3.

D. Varying Number of Heartbeats

This section analyzes if there is a minimum number of heart-
beats per subject necessary for PH detection. For instance, it
would be beneficial to know if a clinician only needs a short heart
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Fig. 4. Insensitive to a varying number of Heartbeats: In-
distribution prediction performance with the H-PCG dataset and PH-
ELM model is almost unchanged when either the test data or training
data has as few as 10 heartbeats. Each bar shows the average and one
standard deviation of 12 independently trained PH detectors.

sound recording for PH detection. Moreover, we can also ask
whether a longer recording improves the quality of the training
data.

Fig. 4 shows the effect of reducing the number of heartbeats
per subject in either the training set, validation set, or both. This
test is performed on the H-PCG dataset via cross-validation with
the PH-ELM model, and the figure reports the in-distribution
auROC via (10) and 12 bootstrap iterations. Each bar in the
barplot reports the average and one standard deviation.

We observe that the PH-ELM model is somewhat insensitive
to the varying number of heartbeats. While more heartbeats per
subject may slightly increase the prediction performance, 40
heartbeats may offer an acceptable trade-off between recording
time and performance. We interpret the figure to imply that
the mean number of heartbeats in the training set is slightly
more important than in the test set, since at 10 mean heartbeats
per subject, the reported auROC drops more when reducing the
training set (green bar) than the test set (orange bar).

V. DISCUSSION

The automated detection of Pulmonary Hypertension
from heart sound analysis is a viable and robust technology
that generalizes across domains and modalities. The results
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of our study show strong PH detection performance to human
test data across all available combinations of three datasets. We
applied a rigorous evaluation including two different modal-
ities (PCG and SCG), two animals (humans and pigs), and
in-distribution and out-of-distribution evaluation. The model
with the best prediction performance, PH-ELM, is also com-
putationally lightweight and well-suited to deployment on edge
devices such as mobile phones or small portable PH detection
machines. Our study offers evidence that a heart sound PH
detector could be recognized in clinical guidelines as a useful
and reliable technology for the detection of PH. A limitation
of the datasets considered is that all subjects underwent the
right heart catheterization, which means the presentation of PH
is sufficiently advanced to warrant an invasive and expensive
procedure. The results of our work justify the need for studies of
early PH detection, such as by following the long-term outcomes
of presumably healthy individuals who are regularly subjected
to PH screenings alongside existing technologies like ECHO,
EKG, and blood tests.

A. In-Distribution and Out-of-Distribution Testing

Out-of-distribution testing offers benefits not available
from in-distribution testing: The analysis of related work in
Section II and Table I shows that none of the works surveyed
have evaluated the empirical out-of-distribution performance
with a separate dataset, possibly due to the challenge of obtaining
PH datasets. Our present work therefore contributes improved
evaluation techniques by utilizing both in-distribution and out-
of-distribution analyses.

In-distribution performance reported on any single
dataset is not representative of expected out-of-distribution
results. While Table III reports an in-distribution standard de-
viation, the reported standard deviation can be made arbitrarily
smaller by increasing the number of bootstrap iterations, a phe-
nomenon explained by the Central Limit Theorem (CLT) [37].
This variability for a given dataset is not representative of the
variability of the expected out-of-distribution performance when
the dataset is used as a training or test set. Moreover, if the
expected value of the in-distribution auROC was predictive of
the out-of-distribution auROC, we would see an auROC ratio
close to one, and we do not observe that in Tables IV and V;
the same logic applies to AP*. In Table V, the expected test set
auROC of the PH-ELM model is 0.82, 0.64, 0.64, 0.62, 0.60,
and 0.58 (each also with small standard variation due to the CLT
and twelve bootstrap iterations). Excluding the value 0.82, there
is a relatively small variation in these results. The 0.82 auROC
value appears when the dataset P-Both is the training set and
H-PCG is the test set. The DenseNet121 follows this trend,
with its highest performance of 0.69 auROC when (P-Both,
H-PCQG) are the (training, test) sets. Since P-Both combines SCG
and PCG data, this out-of-distribution result offers preliminary
evidence that training with multiple modalities (PCG and SCG
data) may improve performance on PCG test data. Comparing
these reported results to the in-distribution results in Table III,
we can observe that no single in-distribution number reliably
predicts the out-of-distribution performances.

In-distribution results can mislead model selection in a
possible real-world setting. A realistic setting could arise where
we have P-Both training data, and we wish to train and deploy a
model to the hospital where H-PCG data is generated. Based
on the in-distribution results with P-Both, we would choose
DenseNet121. However, the corresponding out-of-distribution
experiments (P-Both, H-PCG) in the first two rows of Table V
show that the PH-ELM is preferable over DenseNet121 by 0.14
auROC. Model selection based on the reported in-distribution
results can therefore be misleading.

