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Audio Object Classification Using Distributed
Beliefs and Attention

Ashwin Bellur and Mounya Elhilali

Abstract—One of the unique characteristics of human hearing
is its ability to recognize acoustic objects even in presence of severe
noise and distortions. In this article, we explore two mechanisms
underlying this ability: 1) redundant mapping of acoustic wave-
forms along distributed latent representations and 2) adaptive
feedback based on prior knowledge to selectively attend to targets
of interest. We propose a bio-mimetic account of acoustic object
classification by developing a novel distributed deep belief network
validated for the task of robust acoustic object classification using
the UrbanSound database. The proposed distributed belief net-
work (DBN) encompasses an array of independent sub-networks
trained generatively to capture different abstractions of natural
sounds. A supervised classifier then performs a readout of this
distributed mapping. The overall architecture not only matches
the state of the art system for acoustic object classification but
leads to significant improvement over the baseline in mismatched
noisy conditions (31.4% relative improvement in 0 dB conditions).
Furthermore, we incorporate mechanisms of attentional feedback
that allows the DBN to deploy local memories of sounds targets esti-
mated at multiple views to bias network activation when attending
to a particular object. This adaptive feedback results in further
improvement of object classification in unseen noise conditions
(relative improvement of 54 % over the baseline in 0 dB conditions).

Index Terms—Deep belief network (DBN), distributed
processing, attention, acoustic objects, robust classification.

I. INTRODUCTION

HE ability of the human brain to make sense of complex
T acoustic information in everyday scenes exploits intri-
cate transformations along a hierarchical biological network
that maps low dimensional acoustic signals into rich high-
dimensional representations. Studies of the auditory system have
shed light on the span and complexity of these transformations
and showed that the signal entering our ears is mapped onto
increasingly compound spaces that encode detailed spectral,
temporal and spatial dynamics [1]-[5]. These transformations
can be viewed as mappings of the signal onto a high dimensional
feature space that spans spectrotemporal modulations of natural
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sounds and allows the interpretation of acoustic signals into
perceptual objects [6], [7]. Recent work based on functional
magnetic resonance imaging (fMRI) suggests that this encoding
happens through forming multiple views of the time-frequency
spectrogram with varying degrees of spectrotemporal resolu-
tions [8], [9]. These results suggest the existence of a complex
spatially distributed neural network in cortical regions that forms
a scattered representation of the spectrotemporal characteristics
of a complex sound, with each region capturing the scene from
a particular vantage point. Cortical neurons in these regions
essentially act as filters exhibiting selectivity to a particular
section of the modulation profile of natural sounds. While the
multiple view distributed representation can be redundant, it is
hypothesized that it enables segregation of acoustic objects and
also robust behavior by discriminatively highlighting distinct
characteristics of sounds of interest and distractors that should
be ignored.

Complementing these intricate sensory encoding processes
are feedback mechanisms from cognitive brain networks that
engage prior knowledge — in the form of memory — to guide
our attention to the target sound. This attentional selection plays
a crucial role in the robust behavior of brain networks when
dealing with complex and ever-changing acoustic soundscapes
and guides neural resources to process relevant information in
the signal [6], [10]-[13]. Directing our attention to sounds of
interest relies on an intricate circuitry that engages memory of
known objects and deploys prior knowledge to modulate how in-
coming sounds are processed, in order to maximize detectability
of instantiations of these target objects. These mechanisms play a
significantrole in rendering the auditory system effective in deal-
ing with complex and ever changing listening conditions in ev-
eryday environments [6], [10]-[13]. The representation of these
memory constructs also likely operates in a distributed fashion
rather than a unitary system [14]-[16]. These representations
can then be deployed with various abstractions depending on
which resolution is most suitable for the task at hand. Guidance
from this local memory ultimately reshapes processing of the
incoming sensory signal and provides the biological system with
notable robustness and flexibility in dealing with unexpected
distortions or changes in the environment [17].

In this work, we leverage this distributed processing of sen-
sory information and local memory to explore benefits for a
task of acoustic object classification. We propose a generative
deep belief based framework to perform the sensory mapping
from the time-frequency representation to the spectrotemporal
modulation space. Expanding on the concept of convolutional
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restricted boltzmann machine (CRBM) [18], we propose a novel
architecture referred to as a distributed belief network (DBN),
to capture multiple views of the time-frequency representation
of audio signals at different spectrotemporal resolutions. The
DBN extends the standard single multi-layer hierarchical setup,
into multiple local sub-networks (LSNs) organized in a hierar-
chical structure to propagate different temporal pooling ratios.
The redundant encoding afforded by this network facilitates
robust acoustic object representation. This claim is validated in
a classification task by augmenting the DBN network with bi-
directional long short-term memory (BLSTM) networks tested
on classification of environmental sounds of the UrbanSound
database [19]. The premise of distributed representation is fur-
ther extended using local memories that inform attentional feed-
back to different sounds of interest. We introduce the concept
of distributed local memory, where at each of the local sub-
networks of the DBN we store a local memory of the acoustic
object. In a task-driven setting, we develop mechanisms wherein
the local memory is employed to induce attention at each of
the local sub-networks during inference, thereby modulating the
information encoded by the DBN as a whole, in a manner that
enhances the acoustic object of interest. We show that incor-
porating such attentional mechanisms improves the robustness
of the object classification system in presence of unseen noise
distortions.

Recent works in machine vision and hearing have in fact
leveraged the concept multiple levels of abstraction for inference
and attention, more often implicitly, using deep neural networks.
In [20], U-net was introduced, where the outputs from lower
layers of the convolutional neural network (CNN) were also used
during inference by skipping connections for biomedical image
segmentation. Variations of such architecture were also found
to be useful for tasks such as image to image translation [21].
Similar architectures based on skipping connections and explor-
ing features at various levels of abstraction have been employed
for tasks like singing voice separation [22] and music source
separation [23]. The idea of attention has also gained promi-
nence in the deep learning literature across applications such
as document classification [24], image captioning [25], speech
enhancement [26] and audio classification [27], [28]. Across this
body of work, attention is also incorporated within the neural
network framework though it is trained in an end-to-end manner.

