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Abstract— Sound event detection is an important facet of audio
tagging that aims to identify sounds of interest and define both
the sound category and time boundaries for each sound event in
a continuous recording. With advances in deep neural networks,
there has been tremendous improvement in the performance of
sound event detection systems, although at the expense of costly
data collection and labeling efforts. In fact, current state-of-the-art
methods employ supervised training methods that leverage large
amounts of data samples and corresponding labels in order to
facilitate identification of sound category and time stamps of events.
As an alternative, the current study proposes a semi-supervised
method for generating pseudo-labels from unsupervised data using
a student-teacher scheme that balances self-training and cross-
training. Additionally, this paper explores post-processing which
extracts sound intervals from network prediction, for further
improvement in sound event detection performance. The proposed
approach is evaluated on sound event detection task for the
DCASE2020 challenge. The results of these methods on both
“validation” and “public evaluation” sets of DESED database show
significant improvement compared to the state-of-the art systems
in semi-supervised learning.

Index Terms—Pseudo label, sound event detection, semi-
supervised learning, self-training.

I. INTRODUCTION

AUDIO tagging summarizes an audio stream with descrip-
tive information pertaining to the sound in terms of the lo-

cation where the sound may be coming from, emotional content
present, causal relationships among the sound sources, or other
descriptive information. Aside from the informative nature, they
can also be quite helpful in expediently retrieving or categoriz-
ing audio as the size of a typical audio database is quite large.
Sound Event Detection (SED), which aims to identify sounds of
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interest in terms of sound category and its temporal boundaries,
has been a critical technique for audio tagging. Since sounds
are quite informative to understand the auditory scene such as
a presence of human, animal, or any entities, and its behavior,
the technique has been adopted for many applications including
video analytics, baby or pets monitoring, and other surveillance
systems [1]–[3]. For performing audio tagging in an environ-
ment, an SED method should be able to identify multiple sounds
even when these sounds overlap with each other temporally.

With recent advances in deep learning, deep neural networks
have shown outstanding improvements in SED [4]–[7]. To train
a deep network for a SED task, each training sample needs
to be annotated with the sound class and time boundaries of
every target sound interval therein. The annotation allows the
network to learn spectro-temporal characteristics of the target
sound in a supervised fashion. Accurate labels and the markings
of temporal boundaries are critical to train the model; however,
generating them is often quite expensive and time consuming.
Semi-supervised learning, which leverages extensive unlabeled
data in combination with small amounts of labeled data, has been
explored to resolve the issue in data collection [6], [8], [9]. In the
recent challenge of the Detection and Classification of Acoustic
Scenes and Events (DCASE) 2020, task 4 involves building an
SED model in a semi-supervised fashion. The task provides an
extensive set of unlabeled data as well as a smaller set of weakly
labeled data with labels describing the sound class only [10].

Among semi-supervised techniques, self-training is an intu-
itive approach that is easy to understand and whose theoret-
ical feasibility has been studied in several works [11], [12].
Self-training effectively uses the prediction of a network for
a given input as a pseudo-label to further train the network. As
such, the accuracy of this pseudo label has important implica-
tions on the network’s performance. In an earlier work, a method
of pseudo label estimation for unlabeled data and a reliability
of the pseudo label were proposed [13]. The pseudo label was
estimated by a probabilistic expectation of all potential labels
as these probabilities were calculated based on the Bernoulli
process with posterior probabilities of each class. With labeled
data, reliability of the pseudo label at each training step was mea-
sured based on a binary cross entropy between true label and the
estimate for the labeled data. The objective function was com-
posed of a supervised loss for the labeled data computed from a
cross-entropy between the true label and the model prediction,
and an expectation loss for the unlabeled data, which was de-
fined as a mean-squared error between the pseudo label and the
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prediction. The expectation loss was weighted by the reliability.
Then, the model is self-trained by performing the estimation and
optimization in every training step.

As an extension to the previous work, the current paper pro-
poses a Cross-Referencing Self-Training (CRST) model. A crit-
ical issue with self-training is the self-referencing framework
that has a risk of self-biasing due to the pseudo label estimated
by itself. To resolve this issue, dual models composed of Model
I trained with original data and Model II trained with perturbed
data, are incorporated in the self-training. Each of these models
is trained separately using the pseudo-label estimate of the other
network. Additionally, this paper explores a post-processing step
to extract target sound intervals from the network prediction
with a classwise thresholding and smoothing. For thresholding,
the Extreme Value Theory (EVT) based threshold estimation is
performed for each target class. A smoothing filter length is de-
termined based on statistics of each target sound duration. To
demonstrate effectiveness of the proposed method, experiments
are performed following the protocol for the multi-target SED
task in the recent DCASE challenge (DCASE2020). The result
shows further improvement in the performance compared to the
previous model as well as other state of the art in semi-supervised
learning. The main contribution of this paper can be summarized
as: 1) a novel self-training method which avoids the self-biasing
issue; 2) an effective approach of selectively combining syn-
thetic data with unlabeled or weakly labeled real world data to
enable a semi-supervised training; 3) introducing a classwise
post-processing involving effective estimates of threshold and
duration for further improvement in SED performance.

The rest of this paper is organized as follows. Related works
for semi-supervised learning are explored in the following sec-
tion. The motivation of the self-training model is described in
Section III, and Section IV describes the proposed methods
for the cross referencing self-training model and the classwise
post-processing. In Section V, experiment results performed on
the DCASE challenge framework are summarized. Comparison
to the challenge submission is discussed in Section VI and the
conclusion is followed.

II. RELATED WORKS

A. Semi-Supervised Learning

Semi-supervised learning aims to leverage unlabeled data to
improve the performance of supervised learning with a small
labeled data set. There has been a growing body of work explor-
ing use of unlabeled data in supervised learning [14]. Usually,
unlabeled data is used to learn a preliminary model about the
input distribution, and the model is used for either feature ex-
traction [15]–[17], clustering of data to assign label [18], or ini-
tialization of parameters [19]. These methods are then leveraged
in a main model for classification which is trained with labeled
data in supervised fashion.