The machine learning literature justifies the benefits of
OOD testing: A recent work claims that in-distribution and
out-of-distribution performance can be inversely correlated, and
therefore that “studies on OOD generalization that use ID perfor-
mance for model selection (a common recommended practice)
will necessarily miss the best-performing models, making these
studies blind to a whole range of phenomena” [38], where ID
means in-distribution. Similar works describe underspecifica-
tion as a phenomenon of large variations in test time performance
from a set of models that have equally good in-distribution
performance [39]. Spurious correlation, as surveyed in [40], can
also explain some kinds of test set variability. The literature
therefore provides ample evidence that in-distribution and out-
of-distribution performances can be completely different, and
even inversely correlated. This literature shows that using cross-
validation results, which is an in-distribution test, to perform
model selection for application in an out-of-distribution setting,
is not necessarily justified or reliable.

B. PH-ELM Model Design

The ELM architecture was originally designed for predic-
tion tasks on tabular data [41], especially small datasets [42],
using random and fixed random projection matrix followed by
a nonlinear operator to generate features, and there are many
variations of the basic architecture [43]. The application of ELM
to images involves converting the 2-D or 3-D image data into a
1-D vector [44]. Previous works have trained a CNN using back-
propagation and then utilized its outputs as a feature extractor for
an ELM model, such as in the analysis of retinal fundus images
for diabetic retinopathy [45], and to detect QRS complex in heart
electrocardiograms [46]. In contrast, our approach does not train
the CNN or use an iterative optimization algorithm. Similarly to
our work, a fixed-weight convolutional layer followed by feature
pooling was applied to images, where the convolutional ker-
nel weights were initialized with Gaussian random parameters
and then orthogonalized using SVD* [47]. Some works have
considered SVD compression and ELM; singular values were
utilized as the input to an ELM classifier [48], and another work
shows that using PCA to compress the data just before passing
it to an ELM classifier increases computational efficiency [49].
Our approach is distinct from these related works. We adopt
a variation of the ELM architecture, where (a) our parallelized
CNN implementation with an adaptive pooling function replaces

4In [47], SVD was for parameter initialization, not for compression of the
generated convolutional features.
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the ELM’s hidden layer, (b) we apply a PCA projection matrix to
compress the CNN feature representation, and (c) we assemble
the training data into a matrix and compute a pseudo-inverse like
a standard ELM procure would.

Another machine learning pipeline that is similar to our
ELM-based approach is the wavelet scattering network [50],
which has been described as a convolutional network [51] with
afixed-weight architecture containing one to three convolutional
structures, each followed by a non-linear operator. Wavelet scat-
tering outputs a data structure that can be compressed, such as
with PCA, and then used to train or evaluate a linear model [51].
Similar approaches based on wavelet packet compression [52]
also use a single convolution layer and demonstrate no loss in
prediction performance when parameters from the convolutional
structure are removed or obscured. Convolution layers are linear
functions by design, and they therefore fit into the ELM frame-
work. These works therefore justify the PH-ELM’s adoption of
a convolutional feature-generating structure with fixed-weight
parameters, and they also justify our comparative evaluations of
the Scattering-SVM model.

Few works have previously applied the ELM architecture to
heart sound analysis [53], [54], [55], [56]. To the best of our
knowledge, there are no existing published works that apply
ELM to SCG data. The work of Liu et al. [53] utilized a
standard ELM architecture on a vector of eleven features to
predict Heart failure with preserved ejection fraction (HFpEF).
For the detection of heart murmurs, an ELM was found to have
performance similar to a support vector machine [54], and a
Deep ELM network, or ELM with multiple hidden layers, was
also successfully utilized for murmur detection [55]. Last, Ghosh
et al. [56] propose a method that uses the ELM architecture, as
an autoencoder, to reconstruct an image representation of heart
sounds from a set of derived features, and the reconstructed
image was then passed to a kernel sparse regression algorithm
to classify any of five different diseases.

VI. CONCLUSION

For the automated detection of pulmonary hypertension from
heart sounds, we proposed PH-ELM, a novel PH detection algo-
rithm based on the extreme learning machine, that generalizes
reliably across the analyzed datasets and is computationally
efficient. We also developed a rigorous evaluation methodology
based on both in-distribution and out-of-distribution evaluations.
Our results on three datasets show that two of four ML al-
gorithms generalize well across PCG and SCG modalities, as
well as from pigs to humans. To the best of our knowledge, this
work is novel for its use of multiple datasets in the evaluation of
Pulmonary Hypertension detection from heart sounds.
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