In contrast, the present work adopts a generative distributed
belief network to integrate and build on these ideas. The use of a
generative inference enables us to explicitly train a feed-forward
process in a task agnostic manner, hence allowing the explo-
ration of tiling afforded by the distributed network to capture the
spectrotemporal modulation space occupied by a large variety
of naturally occurring sounds. The use of CRBMs as the basic
building blocks enables us to approximate the cortical processes,
allowing us to study the tuning characteristics of the proposed
distributed belief network in relation to the distributed sensory
processing observed in the mammalian auditory system [8], [9].
Using a feed forward belief network as a fixed feature extractor,
also affords us the flexibility to probe the advantages of the
redundant views captured by each of the sub-networks of the

DBN and the DBN as a whole in mismatched settings. Further,
attention is explored as a standalone process that can serve as
an information bottleneck to modulates the features captured
by the generative process. This enables us to study the role of
attentional mechanisms in enhancing performance, particularly
in terms of its manifestations in the spectrotemporal modulation
space. Such detailed exploration of these processes at various
levels of the network would be intractable in an end-to-end
task-specific supervised system.

The outline of the paper is as follows: Section II describes the
core convolutional deep belief network proposed in this study,
while Section III complements this representational network
with supervised training to perform acoustic object classifica-
tion using DBN mappings. Section IV extends the framework
to explore ideas of bio-mimetic local memory and attentional
feedback. Details of the experiments and results in Section V and
a discussion of the performance and lessons learned is presented
in Section VI.

II. DISTRIBUTED BELIEF NETWORK

The sensory mapping process modeled in this work follows
the hierarchical transformations that take place along the audi-
tory system [1]-[3]. These transformations start at peripheral
and mid-brain regions where the time domain waveform is
transformed into a time frequency representation. In this work,
we model these early mappings using the mathematical approx-
imation proposed in [29], resulting in a time-frequency auditory
spectrogram. Unlike a classic short-term Fourier transform, this
spectrogram employs a log-scale asymmetric filterbank and
includes nonlinear compression and high-pass and low-pass op-
erations to mimic temporal resolutions observed in the biological
system (see Chi et al. [29] for details).

The next stages in the hierarchy, particularly the auditory
cortical regions, analyze details in the spectrotemporal profile
of incoming signals [9]. The novel approach proposed in this
work derives an array of spectrotemporal filters in a data driven
manner by training unsupervised deep belief networks using
convolutional restricted boltzmann machine (CRBM). This
type of generative belief network for audio applications was
first proposed in [18]. It employed linear spectrograms and
convolution along the time dimensions, and showed that result-
ing bases are informative spectrotemporal patches about the
incoming sounds. In the current work, we extend this approach
to a distributed array of belief networks, which leverages the
statistical characteristics of the data from different vantage
points, as well as encode the spectrotemporal modulation space
along increasingly abstract representations along a hierarchy.
Before detailing the distributed belief network architecture,
we briefly review the mathematical formulation of the CRBM
setup (see [18] for details).

For the sake of simplicity, we consider the input layer to be a
single channel of an auditory spectrogram. The formulation can
be easily extended to a multi-channel setting. Let v be the input
spanning n; time frames, which is mapped via n; bases of size
1 X mn4. The hidden layer with units denoted as i has dimensions
ny X n, where n, = n; — n,, + 1. For Bernoulli visible units,
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the energy function is defined as
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where B represents the n;, bases of size n,,, BY being the r*"
dimension of the b*" basis, d; is the shared bias of the bt" basis
and c is the shared bias for the visible units. For real-valued
visible units, equation (1) is adapted as follows:
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The joint probability of visible and hidden units is then derived
from this energy function and defined as:

1
P(v,h) = Eexp(fE(v,h)) 3)
where Z is the partition function.
Condition probability of hidden units is defined as:

P(hg =1lv) = sigmoid((BZw,pH *v)p +dp) (4

where * denotes convolution.

The conditional probability of visible units takes different
forms depending on the nature of the visible units. For Bernoulli
visible units, this conditional probability is defined as:

P(v; = 1]h) = sigmoid Z(Bb « h%); + ¢ (5)
b

while for real-valued visible units, the conditional probability is
defined as:

P(v;|h) = normal <Z (Bb * hb)i +ec, 1) . (6)

b

The objective function to derive bases B and biases d and c,
when provided with L training examples is defined as:
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The first term denotes the negative log likelihood of the input
data. The second term denotes the regularization term, with A
being the regularization constant. The sparsity constant s ensures
that the hidden units have sparse activations resulting in more
interpretable features. Given that computing precise gradients
for the likelihood term is computationally expensive [18], con-
trastive divergence was employed to train the CRBM [30].

Distributed Belief Network
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Fig. 1. Distributed belief network with auditory spectrogram. Each block
represents a LSN with CRBM hidden units. 77 and 7 denote pooling ratios
with 17 < 7. The numbers ¢ within each of the boxes serve as sub-network
identifier, signifying layer « of the DBN and sub-network ¢ within the layer.
The sub-network numbers increase from left to the right within each layer.

In the current work, we build on this basic architecture and ex-
plore a distributed space to span a wide range of bases functions
that capture the natural variability in everyday sounds. Instead
of a standard multi-layer hierarchical network, the proposed
architecture is a distributed belief network (DBN) as shown in
Fig. 1, inspired from such distributed representations reported
in auditory cortical networks [9]. This setup takes as input an
auditory spectrogram and each local sub-networks (LSN) in
the tree-like structure represents a latent representation with
CRBM units. The numbers ~( within each of the boxes serve
as sub-network identifier, signifying layer + of the DBN and
sub-network ¢ within the layer. The sub-network numbers in-
crease from left to the right within each layer. CRBM units
are Gaussian-Bernoulli units in the first layer (with auditory
spectrogram as input) and Bernoulli-Bernoulli units in rest of
the layers. Left branches of the tree structure represent hidden
layers estimated with a probabilistic pooling ratio of 7, while
right branches indicate probabilistic pooling by aratio of 7 along
time axis, with p < 7. The frequency axis is faithfully translated
across layers without any manipulations. As outlined next, this
scheme is trained in an unsupervised fashion using a wide-range
of natural sounds in order to capture inherent spectrotemporal
dynamics in everyday sounds.

The DBN architecture developed in this work explores a
number of propositions: (i) The hierarchical distributed setup
estimates bases or spectrotemporal patches that encode spec-
trotemporal modulation features at varying abstractions and
temporal rates, similar to tuning characteristics of the cortical
neurons in the biological system [31], [32]; (ii) The hierar-
chical flow of the DBN results in increasing abstractions of
the incoming signal making it suitable for representing sound
classes of varying complexity and variability which is ideal for
acoustic object classification; (iii) The redundant nature of the
distributed network provides complementary information about
spectrotemporal modulations in an incoming signal allowing a
more integral mapping of audio signals representation where
each LSN contributes from its own vantage point. These points
will be explored in the analyses that follow.
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Fig. 2. Acoustic object classifier. LOC is the local sub-network object clas-
sifiers and DOC is distributed object classifier. LSN~( denotes layer v sub-
network ¢, with numbers increasing from left to right within a layer.