Particularly, the clustering based approach assumes that
two samples belonging to same cluster in observation space
are likely to belong to the same class. This is known as
the cluster assumption (or low-density separation assumption)
and has inspired a consistency-regularization approach like

PI-model [20], [21], temporal ensemble model [21], Mean
Teacher (MT) model [22], and Interpolation Consistency Train-
ing (ICT) model [23]. Among these approaches, the MT model
has been instrumental in pushing forth the state of the art. The
MT model consists of two networks, student and teacher, and
its objective function is denoted as

LMT = BCE(y, fθ(x)) + δMSE(fθ(x; η), fθ′(x; η′)), (1)

where BCE(y, fθ(x)) is a classification loss implemented by a
Binary Cross Entropy (BCE) between true label y and student
prediction fθ(x). MSE(fθ(x; η), fθ′(x; η′)) is a consistency
loss implemented by a Mean Squared Error (MSE) between two
predictions fθ(x; η) by student and fθ′(x; η′) by teacher under a
random perturbation η on each network such a rotating, shifting,
or adding noise. Network parameters are represented as θ and
θ′ for student and teacher, respectively. This consistency loss
is controlled by the δ which is usually designed with ramp-up
value during the training. Both networks are constructed with
the same architecture. The student parameters are updated by
using a gradient descent method. On the other hand, parameters
in the teacher model are updated by exponential moving average
of student parameters over the training step. Since the averaging
network tends to produce more accurate prediction than a net-
work obtained by the gradient descent method in each training
step [22], the student network is guided by the teacher network.
Additionally, the consistency loss enables that the student net-
work produces the same predictions even in presence of various
perturbations. Once the MT model converges in training, the
student network projects any samples belonging to the manifold
constructed by the perturbations onto the same prediction.

In contrast, the ICT model differs from the MT model in that
an interpolation between two inputs is considered instead of
random perturbations. The objective function is denoted as

LICT = BCE(y, fθ(x)) + δMSE(fθ(Mixλ(x1, x2)),

Mixλ(fθ′(x1), fθ′(x2))),

where Mixλ(a, b) = λa+ (1− λ)b, (2)

where λ is a random value as 0 ≤ λ ≤ 1. The second term en-
ables that the student network projects a convex set of the inputs
onto another convex set of predictions for the inputs by itself.
Once an ICT model converges during training, the student net-
work produces similar predictions for any samples in the con-
vex set of the inputs. This is more efficient compared to random
perturbations since interpolation always generates a sample be-
longing to the convex set of the inputs while not all samples
generated by random perturbations belong to the manifold for
the actual inputs.

As an alternative approach, the present study explores a self-
training method which estimates a pseudo label for unlabeled
data, then updates itself for both labeled data and pseudo la-
beled data (unlabeled data). As a simple way to estimate pseudo
label, Lee assigned a pseudo label for unlabeled data by picking
up the class which shows a maximum posterior probability in
the prediction by itself [11]. This method is equivalent to En-
tropy Regularization, which is to separate probabilistic distri-
butions for each class by minimizing conditional entropy of the
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class probabilities [24], [25]. The Entropy Regularization favors
a low-density separation between classes which is a principal
assumption of semi-supervised learning [26]. With this back-
ground, the self-training with pseudo label for the best class was
applied to object detection and hyperspectral image classifica-
tion [27], [28]. Instead of picking up the best class, a pseudo
label was estimated based on probabilistic expectation of poten-
tial labels due to the multiple target scenario for SED task [13].
Recently, Wei, et al. studied a theoretical background of the
empirical successes in self-training with deep learning [12].

B. Semi-Supervised Learning in Sound Event Detection

The DCASE challenge provides a framework of semi-
supervised learning for sound event detection: Both the baseline
implementation and the training database including unlabeled
data. In the recent DCASE2020 challenge, the baseline was
implemented with a Convolutional Recurrent Neural Network
(CRNN) and MT model for network architecture and semi-
supervised learning respectively [10]. The training database was
composed of three subsets: a strong labeled dataset S, a weakly
labeled dataset W , and an unlabeled dataset U . The strong la-
bel describes target sound class as well as time boundaries for
each target sound interval. For the weakly labeled data, its label
describes a list of target sound classes without time boundaries.
Unlabeled data has neither the sound class nor the time boundary.
With these three types of training data, the objective function (1)
is modified as follows:

LMT =
∑
x∈S

BCE(fθ(x), y
s) +

∑
x∈W

BCE(E[fθ(x)], y
w)

+ δ
∑

x∈S,W,U

MSE(fθ(x), fθ′(x′)). (3)

where ys and yw are label for strong labeled data and weakly
labeled data, respectively.E[.] is expectation over the time. Note
that x′ is generated by adding Gaussian noise to x with 30 dB
Signal to Noise Ratio (SNR) condition.

Miyazaki et al. won in the DCASE2020 challenge with an
integration of strategies including a new architecture, data aug-
mentation, classwise post-processing, and fusion [29] while
they employed the MT approach for semi-supervised learn-
ing. Koh, et al. suggested a Shift Consistency Training (SCT),
which makes the network to produce consistent predictions for
time-shifted inputs, and feature pyramid network to predict tem-
poral label for weakly data [30]. Additionally, they explored ICT
approach for SED task. With an integration system of MT, ICT,
SCT, and feature pyramid, they have achieved best performance
on their own. Kim, et al. proposed a modified CRNN network,
which is using more filters and skip-connections with attention
module, as well as modified loss function, which is a cross en-
tropy between network prediction and pseudo label estimated
by an weighted sum of predictions by the modified network and
output of the challenge baseline [31], [32]. With data augmen-
tation based on time-frequency masking and interpolation, their
system outperformed the challenge baseline.

Fig. 1. An SED model projects inputs in feature space onto label space wherex
and x′ are input features. y is a true label while ŷ is the prediction (a) Strategy of
consistency-regularization method, (b) Limitation of consistency-regularization.

III. MOTIVATION OF PROPOSED SEMI-SUPERVISED

TRAINING METHOD

Fig. 1(a) shows a concept of consistency-regularization ap-
proach. The approach allows the model producing a consis-
tent prediction for all neighbors of one input in training set.
Based on the cluster assumption, it is able to improve the per-
formance in the classification task. In addition, it allows unla-
beled data to be incorporated in supervised learning for the con-
sistent prediction as calculated by the consistency loss. From
the perspective of semi-supervised learning however, the con-
sistency loss can be thought of as an estimation of the dif-
ference between two predictions; which in of itself could re-
sult in convergence on the wrong label as shown in Fig. 1(b).
These errors may have a great effect on the model performance
since unlabeled data is generally far bigger in size than labeled
data [33].

In a previous work, a probabilistic expectation of potential
labels was proposed as a pseudo label for unlabeled data [13].
In order to mitigate the issue of erroneous label mapping shown
in Fig. 1(b), we defined ε as the mean squared error between
the pseudo label and network prediction, and the expectation
error is then minimized. This method was shown to outperform
the MT model on a SED task. However, this approach is not
limitation-free, and has a risk of self-biasing because the pseudo
label is estimated by itself.

As an extension of the previous work, this paper proposes
a Cross-Referencing Self-Training (CRST) model to mitigate
the self-biasing issue. Fig. 2 contrasts the two approaches.
Fig. 2(a) depicts the previous model, named Self-Referencing
Self-Training (SRST). Fig. 2(b) depicts the proposed approach,
the CRST model, which consists of two self-training mod-
els, where each model is trained on either original or ma-
nipulated data with the pseudo label estimated by the other
model. The cross-referencing of a pseudo label estimated by
the other model is a key point of this dual structure. It is able
to avoid the self-biasing issue based on the assumption that
those networks are independently trained on a different version
of data.

IV. PROPOSED METHOD

The implementation of proposed model can be found in [On-
line]. Available: http://github.com/JHU-LCAP/CRSTmodel.
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Fig. 2. Diagram for self-training framework where y, ŷ, and ỹ is a true la-
bel, student network’s prediction, and pseudo label, respectively. x′ represents
manipulated data from the original x by a transformation functionT (.). (a) Self-
Referencing Self-Training (SRST) model, (b) Cross-Referencing Self-Training
(CRST) model.

A. Pre-Processing

An audio clip is processed to a 16 kHz mono-channel au-
dio waveform by resampling and averaging left and right chan-
nels for multi-channel audios. The audio waveform is converted
to a spectrogram by performing Short Time Fourier Transform
(STFT) with 2048-points frame length and 255-points hop size.
Then, a log-Mel spectrogram is obtained by performing fre-
quency integration with 128 Mel-filters spanned 0 to 8 kHz fre-
quency domain and logarithm function.

P [n,m] =
∑
k

S[k,m]× fn
mel[k],

x[n,m] = log(max(P [n,m]2, ε2)), (4)

wherex is a log-Mel spectrogram whileS is a spectrogram based
on STFT. fn

mel is Mel filter for the nth channel. n,m, and k are
indices to represent Mel filter channel, frame, and frequency
bin, respectively. Note that the ε is set to 1.0E − 5 in order to
prevent negative infinite value by the logarithm function. The
different version of data, x′ in Fig. 2 is generated by adding the
Gaussian noise to the log-Mel spectrogram with a given Signal
to Noise Ratio (SNR) condition. Note that audio length was
considered up to 10 s so that zero-padding or cutting is performed
for shorter or longer audios than 10 s. The SNR condition to
generate manipulated data was set to 30 dB from the challenge
baseline [10].

B. Network Architecture

From the challenge baseline for SED task, CRNN is applied
to both networks in Model I and Model II. The CRNN is com-
posed of two stages: Convolutional Neural Network (CNN) to
compress the log-Mel spectrogram into acoustic features and
Bidirectional Gating Recurrent Units (BGRUs) to capture tem-
poral relations among the compressed features by the CNN. The

first stage is composed of seven convolution layers and seven
averaging pooling layers. Each convolution layer uses a Gated
Linear Unit (GLU) for a nonlinear activation. The GLU controls
the selection of critical features in order to capture informative
characteristics among the target sounds by using a self-gating
function described by

c′ = GLU(c) = Linear(c)× σ(c), (5)

where c and c′ represents a result of convolution and GLU, re-
spectively. Linear(.) and σ(.) is a linear transformation and a
sigmoid function for the gating, respectively. In training phase,
batch normalization and dropout techniques are applied to be-
fore and after performing the GLU, respectively.

The following stage consists of a Double-layered Bidirec-
tional Gated Recurrent Unit (BGRU). The output of the CNN
represents compressed features along to output channels across
the time. These features are fed into the BGRU to learn the tem-
poral characteristics of target sounds in onset and offset edges.
During the training phase, dropout is applied to the end of each
unit. Additionally, a linear layer with a sigmoid activation is
added on the top of the BGRU to represent a presence probabil-
ity of target sounds. As a result, a set of likelihood probability
across the target sounds over the time is outputted by the sec-
ond stage. More detailed setup for this architecture can be found
in Appendix or implementation of the DCASE2020 challenge
baseline for task 4 [10].

C. Objective Function

With the idea of cross-referencing, objective function is de-
signed to resolve self-bias issue. To train the student network in
each model with the three types of data, strong labeled, weakly
labeled, and unlabeled, in supervised fashion, the objective func-
tion consists of a classification error and an expectation error
with a reliability of pseudo label. The classification error is de-
fined by a BCE between the network prediction and strong label
ys or weak label yw while a MSE between the prediction and
pseudo label ỹ is used for the expectation error (6).