III. DISTRIBUTED OBJECT CLASSIFIER

Building on this distributed DBN representation, we explore
its benefit for acoustic object classification in everyday acous-
tic scenes. We hypothesize that individual LSNs will capture
different aspects of acoustic events that populate a scene; with
the DBN —as a whole— faithfully encoding a more complete
picture of the acoustic scene.

To develop an object classification system, we first train in-
dividual local object classifiers (LOCs) based on the activations
from the respective local sub-network of the DBN for supervised
classification of environmental sounds from the UrbanSound
database. It should be noted that the CRBMs of the DBN are
kept fixed and not re-tuned with the UrbanSound database.
For instance LOCpgn11 in Fig. 2 refers to the local object
classifier trained on the activations of the CRBMs in the local
sub-network LSN11. Activations of these local classifiers are
then used to inform a global distributed object classifier (DOC)
trained to fuse local information across LSNs, as depicted in
Fig. 2. The training is done in a sequential manner with the
local object classifiers trained first, based on the outputs of
which the distributed object classifier is trained. For local object
classifiers, we employ a BLSTM (Bidirectional Long Short Term
Memory) neural network followed by a dense rectified linear unit
(ReLU) layer and a softmax layer. The global classifier DOC
concatenates activations of LOC as features and uses a ReLU
layer followed by a softmax operation to perform classification.

We hypothesize that the distributed nature of acoustic analysis
will be beneficial especially in mismatched noisy conditions. In
the presence of maskers, different LSNs of the DBN will capture
both the acoustic object of interest and the masker from different
vantage points in terms of spectrotemporal resolution and hence
can maintain high fidelity representation of objects of interest.
This will enable the DOC which is based on multiple redundant
views of the clean acoustic object, to recognize acoustic objects
at a higher accuracy than a traditional deep neural network.

IV. ATTENTIONAL FEEDBACK FROM LOCAL MEMORY

Building on this setup, we further explore benefits of adap-
tive read-outs guided by feedback from prior knowledge. We
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Fig. 3. Schema for incorporating attention as a feature selector modulating

the readout of the DBN. LM denotes local memory which are collection of
NMF bases representing acoustic objects of interest. The attention block uses
the feedback (H,++) generated by the LM to modulate the respective local sub-
network of the DBN.

are specifically interested in feedback from selective attention
that can further enhance representation of acoustic objects of
interest and suppress any maskers or competing sound sources.
Mechanisms of endogenous attention have been shown in brain
networks to reshape the mapping of sounds of interest in order
to facilitate their encoding in presence of other distractors [17],
[33]-[35]. In order to effectively model this attentional feed-
back in conjunction with the distribution representation of the
proposed DBN, we extend the DBN computational scheme with
two processes, local memory and attentional feedback.

A. Local Memory

We propose estimating a memory of each of the acoustic
objects at every LSN, serving as a local memory of the target
object from a particular vantage point. This local memory serves
as prior knowledge of the object which is then used to modulate
the belief network in a manner that enhances detectability of this
target. In this work, we employ non-negative matrix factorization
(NMF) [36] to model the local memory (LM) of each acoustic
object of interest, represented locally at each LSN. At each of the
15 LSNs of the DBN, we estimate 10 NMF bases representing
the local memory of the 10 classes of the UrbanSound database.
The training procedure is performed as follows: when presented
with multiple instances of an acoustic object belonging to a
class, the hidden unit firing patterns along the time axis are
extracted. These patterns are concatenated and used to estimate
a single sparse NMF basis to represent the local memory of the
object at a particular LSN. This collection of single NMF bases
representing each of the acoustic objects at each of the LSNs is
referred to as ‘local memory’ as shown in Fig. 3.

B. Attentional Feedback

During selective attention towards one of the acoustic objects
on interest, local memories are employed to generate feedback
in a manner that allows of enhancement of the representation
of the object of interest while not creating false alarms if the
object of interest is not present. These processes should operate
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in the conjunction with the local LOC and global DOC to
enhance object classification. We tackle these adaptive additions
to the network by leveraging the biological concept of temporal
coherence [37], [38]. The principle of temporal coherence states
that when attention is directed towards a particular feature of
an acoustic object, all other features temporally coherent to the
temporal activation of the anchor feature become bound together
such that the acoustic object of interest stands out in the presence
of masking acoustic objects. Thus, during inference, we use the
local memory of the object of interest as anchoring feature and
determine its activation pattern. All the hidden units of that LSN
with an activation pattern temporally coherent with the local
memory are deemed to represent the object of interest and are
emphasized, while the rest are suppressed. This modulation can
be interpreted as attention acting as a feature selector where
the readout from the sensory mapping process is modulated to
aid behavior. Effectively, the attentional feedback operates by
modulating the latent information captured by each of the LSNs
at the inference stage such that the object being attended to is
enhanced while suppressing the maskers.

Specifically, local memory is applied as attentional feedback
during inference as follows:

H att

H,
F~ [WattW2 . WM] (8)
Hyy
where ' € RB*Y represents the firing pattern of the B hidden
units of a local sub-network over N frames, when presented with
amulti-object acoustic signal. The firing matrix F' is next factor-
ized along M dimensions. During factorization, we incorporate
attention by keeping the first basis of the decomposition matrix
fixed as Wy, which is the local memory of the object towards
which attention is being directed. The first row of the mapped
activation matrix, H ., represents the activation pattern of the
local memory; while remaining rows capture any other objects
present in the audio input. As shown in Fig. 3, H ;; serves as the
feedback generated by the local memory, which is then utilized
by the attention block to modulate the encoded features.

In the attention block, correlation of the firing patterns of each
of the units of the F' matrix with H,;; is estimated as shown
below. f[i] is the correlation of the " unit with the activation
pattern of the local memory:

N

fli) = Fli,n] * Hap[n).

n=1

€))

Using principle of temporal coherence, units deemed inco-
herent with the attended object (below a threshold ) are set to
zero; while units that are above the threshold are retained, as
outlined in the following equation:

nel,...,N.

for f[i] < 8
SV (10)

. 0,
Fli,n] = {F[i,n], for f1i]

Finally, a weighted sum is used to modify the final activations
of the LSN, as described below:

aF+(1—-a)F , 0<a<l1. (11)

These modified activations (Fig. 3) are then propagated to
the higher layers of the DBN and the local sub-network object
classifiers.