LI =
∑
x∈S

BCE(fI(x), y
s) +

∑
x∈W

BCE(E[fI(x)], y
w)

+ γs
II

∑
x∈U

(MSE(fI(x), ỹII)+γw
II

∑
x∈W

(MSE(fI(x), ỹII),

LII =
∑
x′∈S

BCE(fII(x
′), ys)+

∑
x′∈W

BCE(E[fII(x
′)], yw)

+ γs
I

∑
x′∈U

(MSE(fII(x
′), ỹI)+γw

I

∑
x′∈W

(MSE(fII(x
′), ỹI), (6)

where Li is the objective function for training Model i whose
prediction is denoted as fi(.).x′ is generated by adding Gaussian
noise to original data x with 30 dB Signal to Noise Ratio (SNR)
condition. E[.] is an averaging operator over the frames. Note
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that the weak label yw is a vector indicating target sound class
which happened in the audio clip while the strong label ys is a
matrix stacking the vectors for every frame. γs

i and γw
i are the re-

liability of pseudo label estimated in Model i with strong labeled
data and weakly labeled data, respectively. During the training
phase, the parameters for both models, Model I and Model II,
are separately optimized with each objective function (6).

1) Pseudo Label Estimation: Considering a scenario for
multiple sound detection, a label indicating the presence of target
sounds in a frame is represented to a zero vector for non-target,
one-hot vector for single target, or a many-hot vector for multi-
ple targets at least two. A pseudo label for a frame is estimated
to a probabilistic expectation of those potential labels. By per-
forming this estimation for every frame, the pseudo label of
unlabeled audio clip is represented to a matrix like the strong
label. Since the pseudo label has a expectation value not a binary
value, the MSE criterion is more appropriate for the expectation
loss in (6) than the BCE. With this concept, the pseudo label can
be estimated as

ỹ =
K∑
k

Nk∑
n

pkn l
k
n, (7)

where k is the number of concurrent events in each frame and
n is an index for the case of choosing k-sounds of total target
sounds. lkn is a label vector expressed by a summation of delta
functions like l2n:{i,j} = δi + δj for events i and j ((k = 2). pkn
is a probability of the label lkn, K is maximum number of con-
current events, and Nk = C!/(k!× (C − k)!) is the number of
potential labels under the k and total number of target sound
classesC. Note that this estimation is performed for every frame
even though the frame index is omitted for brevity.

Based on the fact that the teacher network produces more
accurate predictions [22], the probability of a label vector is cal-
culated with the teacher prediction in each model. Based on the
Bernoulli process for activation of each target sound, the proba-
bilities pkn are calculated depending on the number of concurrent
events k as

k = 0, p0n:{} =
1

N
Πq(1− ŷ′q),

k = 1, p1n:{i} =
1

N
ŷ′iΠq �=i(1− ŷ′q),

k = 2, p2n:{i,j} =
1

N
ŷ′iŷ

′
jΠq �=i,j(1− ŷ′q),

k = 3, p3n:{i,j,h} =
1

N
ŷ′iŷ

′
j ŷ

′
hΠq �=i,j,h(1− ŷ′q),

. . ., (8)

where N is a normalization factor as N = ΣK
k ΣNk

n pkn. Note
that the prediction by teacher network of Model I (Model II)
is applied to the pseudo label estimation for training Model II
(Model I).

The estimation of a pseudo label in every frame for all un-
labeled data introduces a heavy computational load in the cal-
culation for all potential labels. To reduce this computation, the
number of concurrent events k is considered up to 2 based on

previous work [13]. The probabilities for multi-sound labels are
calculated using a dynamic programming technique (9).

k = 0, P 0 = log(p0n:{}),

k = 1, P 1
i = P 0 + log(ŷ′i)− log(1− ŷ′i),

k = 2, P 2
{i,j} = P 1

i + P 1
j − P 0, (9)

2) Reliability of Pseudo Label: The prediction by the teacher
network is obviously unreliable at the beginning of training.
Even at later stages of training, the pseudo label is still an esti-
mate based on the prediction. Therefore, the expectation error is
weighted by the reliability of pseudo label to adjust the contri-
bution of the error on training. In this study, the Jensen Shannon
Divergence (JSD), which is bounded in [0, 1], is considered to
calculate the reliability γs and γw of the pseudo label with strong
labeled and weakly labeled data, respectively (10).

γs = ω × 1

Ns

∑
x∈S

(1− JSD(ỹ||ys)),

γw = ω × 1

Nw

∑
x∈W

(1− JSD(E[ỹ]||yw)),

where ω = 3.0 exp(−5(1− t/T )2),

JSD(a||b) = KLD(a||m)/2 +KLD(b||m)/2,

m = (a+ b)/2, (10)

where ω is a ramp-up parameter with an index of training step t
and maximum number of the steps T , Ns and Nw is the number
of strong labeled data and weakly labeled data, respectively.
KLD is a Kullback Leibler Divergence. At the beginning of
training, the expectation error (6) remains small due to the ω.
In later stage of training, the reliability relies on the similarity
between pseudo label for labeled data and true label.

D. Post-Processing

Class imbalance in training dataset is another issue often en-
countered in semi-supervised learning. The sparsity of the mi-
nority classes in the training set minimizes their contribution
to the objective function resulting in a bias toward the majority
class [34]. Dynamic sampling [35] or data augmentation [36] for
minority class data is an effective way to resolve this issue. In the
scenario of semi-supervised learning, however, it is hard to use
either one because those methods need class label for all training
dataset. Instead, this paper explores classwise post-processing to
extract target sound intervals from class posterior probabilities
over time (i.e. student output). Once the student model converges
after training, the network’s output exhibits different distribution
of posteriors to each target class (Fig. 3). Thus, post-processing
composed of thresholding and smoothing is performed with op-
timized classwise parameters, threshold and smoothing length.