V. RESULTS
A. System Setup and Parameters

The core DBN architecture was trained using 3 hours of
speech from the TIMIT database [39], 4 hours of BBC Sound
effects database [40] and 2 hours of instrumental solo music
used in [41], all sampled at 16 kHz. Training on these databases
allows us to derive a feed forward sensory mapping system that
can faithfully span the modulation space occupied by a large
variety naturally occurring sounds in a task agnostic manner.
Inputs were auditory spectrograms with 128 frequency channels
spanning 5.3 octave and a temporal resolution of 6 ms per frame.
The LSN in the first layer LSN11 consists of 300 Gaussian-
binary CRBM units with basis of dimensions 128 x 6. Each of
the remaining 14 LSNs across the layers two, three and four
of the DBN consisted of 300 Gaussian-Gaussian CRBM units
each with bases of dimensions 300 x 6. The pooling parameters
were fixed to 7 = 1 on the left branch and 7 = 3 on the right
branch following the schema shown in Fig. 1. Therefore, the
fastest LSNs operates at a resolution of 18 ms while the slowest
local network (LS N48) operates at the rate of 486 ms. The DBN
was trained layer by layer using contrastive divergence to train
the CRBMs in each layer, with a sparsity constant s = 0.05 and
regularization constant A = 5 (equation 7).

The object classification component was trained in two steps:
Each of the local sub-network object classifiers (LOCs) were
first trained using a neural network architecture consisting of
50 BLSTM units in each layer, followed by a fully connected
layer with 50 ReLU units and a softmax layer. Next, the fully
connected layer activations of each LOC were used as input with
dimensions 750 (15 LSNs and 50 units in each LOC) to a global
network with a single layer with 50 ReLU units and a softmax
layer. For training LOCs and DOCs, we employed Adam [42]
with a constant learning rate of 0.001, with a epoch size of 50.
12 regularization was used with a penalty value of 0.001.

The local memory component was estimated using a random
subset of data from each object class in the training set from
the UrbanSound database. A single NMF basis was estimated
at each LSN for each object class using Frobenius norm mea-
sure [36]. For the attentional feedback, the threshold parameter
B was set empirically to —0.1 (Eq. 10), while o which represents
the weighting between the features encoded by the DBN before
and after attention was set at 0.7 (Eq. 11).

Baseline system comparison: A five layer convolutional neu-
ral network (CNN) was employed as baseline system, following
the implementation proposed by the authors of the UrbanSound
database in [43]. The UrbanSound database consists of envi-
ronmental sounds from following classes, air conditioner, car
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horn, children playing, dog barking, drill, engine idling, gunshot,
jackhammer, siren and street music.

System testing and validation: The system was validated
using ten fold cross-validation using the splits prescribed by
the authors of the database. Local memory was estimated de
novo for each validation round. Given the varying signal du-
rations, system testing was performed by extracting random
contiguous three seconds from each sound sample, following
the procedure proposed in [43]. The system was always trained
with clean data and tested in matched clean conditions, as well
as noisy conditions, generated by adding competing sounds
from one of three sources: 1) signals from another class from
the UrbanSound dataset used as maskers; 2) sounds from the
NoiseX database [44]; 3) sounds from Rouen auditory scene
database [45] which consists of sounds recorded from natural
auditory scenes such as a tube station, a student hall and a
market. The initial system performance was evaluated without
the attentional feedback. Incorporating this feedback was done
in a separate stage to assess its benefit in modulating the system’s
output depending on the sound class of interest.

B. Latent Modulation Span of the DBN

First, we analyze the effectiveness of the proposed deep belief
architecture in capturing the spectrotemporal modulation space
of natural sounds in a distributed fashion. The basis functions
at each LSN are reconstructed approximately as a linear com-
bination of the bases from the lower layer. As stated in our
main hypothesis, these bases are viewed as decompositions of
the auditory spectrogram from different vantage points. Each of
these functions is convolved in time and frequency with an array
of 2-dimensional Gabor filters spanning temporal modulations
(or rates) =2 — 64 Hz and spectral modulations (or scales)
0.25 — 8 cycles/octave to estimate the the average rate-scale
spread at each LSNs. Fig. 4 shows the contour plot of the
average rate-scale spread of bases at each local sub-network
(LSN). These profiles highlight that LSNs in the first two layers
span the entire range of scales while capturing faster temporal
rates. As the signal propagates to higher layers, slower (i.e. more
abstract) scales are asserted along with slower temporal rates,
likely enunciated by the pooled LSNs on the right branch of the
tree like structure. As hypothesized, the DBN spans the entire
spectrotemporal modulation space in natural sounds [4], but tiles
the space in distributed albeit redundant fashion.

Taking a closer look at individual basis functions, their pro-
files reflect highly-structured selectivity along time and fre-
quency axes that is reminiscent of similar patterns reported in
cortical neurons [46]-[48]. Fig. 5 shows example functions de-
rived at different nodes of the DBN network. The figure contrasts
examples from the leftmost and rightmost LSNs at each layer (as
indicated by the LSNs in black in the figure key). Focusing on
the left branch, all bases from LSN11, LSN21, LSN31 and LSN41
operate at the same rate and span 36 ms. The examples show a
greater degree of abstraction as the signal propagates through
the hierarchy with LSNI1 capturing more detailed spectrotem-
poral patterns with larger activation regions, while the higher
nodes appear sparser and broader in coverage. In contrast, the
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Fig.4. Each contour represents the average rate-scale spanned by the bases of
the particular LSN. Faster rates and a broad range of scales captured by LSNs
of the lower layers (rows 4 and 3). LSNs of the higher layers capture slower
scales and slow temporal rates less than 4 Hz captured by sub-networks such as
LSN34 and LSN48.
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Fig.5. Example basis from 7 local sub-networks. The LSN key illustrates the

LSNs from which example basis have been illustrated. The basis are spectrotem-
poral filters with red color indicating activation and blue color inhibition; with
frequency axis spanning 8 kHz and the time axis is indicated in milliseconds -
It should be noted that the images are not to scale.

rightmost branch spans increasingly greater temporal profiles
with LSN22, LSN34 and LSN48 covering 108 ms, 324 ms and
972 ms respectively. Propagation through the hierarchy along
this branch also reveals increasing abstraction across slower
temporal dynamics highlighting events ranging from tens of
milliseconds to hundreds of milliseconds.
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Fig. 6. Performance in terms of the F-score. LOC indicates local sub-network

object classifiers with the errorbar representing the spread across 10 fold cross-
validations.