1) Threshold Estimation: In each target class, a threshold
is estimated based on the Extreme Value Theory (EVT) [37].
Once a network’s training converges, samples used in threshold
estimation are collected by applying logit function, logit(x) =
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Fig. 3. Histograms for posterior distribution in two targets, Dishes and Speech.
Once a model is converged in training, posteriors were calculated on weakly
labeled data. Red dotted lines show optimal thresholds (−tα) for each class
while black dotted line (at 0.0 in logit domain) represents a global threshold for
all targets.

log( x
1−x ), to the network prediction responding to weakly la-

beled data. In a threshold estimation for “Speech” class, for ex-
ample, audio clips which have the “Speech” sounds in weakly
labeled dataset are used to collect network predictions for the
“Speech” class. Since a target sound duration is typically shorter
than 10 s, the samples can be categorized into two clusters for tar-
get and non-target (Fig. 3). These clusters are separated based on
the Expectation and Maximization (EM) clustering [38]. Thresh-
old estimation is performed with samples belonging to the target
cluster, which has a greater mean value than the other since the
network has been trained. To apply the EVT to the samples, the
target samples are reversed by multiplying -1. Motivated in [39],
Cumulative Distribution Function (CDF) of the reversed sam-
ples, F (x), is defined as

F (x) = (1− Pr(x ≤ u))Fu(x− u) + Pr(x ≤ u),

P r(x ≤ u) =
N − n

N
, (11)

where u is a predefined threshold to extract extreme samples
which are greater than the predefined threshold, Pr(x ≤ u) is
a probability of a set of samples x, which are less than u. N
is the total number of samples and n is the number of extreme
samples. In this study, u was defined to the value that satis-
fies Pr(x ≤ u) = 0.9. Tail distribution, i.e. CDF of the extreme
samples Fu(x− u), is modelled with a Generalized Pareto Dis-
tribution (GPD) [40] as

G(z) = 1−
(
1 + c

z

a

)−1/c

, (12)

where G(z) is a CDF of the extreme samples with z = x−
u. a and c are tuning parameters optimized to maximize log-
likelihood for all extreme samples

n∑
i=1

log(g(zi)) = −nlog(a)− 1 + c

c

n∑
i=1

log
(
1 + c

zi
a

)
,

(13)
where g(z) is a probability density function of G(z). Note that
Nelder-Mead Simplex method [41] is applied to find optimal a
and c. With the parameters in (11) and (12), a threshold with a
given parameter α is estimated as

tα = u+
a

c

((
Nα

n

)−c

− 1

)
, (14)

TABLE I
DATABASE

where α means a theoretical probability of false negative. Be-
cause the tα in (14) is derived for reversed samples in logit do-
main, the threshold applied to post-processing is finally obtained
by σ(−tα).

For instance, Fig. 3 shows histograms of posterior probabil-
ities calculated on weakly labeled data and optimal thresholds
in two classes. Dishes sounds have an issue of imbalance be-
tween target and non-target frames because events are too short
compared to whole duration. Thus, the distributions are biased
towards negative values which increases likelihood to belong
to a non-target frame. In this case, the threshold (marked with a
black line) needs to be moved to left-side in order to enhance de-
tection rate. On the other hand, Speech seems to be free from this
issue as shown in its distribution which is nearly zero-centered.
The threshold estimation method produces a small positive shift
of the global threshold, which enables to reduce false positive.

2) Smoothing With Median Filter: Since thresholding based
detection is performed on each of frames, a low-pass filtering is
needed to determine sound intervals which are slowly changed
in nature. So, a smoothing is performed by applying median
filter to the frames detected in the previous step. It is needed to
optimize the filter length for a precise time interval since the filter
length directly affects on the times at rising and falling edges.
In this work, the filter length is determined by β % of average
of sound duration. The average of sound duration is estimated
with the number of frames resulted in thresholding with respect
to weakly labeled data.

V. EXPERIMENT

A. Database

In order to evaluate the proposed system, the DESED database
was used [42]. This database contained 10-target sounds for
SED task: Alarm_bell_ringing, Blender, Cat, Dishes, Dog, Elec-
tric_shaver_toothbrush, Frying, Running_water, Speech, and
Vacuum_cleaner. The database included a training set composed
of Synthetic:training, Real:weakly labeled, and Real:unlabeled
as shown in Table I. To synthesize strong labeled data, back-
ground sounds were extracted from SINS [43], MUSAN [44], or
Youtube; and target sounds were obtained from freesound [45].
In this training set, two points are worth highlighting: 1) Syn-
thetic data is considered as strong labeled data instead of mark-
ing ground truth on real recordings. 2) The number of unlabeled
data is much larger than the number of labeled data. For the
post-processing technique proposed in this study, statistics were
collected with weakly labeled data. And, two subsets, Real: val-
idation and Real: public evaluation were used for performance
assessment.

Authorized licensed use limited to: Johns Hopkins University. Downloaded on October 23,2023 at 14:11:25 UTC from IEEE Xplore.  Restrictions apply. 



PARK et al.: CROSS-REFERENCING SELF-TRAINING NETWORK FOR SOUND EVENT DETECTION IN AUDIO MIXTURES 4579

B. Evaluation Criterion

The assessment was performed with a f-score, which is a
harmonic mean of precision and recall. The precision was cal-
culated as the ratio of true-positive intervals to total detected
intervals. The recall was equal to a detection rate, the ratio of
true-positive intervals to target intervals. Those measures were
calculated for each class. Based on the evaluation protocol for
a SED task in the DCASE2020 challenge [46], in this work, a
detected interval was considered as true-positive if the interval
satisfies three conditions: 1) onset time of the interval precedes
earlier than the truth as less than a 200 ms. 2) offset time of the
interval delays the truth as less than 200 ms. And 3) a sound
class of the interval should be matched to the true class. Note
that the 200 ms margin in both time boundaries was considered
to prevent slicing the sound in the middle.

C. Models for SED Task

To demonstrate the effectiveness of the proposed method,
CRNN network (See, Section IV-B) was trained in different ways
using a 5 times cross-validation method.

1) Supervised Learning: This approach was considered sep-
arately for strong-labeled data only, or both strong and weakly
labeled data. In the first model, only strong labeled data (syn-
thetic data) was used for training. The loss function was
defined as L = Σx∈SBCE(fθ(x), y

s). In the second model,
both strong and weakly labeled data were used for training.
The loss function was defined as L = Σx∈SBCE(fθ(x), y

s) +
Σx∈WBCE(E[fθ(x)], y

w).
2) Consistency Regularization: As a state of the art in semi-

supervised learning, MT and ICT models were considered in this
category. For training a MT model, the DCASE2020 challenge
baseline whose objective function is denoted in (3) was used.
With this implementation, ICT model was trained with modified
objective function as

LICT =
∑
x∈S

BCE(fθ(x), y
s) +

∑
x∈W

BCE(E[fθ(x)], y
w)

+δMSE(fθ(Mixλ(x1, x2)),Mixλ(fθ′(x1), fθ′(x2))).
(15)

3) Self-Referencing Self-Training: The previous version of
self-training, SRST model, was evaluated as well. The loss func-
tion was set to

LSRST =
∑
x∈S

BCE(fθ(x), y
s) +

∑
x∈W

BCE(E[fθ(x)], y
w)

+ γ
∑

x∈W,U

(MSE(fθ(x), ỹ),

where γ = min(ω/BCE(ys, ỹ), 5.0), (16)

where ỹ is pseudo label estimated by itself and ω is defined
in (10). And another model (SRST+aug.) was trained with data
augmentation based on adding Gaussian noise with 30 dB SNR

condition. Finally, the cross-referencing self-training approach,
CRST model, was evaluated.

D. Performance in Class-Averaging F-Score

Table II shows class averaging f-scores for each model which
are the mean and standard deviation over the 5 times repetition.
To investigate the effect of post-processing, f-scores obtained
using the global threshold (0.5) and median filter (445 ms) for
all targets are summarized in the column of “Global”. Note that
the global parameters were determined based on the challenge
baseline. Results in “Classwise” on “validation” were obtained
by performing the proposed post-processing with the best pa-
rameters that were heuristically determined in searching within
the intervals from 0.0002 to 0.1 with 10 steps in log-scale for α
in (14) and from 5% to 100% with 20 steps in linear scale forβ in
the estimation of filter length. Then, these best parameters were
applied to the test on “public evaluation” set for each model.

Since the strong labeled dataset is composed of synthetic data
produced by mixing target sounds and a background sound,
it could contain artifacts such as unnatural transition in target
sound boundaries and unnatural causality among target sounds.
In training the synthetic data, a model could rely on these ar-
tifacts to detect target sounds. The results for two supervised
models in Table II suggest that this issue could be alleviated by
including real data (weakly labeled data) in training. The table
also demonstrates that using unlabeled data in network training
is effective to enhance the SED performance. In the evaluation
on “validation” set, self-training methods except “SRST+aug.”
outperform the methods of consistency regularization if global
post-processing is used. With 5% significant in Welch’s t-
test [47], particularly, the CRST model improves the f-score sig-
nificantly compared to MT model (p-value=0.0013), ICT model
(p-value=0.0313), and the SRST model (p-value=0.0265). If
the classwise post-processing is performed, all of the f-scores
are improved about 2.0-3.0% compared to the results in the col-
umn of “Global”. The Welch’s t-test on these results confirms
that the CRST model shows a significant improvement com-
pared to MT model (p-value=0.0096) while the CRST model
averagely outperforms other two models as shown in the table
(in t-test with SRST model: p-value=0.0566, with ICT model:
p-value=0.3788).

In the second evaluation on the “public evaluation” set, the
CRST model outperforms other models as well. In this eval-
uation, the MT model shows the second best in the average
of f-scores over the repetition. In T-test with the results of
global post-processing, the p-values are 0.1931, 0.0869, and
0.0560 in comparison to the MT model, the ICT model, and the
SRST model, respectively. If the classwise post-processing is
performed, the CRST model shows a significant improvement
compared to the ICT model (p-value=0.0192) and the SRST
model (p-value=0.0221). On the other hand, the CRST model
averagely outperforms than the MT model (p-value=0.2536).

From these evaluations, the CRST model results in more accu-
rate detection of sound intervals with stable performance on both
datasets. Additionally, the proposed post-processing enables to
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TABLE II
PERFORMANCE ASSESSMENT WITH CLASS AVERAGING F-SCORE

Fig. 4. Classwise performance on “validation” set. (a) Classwise fscores of two post-processing methods in four semi-supervised models. The results of classwise
post-processing are marked as red solid line while blue dotted line is for the results of global post-processing. The error bar means the standard deviation over
the 5 times repetition. (b) The most left table shows the number of sound intervals on “validation” set for each class. Then, four matrices show a confusion in
classification for detected intervals which are matched to the truth in time boundaries. The numbers are the mean over the 5 times repetition and the standard
deviation is represented to background light in black and white.

improve the performance about 2.0-3.0% in class-averaging
f-score.

E. Investigation of Classwise Performance

To explore f-scores in individual class, classwise f-scores
for semi-supervised models are represented in Fig. 4. In the
classwise comparison on “validation” set (Fig. 4(a), results of
classwise post-processing), the CRST model has reached the
best performance for five classes and the second best for two
classes in the mean of 5 times repetition. With 5% significant in
the T-test, particularly, the model shows a significant improve-
ment in Electric_shaver_toothbrush and Speech compared to the
MT model. Compared to the ICT model, significant improve-
ment could be found in Dog and Speech. And Dishes, Dog,
and Speech are significantly improved compared to the SRST
model. In a classwise performance, the SRST model shows the
biggest variation across the target classes among the four models.
The f-scores of the SRST model are averagely better than other

models in Alarm_bell_ringing and Electric_shaver_toothbrush.
Among the four models, the worst f-score for Dishes and Dog
could be found in the SRST model as well. It is difficult to inves-
tigate what happen exactly in these classes during the training
due to the lack of labels in the training data. One of potential
reasons is that the SRST model was biased by a pseudo label
that was estimated incorrectly due to some reasons such as a
noise or an overlapping effect. Once the model miss Dishes
sounds, the model never detect the Dishes sounds because the
pseudo label is unable to give any information for the Dishes.
Therefore, the Dishes class would be getting worse and worse,
on the other hand, the Electric_shaver_toothbrush class would
be getting better and better because it is able to reflect more
samples for the Electric_shaver_toothbrush class in training.
This issue has been resolved with the cross-referencing frame-
work as shown in the result of the CRST model. To investigate
the detection results of each model, each confusion matrix for
the results based on classwise post-processing is represented
on Fig. 4(b). With detected intervals that have matched to the
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Fig. 5. Classwise performance on “public evaluation” set. (a) Classwise fscores of two post-processing methods in four semi-supervised models. The results of
classwise post-processing are marked as red solid line while blue dotted line is for the results of global post-processing. The error bar means the standard deviation
over the 5 times repetition. (b) The most left table shows the number of sound intervals on “validation” set for each class. Then, four matrices show a confusion
in classification for detected intervals which are matched to the truth in time boundaries. The numbers are the mean over the 5 times repetition and the standard
deviation is represented to background light in black and white.