C. System Performance in Matched Conditions

Fig. 6 shows the performance of the global system (DOC) as
it compares to the CNN baseline; as well as the performance
of the individual distributed LOCs in matched clean conditions.
Labels for LSN,,¢ in Fig. 6 follow the same structure outlined
earlier with ~y indicating layer and ( indicating the sub-network
number from left to right. The performance results show that the
proposed system with an average F-score of 77.8% performs
marginally better than the CNN baseline with an F-score of
76.7%. Furthermore, individual LOCs only achieve in the range
of 60 — 68%, though, interestingly, LSNs in lower layers appear
to perform marginally better. This result is not surprising given
that sounds in the UrbanSound database are more dominated by
sharper sounds that are well characterized by faster rates (e.g:
jack hammer, gun shot and air conditioner). There is also a likely
contribution of the powerful BLSTM that takes advantage of the
detailed mapping in the lower layers in order to better capture the
discriminatory information, especially in matched conditions, in
contrast to increasing abstractions at higher layers. It should be
noted again that the DBN, which serves as a feature extractor for
the classifier was not trained using the UrbanSound database.

D. Performance in Mismatched Conditions

We hypothesized that the distributed nature of the feature
extraction and the object classification system will be benefi-
cial in noisy conditions. To test this hypothesis, our analyses
explores three types of distractors (competing scenes from the
same database, non-stationary noise sources or distractors from
everyday scene from another database). Fig. 7 shows the per-
formance of the system at three signal to noise ratios (SNR).
The errorbar shows the average F-score and spread across the
3 distractor types, while the bar plot in the background shows
the average F-score for each of the mismatched conditions. The
efficacy of the proposed system clearly stands out in mismatched
conditions, with the DOC classification system (green curve)

—— UrbanSounds

Fom
Froco

>< Rouen

4 NoiseX

|

1008 58 0B

Clean

Fig.7.  Performance in clean matched conditions and average F-score across 3
noisy mismatched conditions. The bar chart in the background shows the average
performance in each of the noise databases used in this study. The errorbar shows
the average F-score and spread across the 3 noisy conditions.

performing significantly better than the CNN system. The rela-
tive improvement is 31.4% at the 0 dB SNR. It should be noted
that like the baseline CNN, the DOC is trained only in clean
conditions.

Inorder to gain better insight into the benefits of the distributed
scheme, we examine the contribution of individual local LSN
network in the final classification performance (in terms of
F-score) by ranking them from best performing to worst (from 1
to 15). Fig. 8(a) shows the ranked contribution of each LSN
in recognizing individual classes in the dataset in the clean
condition. As seen earlier in Fig. 6, lower faster LSN's contribute
the most to the overall performance of the system, consistently
across all sound classes.

Fig. 8(b) depicts the average ranking of each LSN in noisy
conditions averaged across all distractors. The figure shows the
disruption of the LSN ranking as a function of SNR where we
notably observe stronger contributions of higher LSN nodes,
especially for certain auditory objects, as well as a more spread
out contribution across all layers. We specifically note how
slower LSNs in the higher layers seem to fare better for few
classes such as car horn, children playing and dog bark.

Next, we take a close look at the spectral and temporal
dynamics of sounds in each class in the database and examine
how the contribution of individual LSNs contributes to the global
performance of the system, especially in noise. Fig. 9(a) shows
the average rate-scale spread of 2 classes Air conditioner and
Dog bark. In this case of the Air conditioner class, it can be
seen that it is dominated by faster scales and rates, modulations
primarily captured by the LSNs of the lower layers. This is
illustrated by the juxtaposed contour lines depicting the average
rate-scale spread of bases from LSN/] and LSN2I (depicted
earlier in Fig. 4). Therefore across matched and mismatched
conditions the LSNs in the lower layers perform best, as can be
seen from the LSN ranking in Fig. 8. Whereas in the case of Dog
bark class, slower modulations dominate and hence it benefits
majorly from views captured by the slower LSNs in the 4th layer
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Fig. 8. Ranking of the LSNs in terms of performance for each of the classes.
Row A shows the ranking in the clean conditions. Row B shows average ranking
across the 3 additive noise conditions without attentional mechanisms. Row C
shows average ranking across the 3 additive noise conditions with attention.
Given that there are 15 LSNs in the DBN, the average ranking of the individual
LSNs ranges from 1 to 15, with more red indicating better performing LSNs and
blue indicating the lower ranked LSNs.
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Fig.9. Average rate-scale spread for 2 classes from the UrbanSound database,
Air conditioner and Dog bark. Red color signifies high energy and bluer regions
low energy. The black lines denote the contour lines of the average rate-scale
spread of the LSNs indicated. In block A, the contours lines indicate the rate-
scales captured by the LSNs mentioned without attentional bias. In block B,
the contour lines indicate the rate-scales captured by the LSNs mentioned with
attentional bias. The rate-scale estimate of each of the basis at a particular LSN
is multiplied by the NMF weights of the local memory of the acoustic object
object before estimating the contour.

such as LSN47 and LSN48, as indicated by the contour lines
and LSN rankings in noisy conditions.

E. Performance With Attentional Mechanisms

Finally, we examine the contribution of attentional feedback
and local memory in further improving classification perfor-
mance. As outlined earlier, feedback is deployed if the system

is attentive to an object of interest (e.g. siren) and is actively
engaged to detect this target of interest (while balancing false
alarms). The red curve in Fig. 7, denoted as DOC-A shows the
system performance when attentional feedback is deployed to
modulate the readout of each LSNs of the network. As expected,
attentional feedback leads to further improvements to the overall
classification performance with notable advantages in noisy
conditions. The relative improvement is 24.4% at the 0 dB
SNR relative to the DOC without attention and 54% relative
to the CNN baseline system. Fig. 8(c) looks at the contribution
of individual LSNs in the overall performance with attentional
feedback in terms of ranking. In this case too, we can see that
the contribution of LSNs increases higher up the hierarchy, in
terms of average ranking in mismatched conditions, especially
in the lower SNR conditions.

The contour lines in black in Fig. 9(b) further illustrate the
manifestations of using local memory to modulate the network.
In the case of the Air conditioner class, the rate-scale estimate
of each of the basis of sub-network LSN11 and LSN21 was
multiplied by the NMF weights of the local memory of the Air
conditioner object from the respective LSN, before estimating
the contour for the LSN. Thus, the contour lines signify the
average rate-scale spread of the LSNs under attentional feedback
from the local memory of the object being attended to. As
can be seen, with attentional bias, both sub-networks LSN11
and LSN21 capture a sparser region of the modulation space
(in comparison to the contour lines in Fig. 9(a)); highlighting
regions of the rate-scale modulation space where the Air condi-
tioner acoustic object dominates. Similar behavior can be seen
for the Dog bark case too, where the contour lines in Fig. 9(b),
shrink in comparison to 9(a), with focus on the very slow rates
and scales.

VI. DISCUSSION

The current study explores a distributed scheme for encod-
ing acoustic characteristics of natural sounds. Inspired by a
bio-mimetic architecture in the human auditory cortex [9], the
proposed model explores a novel generative distributed belief
network which spans the spectrotemporal modulation space
occupied by everyday soundscapes in a hierarchical and multi-
resolution tiling. This framework is trained on independent
datasets to ‘learn’ a distributed set of complex sound pro-
files comprising spectral and temporal characteristics, allowing
a supervised classification system to leverage these multiple
mappings to yield robust acoustic object classification of an
UrbanSound database. This scheme not only achieves on par
performance with a state-of-the-art convolutional neural net-
work framework in clean conditions, but largely outperforms
this baseline in mismatched conditions, where sounds of interest
are present in the midst of competing distractors. In addition, we
incorporate mechanisms of attentional feedback that allows the
belief network to deploy local memories of sounds targets stored
at multiple vantage points to bias the activations of the network,
hence resulting in further improvement of object classification
in unseen noise conditions.
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This work can be interpreted in the context of recent ef-
forts that have sought to address the problem unseen noise
conditions using generative neural networks [49]-[51]. In [49],
[50], variational autoencoders (VAE) are used to learn latent
representation for speech in an unsupervised manner. It is shown
that during inference, by performing latent space arithmetic
operations, information not pertinent to speech recognition can
be suppressed in unseen noise conditions leading to improved
robust speech recognition. In [51], an integrated VAE and NMF
based framework is proposed for speech enhancement in unseen
noisy conditions. In this case, the VAE is trained to map clean
speech onto the latent space. In unseen noisy conditions, speech
is enhanced by using the VAE to first generate a prior estimation
of the clean speech by decoding from the latent space, while
explaining away the low ranked noise using NMF. Across these
frameworks, the broad idea is to first learn a generic latent
space to encode the acoustic signal in clean conditions. During
inference, the latent space is modulated in novel noisy conditions
in a semi-supervised manner to match prior estimated statistics
so0 as to ensure improved decoding from the latent space.

Viewed in this context, the proposed belief framework ex-
pands on these concepts by leveraging a bio-mimetic hierar-
chical formulation. The generative DBN architecture spans the
spectrotemporal modulation space and maps the acoustic signal
onto a distributed latent space instead of a single latent space
representation. This allows for a more decentralized represen-
tation of the auditory scene that proves particularly useful in
mismatched conditions. Different LSNs of the system, which are
essentially latent spaces representing the auditory scene from
different vantage points, capture the objects of interest with
varying fidelity. Therefore, the deterioration in performance of
the distributed object classifier trained on the distributed latent
space representation is considerably lesser when compared to
the CNNs in mismatched conditions. Further, the attentional
mechanisms implemented in this work can be viewed as mod-
ulating the latent space as proposed in [49]-[51] but in a more
distributed manner. The notion of distributed local memory
allows attentional mechanisms to modulate the representation
captured within the purview of each LSN.

The proposed framework also offers interesting avenues to
explore as future work. In this study, the inference process pools
information across all the LSNs of DBN to be utilized by the
distributed object classifier, irrespective of the fidelity of the
encoding captured by the LSN itself. This concept can be modi-
fied to adjust the contribution in the integration stage by allowing
maximally informative LSNs to further inform the classification
stage, akin to processes of stream selection, often employed in
multistream frameworks for automatic speech recognition [52],
[53]. Furthermore, the proposed scheme modeled attention as
a feature selector, that is attentional mechanisms modulate the
latent representation which in turn are used as features by the
BLSTM based neural networks. Attention can also be modeled
as adapting the very basis of the DBN that encode the sensory
cues leading to faster inference on providing more stimulus from
similar conditions. This kind of the attention driven adaptation
has been widely observed in the cortical regions [11]-[13], and
successfully modeled computationally using both linear and

nonlinear transformations of the mapping stage [54], [55]. The
deployment of attentional feedback in the current setup could be
re-interpreted as a process that re-tunes the basis functions of the
DBN such that encoding of incoming signals highlights relevant
sensory cues regardless of presence of competing distractors in
the input signal. Such implementation would have interesting
implications for tasks such as robust speech enhancement.

Finally, while the use of the generative model here has en-
abled us to illustrate the usefulness of distributed mapping and
attentional mechanisms for the task of classification of environ-
mental sound classification, the proposed generative framework
in its current form might be limited in its ability to match the
state of the art deep networks based speech enhancement or
source separation systems. Reconstructing the stimulus back
in the spectrotemporal space from the latent representations of
the DBN is not straightforward. Further, the use of NMF as
a standalone block to implement attentional mechanisms can
be computationally expensive. A future goal is to integrate the
distributed representation and attention mechanisms based on
distributed memory of acoustic objects within a deep neural
network that is trainable in an end-to-end manner for tasks such
as speech enhancement and source separation.

REFERENCES

[1] J. J. Eggermont, “Between sound and perception: Reviewing the
search for a neural code,” Hearing Res., vol. 157, no. 1-2, pp. 1-
42,2001. [Online]. Available: http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=11470183

[2] A. N. Popper and R. R. Fay, Eds., The Mammalian Auditory Pathway:

Neurophysiology (Springer Handbook of Auditory Research 2). New York,

NY, USA: Springer, 1992. [Online]. Available: http://link.springer.com/

10.1007/978-1-4612-2838-7

J. C. Middlebrooks, J. Z. Simon, A. N. Popper, and R. R. Fay, Eds., The

Auditory System at the Cocktail Party (Springer Handbook of Auditory

Research 60) 1st ed. Cham, Germany: Springer, 2017. [Online]. Available:

http://link.springer.com/10.1007/978-3-319-51662-2

N. Singh and F. Theunissen, “Modulation spectra of natural sounds

and ethological theories of auditory processing,” J. Acoust. Soc. Amer.,

vol. 106, pp. 3394-3411, 2003.

[5] I. Winkler, S. L. Denham, and I. Nelken, “Modeling the auditory

scene: Predictive regularity representations and perceptual objects,” Trends

Cognitive Sci., vol. 13, no. 12, pp. 532-540, 2009. [Online]. Avail-

able: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=

PubMed&dopt=Citation&list_uids=19828357

J. K. Bizley and Y. E. Cohen, “The what, where and how of auditory-object

perception,” Nature Rev. Neurosci., vol. 14, no. 10, pp. 693-707, 2013.

D. Chakrabarty and M. Elhilali, “A Gestalt inference model for auditory

scene segregation,” PLoS Comput. Biol., vol. 15, no. 1, Jan. 2019, Art. no.

e1006711.

R. Santoro et al., “Encoding of natural sounds at multiple spectral and

temporal resolutions in the human auditory cortex,” PLoS Comput. Biol.,

vol. 10, no. 1, 2014, doi: 10.1371/journal.pcbi.1003412.