truth in time boundaries, the confusion matrix was built by
counting the number of the intervals in classification. To give
the information about missing intervals in time boundaries, the
most right column in each confusion matrix shows the number
of the missing intervals by the model. Note that the numbers
on each confusion matrix are the mean value over the repetition
and the standard deviation is represented to background light.
In both the ICT and SRST model, the f-score in Dog is the
worst among the targets. In case of the ICT model, the worst
result is owing to a confusion among the classes. On the other
hand, inaccurate detection in time is the reason of the SRST
model as in that only 65 intervals were detected with correct time
boundaries.

The results performed on “public evaluation” set are summa-
rized in Fig. 5. As shown in Fig. 5(a), the CRST model reached
the best performance in six classes and the second best in two
classes. In this assessment, the MT model outperforms the ICT
and SRST model as shown in Table II. In a classwise compari-
son, the ICT and SRST model outperforms the MT and CRST
models in Alarm_bell_ringing while these models still have in
trouble to detect Dishes and Dog compared to other two mod-
els. And the CRST model shows a significant improvement in
Speech compared to all other models. Similarly, the confusion
matrices in this assessment are represented in Fig. 5(b). The trend
is mostly consistent with the results on “validation” set except in
Cat, Dog and Electric_shaver_toothbrush. The sounds of “Cat”
and “Dog” have a big variation depending on species, size, or
age, which could explain the different performance between the
“validation” and “public evaluation” sets. It can also be noted
that the number of Cat and Dog intervals is less than the number

of the sounds in “validation set”. On the other hand, more sounds
for Electric_shaver_toothbrush are included in the “public eval-
uation” set, and the performance in this category shows worse
than the f-score in “public evaluation” set. Note that the total
number of target intervals in this evaluation can be found by a
summation of each row of the confusion matrix.

F. Exploration of Maximum Number of Concurrent Events

In order to reduce a computational load in pseudo label esti-
mation, in this study, the number of concurrent events, k, was
considered up to 2 (K = 2) so that total 56 potential labels
(= 1 + 10 + 45 for k = 0, k = 1, and k = 2, respectively) were
used to estimate pseudo label. According to the previous study
in SRST model [13], the class averaging f-score was saturated
at K = 2 because the case, which three or more target sounds
happen at a time, is unusual in practical environments. With both
test datasets, sound intervals that are overlaid with other target
sound were counted and the results are summarized in Table III.
In total, the ratio of cases of three or more concurrent sounds, is
less than 5% in both datasets. Thus, the preset parameter for the
maximum number of concurrent sounds is acceptable assump-
tion in the pseudo label estimation.

G. Effect of Preset Parameters in Post-Processing

As shown in the results (Fig. 4(a) and 5(a)), the performance
is mostly improved by applying the classwise post-processing
compared to the results of the global post-processing. For per-
forming the classwise post-processing, preset parameters, a the-
oretical false negative rate α and a ratio to the average of sound
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TABLE III
PERCENTAGE OF THE NUMBER OF CONCURRENT SOUND INTERVALS

IN BOTH TEST DATASETS

Fig. 6. Class averaging f-score based on classwise post-processing with dif-
ferent preset parameters. The red line on each panel represents the fscores based
on global post-processing and the gray region and error bar represent a 95 %
confidence intervals for the mean value. (a) depending on parameter α in ICT
and CRST model with β = 45% and β = 25%. (b) depending on parameter β
in ICT and CRST model with α = 0.32% and α = 0.64%.

duration β, are heuristically decided in searching within the in-
tervals from 0.02% to 10% with 10 steps in log-scale forα in (14)
and from 5% to 100% with 20 steps in linear scale for β in the
estimation of filter length. For the CRST and ICT (the second
best model on “validation” set as in Table II), class averaging
f-scores depending on the parameters are represented in Fig. 6.
Fig. 6(a) shows class averaging f-score depending on theoretical
false negative rate α in (14). In both panels, the red line repre-
sents the result based on the global post-processing. The gray
region and the error-bar represent a 95 % confidence interval for
the mean. Note that the β was set to 45% and 25% for ICT and
CRST model, respectively. According to the results, the f-score
has been improved significantly on 0.32 and 0.64 % for both
models. If the α is too big or small, it is unable to improve the
performance due to the false results such as FPs or FNs. The
f-scores depending on β are represented in Fig. 6(b). Note that
the α was set to 0.32% and 0.64% for ICT and CRST model.
As shown in results, the length of smoothing filter is a criti-
cal parameter effecting on the performance since the smoothing
makes an early or a delay on time boundaries of detected inter-
vals. If a short length filter is used in the smoothing, it is unable to

TABLE IV
CLASS AVERAGING F-SCORE IN DIFFERENT PERTURBATIONS

remove very short intervals resulted in the thresholding. Thus,
the smoothing remains the FPs, short-time intervals due to a
noise, and makes small precision in the evaluation. On the other
hand, it could merge two intervals which are close to each other
in time when a long length filter is used. In this case, the smooth-
ing could reduce TPs and make FPs more because the merging
interval would be decided to FPs due to the mismatching in time
boundaries.

H. Effect of Data Perturbation

For evaluation of the proposed method, perturbation was
produced by adding Gaussian noise to original data. To ex-
plore an effect of perturbation, additional evaluations were per-
formed with other perturbation methods such as mixup [48]
and frame-shift. For data mixup, Mixλ(a, b) defined in (2) was
used to generate manipulated data for two original data a and
b. A delay factor (i.e. the number of frame) for frame shifting
was generated by Gaussian random process with zero-mean and
40-standard deviation. Then, a new data point was generated by
truncating 10 s from the delay factor and padding with the rest
of original data. The results are summarized in Table IV with the
mean and standard deviation in 5 cross-validation repetitions.