[9] R.Santoro etal., “Reconstructing the spectrotemporal modulations of real-

life sounds from fMRI response patterns.” Proc. Nat. Acad. Sci. USA, vol.

114, no. 18, pp. 4799-4804, May 2017. [Online]. Available: http://www.

ncbi.nlm.nih.gov/pubmed/28420788 http://www.pubmedcentral.nih.gov/

articlerender.fcgi?artid=PMC5422795

K. T. Hill and L. M. Miller, “Auditory attentional control and se-

lection during cocktail party listening,” Cerebral Cortex (New York,

N.Y.: 1991), vol. 20, no. 3, pp. 583-590, Mar. 2009. [Online]. Avail-

able: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=

PubMed&dopt=Citation&list_uids=19574393

[11] J. B. Fritz, M. Elhilali, and S. A. Shamma, “Adaptive changes in cor-

tical receptive fields induced by attention to complex sounds,” J. Neu-
rophysiol., vol. 98, no. 4, pp. 2337-2346, 2007. [Online]. Available:
http://jn.physiology.org/cgi/doi/10.1152/jn.00552.2007

[3

[t

[4

=

[6

=

[7

—

[8

—

[10]


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi{?}cmd$=$Retrieve&amp;db$=$PubMed&amp;dopt$=$Citation&amp;list_uids$=$11470183
http://link.springer.com/10.1007/978-1-4612-2838-7
http://link.springer.com/10.1007/978-3-319-51662-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi{?}cmd$=$Retrieve&amp;db$=$PubMed&amp;dopt$=$Citation&amp;list_uids$=$19828357
https://dx.doi.org/10.1371/journal.pcbi.1003412
http://www.ncbi.nlm.nih.gov/pubmed/28420788
http://www.pubmedcentral.nih.gov/articlerender.fcgi{?}artid$=$PMC5422795
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi{?}cmd$=$Retrieve&amp;db$=$PubMed&amp;dopt$=$Citation&amp;list_uids$=$19574393
http://jn.physiology.org/cgi/doi/10.1152/jn.00552.2007

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

IEEE/ACM TRANSACTIONS ON AUDIO, SPEECH, AND LANGUAGE PROCESSING, VOL. 28, 2020

M. Elhilali, J. B. Fritz, T.-S. Chi, and S. A. Shamma, “Auditory corti-
cal receptive fields: Stable entities with plastic Abilities,” J. Neurosci.,
vol. 27, no. 39, pp. 10 372-10 382, 2007. [Online]. Available: http:
//www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1462-07.2007

P. Yin, J. B. Fritz, and S. A. Shamma, “Rapid spectrotemporal plasticity
in primary auditory cortex during behavior,” J. Neurosci., vol. 34, no. 12,
pp. 4396-4408, Mar. 2014.

H. Zimmer, “Visual and spatial working memory: From boxes to net-
works,” Neurosci. Biobehavioral Rev., vol. 32, no. 8, pp. 1373-1395,
Oct. 2008. [Online]. Available: https://linkinghub.elsevier.com/retrieve/
pii/S014976340800064X

S.-H. Lee and C. I. Baker, “Multi-voxel decoding and the topography
of maintained information during visual working memory,” Frontiers
Syst. Neurosci., vol. 10, Feb. 2016. [Online]. Available: http://journal.
frontiersin.org/Article/10.3389/fnsys.2016.00002/abstract

T. B. Christophel, P. C. Klink, B. Spitzer, P. R. Roelfsema, and J.-D.
Haynes, “The distributed nature of working memory,” Trends Cognitive
Sci., vol. 21, no. 2, pp. 111-124, Feb. 2017. [Online]. Available: https:
/Ninkinghub.elsevier.com/retrieve/pii/S1364661316302170

S. Shamma and J. Fritz, “Adaptive auditory computations,” Current Opin-
ion Neurobiol., vol. 25, pp. 164-168, Apr. 2014.

H.Lee, P. Pham, Y. Largman, and A. Y. Ng, “Unsupervised feature learning
for audio classification using convolutional deep belief networks,” in Proc.
Adv. Neural Inf. Process. Syst., 2009, pp. 1096-1104.

J. Salamon, C. Jacoby, and J. P. Bello, “A dataset and taxonomy for Urban
sound research,” in Proc. 22nd Int. Conf. Multimedia, Orlando, FL, USA,
2014, pp. 1041-1044.

O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks
for biomedical image segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput. Assisted Intervention., 2015, pp. 234-241.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput.
Vision Pattern Recognit., 2017, pp. 1125-1134.

A. Jansson, E. Humphrey, N. Montecchio, R. Bittner, A. Kumar, and
T. Weyde, “Singing voice separation with deep u-net convolutional net-
works,” in Proc. 18th Int. Soc. Music Inf. Retrieval Conf., Suzhou, China,
to be published.

J.-Y. Liu and Y.-H. Yang, “Denoising auto-encoder with recurrent skip
connections and residual regression for music source separation,” in Proc.
17th IEEE Int. Conf. Mach. Learn. Appl., 2018, pp. 773-778.

Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical
attention networks for document classification,” in Proc. Conf. North Amer:
Chapter Assoc. Comput. Linguist. Human Lang. Technol., 2016, pp. 1480—
1489.

K. Xu et al., “Show, attend and tell: Neural image caption genera-
tion with visual attention,” in Proc. Int. Conf. Mach. Learn., 2015,
pp. 2048-2057.

J. Xu, J. Shi, G. Liu, X. Chen, and B. Xu, “Modeling attention and memory
for auditory selection in a cocktail party environment,” in Proc. 32nd AAAI
Conf. Artif. Intell., 2018, pp. 2564-2571.

C. Yu, K. S. Barsim, Q. Kong, and B. Yang, “Multi-level attention model
for weakly supervised audio classification,” 2018, arXiv:1803.02353.

Q. Kong, C. Yu, T. Igbal, Y. Xu, W. Wang, and M. D. Plumbley, “Weakly la-
belled audioset classification with attention neural networks,” IEEE/ACM
Trans. Audio, Speech, Lang. Process., vol. 27, no. 11, pp. 1791-1802,
2019.