As noted in the results, frame-shifting is the most effective
technique tested. Adding Gaussian noise is also comparable to
the frame-shifting (p-value=0.0799 and p-value=0.7215 in val-
idation and public evaluation for classwise post-processing, re-
spectively). On the other hand, the mixup method appears to
yield worst results. One explanation is that this technique gener-
ates more overlapping events which may bias Model II to learn
mapping of target sound features from these overlapping sounds.
Naturally, another limitation is that the pseudo label estimation
assumes a cap of 2 on the number of concurrent events, informed
by the statistics of real test audios as shown in Table III.

VI. DISCUSSION

Current state-of-the-art systems for sound event detection
have been leveraging a combination of approach such as data
augmentation, network architecture, semi-supervised learning,
post-processing, and fusion in order to yield the best perfor-
mance on the DCASE challenge. One of the best perform-
ing systems proposed by Miyazaki et al. explores all these
aspects [29]. A self-attention model based on either trans-
former [7] or conformer [49] was used instead of the CRNN.
And the self-attention model was trained based on MT approach.
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Although the system finally reached to 50.6% for class averaging
f-score, it seems that the new model is comparable to the chal-
lenge baseline. When the self-attention model is trained without
data augmentation and tested without both post-processing and
fusion, the performance was reported to 28.6 % and 34.4 % for
transformer and conformer, respectively. Although the f-scores
were respectively improved to 41.0% and 41.7% by performing
their classwise post-processing, it has an issue for a generaliza-
tion of the parameters such threshold and filter length because
both parameters were manually optimized on the “validation”
set.

Koh, et al. proposed a SCT loss and a deeper network based
on modified CRNN, where a pooling is only performed on fre-
quency domain for a high time-resolution, and feature-pyramid
(FP) that leverages to discard unreliable predictions is incorpo-
rated with the CRNN [30]. In post-processing, the target sounds
were grouped into two groups, background sounds and impul-
sive sounds, depending on the sound duration, then two different
filters, whose length was heuristically decided, were applied for
the sounds. According to the technical report, their implemen-
tation for ICT shows better performance than the ICT result in
Table II. A possible reason is the use of ICT loss in combination
with the MT loss. Also interpolation and time-frequency shift-
ing were considered as a part of data augmentation from the loss
function for SCT. The data augmentation in this manner seems
be effective in improving the performance as shown in other
submissions [29], [31], [50]–[52]. Since this study focuses on a
method for semi-supervised learning, a simple way like adding
noise is only considered to make manipulated data samples x′

in Fig. 2.
Kim, et al. proposed another modified CRNN which is us-

ing more channels and skip-connected convolution layers with
attention modules [31]. Instead of MT approach, the network
was trained with a cross-entropy between model prediction and
pseudo label to resolve the issue of MT approach in Fig. 1(b).
The pseudo label was estimated on an weighted sum of model
prediction and truth label with a preset weight. According to
the technical report, it seems that this approach outperformed
the results in Table II. However, it is unfair to directly compare
to the numbers in the Table II because Kim’s method used a
different architecture in the number of channels and skip con-
nection as well as data augmentation based on interpolation and
time-frequency masking.

In this study, all other configurations such as perturbation
(i.e. data augmentation) and network architecture were fixed
because this study tackles to develop an advanced method for
semi-supervised learning. The effect of other configuration on
the SED performance will be investigated as a future work.

VII. CONCLUSION

Sound event detection aims to identify sounds of interest as
sound category and time boundaries for each sound interval.
Deep neural networks are powerful models for the sound event
detection; however, they are faced with the challenge of data
acquisition and curation in order to provide accurate estimate of
events that can guide supervised training of these networks. The

current paper explores self-training using cross-referencing as
well as classwise post-processing in order to leverage the unla-
beled training data. The cross-referencing self-training is com-
posed of two separate models. In training, one model estimates
a pseudo label for unlabeled data with the prediction by itself,
then the other model refers the pseudo label to train itself vice
versa. In this way, these two models are separately trained so that
a self-biasing risk in self-referencing model could be resolved.
Additionally, a post-processing composed of thresholding and
smoothing is explored to find sound intervals from the model
prediction. This paper introduces a threshold estimation based
on Extreme Value Theory and filter length estimation with the
statistics of model prediction. These proposed approaches are
tested on sound event detection task described by the recent
DCASE challenge and shown to result in improved performance
compared to the state-of-the art in semi-supervised learning.

APPENDIX

NETWORK ARCHITECTURE OF CRNN AND TRAINING

PARAMETERS

The basic network, Convolutional Recurrent Neural Net-
work (CRNN), consists of 7-convolutional blocks for CNN and
2-Bidirectional Gate Recurrent Unit (BGRU) for RNN. Each
convolutional block was composed of 2D-convolution layer with
[3× 3] kernel and [1× 1] stride, 2D batch normalization layer,
activation layer, dropout layer, and average pooling layer. The
number of kernels was set to [16, 32, 64, 128, 128, 128, 128] per
block. The 2D batch normalization was performed along to the
output channels. Gated Linear Unit (GLU) in (5) was applied to
the activation layer. The dropout parameter was set to 0.5. In the
average pooing layer, the stride size was defined as [[2, 2], [2, 2],
[1, 2], [1, 2], [1, 2], [1, 2], [1, 2]] per block. Note that the pooling
was performed twice along to time axis while the pooling was
performed in 7-times along to frequency axis. The number of
nodes in BGRU was set to 128 as the number of kernels at the
top of the previous CNN.

Each model on this structure was trained for 300 epochs with
Adam optimizer. And the best model on a cross-validation set
with global post-processing is kept. The remaining parameters
defined for training are following: 24 batch size (6 strong labeled
data, 12 unlabeled data, and 6 weakly labeled data), adaptive
learning rate limited to 0.001 for maximum.
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