T. Chi, P. Ru, and S. A. Shamma, “Multiresolution spectrotemporal analy-
sis of complex sounds,” J. Acoust. Soc. Amer., vol. 118, no. 2, pp. 887-906,
2005. [Online]. Available: http://www.ncbi.nlm.nih.gov/entrez/query.
fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=16158645
H. Lee, C. Ekanadham, and A. Y. Ng, “Sparse deep belief net model for
visual area V2,” in Proc. Adv. Neural Inf. Process. Syst., 2008, pp. 873-880.
T. Chi, Y. Gao, M. C. Guyton, P. Ru, and S. Shamma, “Spectro-
temporal modulation transfer functions and speech intelligibility,” J.
Acoust. Soc. Amer:, vol. 106, no. 5, pp. 2719-2732, 1999. [Online]. Avail-
able: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=
PubMed&dopt=Citation&list_uids=10573888

F. E. Theunissen, K. Sen, and A. J. Doupe, “Spectral-temporal receptive
fields of nonlinear auditory neurons obtained using natural sounds,” J.
Neurosci., vol. 20, no. 6, pp. 2315-2331, 2000. [Online]. Available: http:
/Iwww.ncbi.nlm.nih.gov/pubmed/ 10704507

N. Mesgarani and E. F. Chang, “Selective cortical representation of
attended speaker in multi-talker speech perception,” Nature, vol. 485,
no. 7397, pp. 233-236, 2012. [Online]. Available: http://search.
ebscohost.com/login.aspx ?direct=true&db=cmedm&AN=22522927&
site=ehost-live&scope=site

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

N. Ding and J. Z. Simon, “Emergence of neural encoding of auditory
objects while listening to competing speakers,” Proc. Nat. Acad. Sci.
USA, vol. 109, no. 29, pp. 11 854-11 859, 2012. [Online]. Available:
http://search.ebscohost.com/login.aspx ?direct=true&db=cmedm&AN=
22753470&site=ehost-live&scope=site

E. M. E. M. Kaya and M. Elhilali, “Modelling auditory attention,”
Philos. Trans. Roy. Soc. London. Ser. B, Biol. Sci., vol. 372,
no. 1714, Feb. 2017, Art. no. 20160101. [Online]. Available: http://
rstb.royalsocietypublishing.org/lookup/doi/10.1098/rstb.2016.0101http:
//www.ncbi.nlm.nih.gov/pubmed/28044012http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=PMC5206269PhilTrans2017_Kaya

P. Smaragdis and J. C. Brown, “Non-negative matrix factorization for
polyphonic music transcription,” in Proc. IEEE Workshop Appl. Signal
Process. Audio Acoust. (IEEE Cat. No. 03TH8684), 2003, pp. 177-180.
M. Elhilali, L. Ma, C. Micheyl, A. J. Oxenham, and S. A. Shamma,
“Temporal coherence in the perceptual organization and cortical rep-
resentation of auditory scenes,” Neuron, vol. 61, no. 2, pp. 317-329,
Jan. 2009. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
50896627308010532

S. A. Shamma, M. Elhilali, and C. Micheyl, “Temporal coherence
and attention in auditory scene analysis,” Trends Neurosci.,
vol. 34, no. 3, pp. 114-23, Mar. 2011. [Online]. Available:
http://linkinghub.elsevier.com/retrieve/pii/S0166223610001670http:
/Iwww.ncbi.nlm.nih.gov/pubmed/21196054http://www.pubmedcentral.
nih.gov/articlerender.fcgi?artid=PMC3073558

J. S. Garofolo et al., “DARPA TIMIT acoustic phonetic continuous speech
corpus,” Linguistic Data Consortium, Philadelphia, vol. LDC93S1, 1993.
[Online]. Available: https://catalog.ldc.upenn.edu/1dc93s1

BBC, “The BBC sound effects library,” 1990.

K. Patil and M. Elhilali, “Biomimetic spectro-temporal features for
music instrument recognition in isolated notes and solo phrases,”
EURASIP J. Audio, Speech, Music Process., vol. 2015, no. 1,
Dec. 2015, Art. no. 27. [Online]. Available: http://asmp.eurasipjournals.
com/content/2015/1/27 https://asmp-eurasipjournals.springeropen.com/
articles/10.1186/s13636-015-0070-9

D. P. Kingma and J. Ba, “ADAM: A method for stochastic optimization,”
2015, arXiv preprint arXiv:1412.6980.

J. Salamon and J. P. Bello, “Deep convolutional neural net-
works and data augmentation for environmental sound classifica-
tion,” IEEE Signal Process. Lett., vol. 24, no. 3, pp. 279-283, Mar.
2017.

A.P. Varga, H. J. M. Steeneken, M. Tomlinson, and D. Jones, “Assessment
for automatic speech recognition: Ii. NOISEX-92: A database and an
experiment to study the effect of additive noise on speech recognition
systems,” Speech communication, vol. 12, no. 3, pp. 247-251, 1993.

A. Rakotomamonjy and G. Gasso, “Histogram of gradients of time-
frequency representations for audio scene detection,”

L. M. Miller et al., “Spectrotemporal receptive fields in the lemniscal au-
ditory thalamus and cortex,” J. Neurophysiol., vol. 87, no. 1, pp. 516-527,
2002. [Online]. Available: http://jn.physiology.org/lookup/doi/10.1152/
jn.00395.2001

C. A. Atencio and C. E. Schreiner, “Laminar diversity of dy-
namic sound processing in cat primary auditory cortex,” J. Neu-
rophysiol., vol. 103, no. 1, pp. 192-205, 2010. [Online]. Avail-
able: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=
PubMed&dopt=Citation&list_uids=19864440

T. O. Sharpee, C. A. Atencio, and C. E. Schreiner, “Hierarchical repre-
sentations in the auditory cortex,” Current Opinion Neurobiol., vol. 21,
no. 5, pp. 761-767, 2011. [Online]. Available: http://www.ncbi.nlm.nih.
gov/pubmed/21704508

W.-N. Hsu, Y. Zhang, and J. Glass, “Learning latent representations for
speech generation and transformation,” 2017, arXiv:1704.04222.

W. N. Hsu, Y. Zhang, and J. Glass, “Unsupervised domain adaptation for
robust speech recognition via variational autoencoder-based data augmen-
tation,” in IEEE Autom. Speech Recognit. Understand. Workshop, 2017,
pp. 16-23.

Y. Bando, M. Mimura, K. Itoyama, K. Yoshii, and T. Kawahara, “Statis-
tical speech enhancement based on probabilistic integration of variational
autoencoder and non-negative matrix factorization,” in Proc. IEEE Int.
Conf. Acoust., Speech Signal Process., 2018, pp. 716-720.

S. H. Mallidi, T. Ogawa, and H. Hermansky, “Uncertainty estimation
of DNN classifiers,” in Proc. IEEE Workshop Autom. Speech Recognit.
Understanding, 2015, pp. 283-288.

S. H. Mallidi and H. Hermansky, “Novel neural network based fusion
for multistream ASR,” in Proc. IEEE Int. Conf. Acoust. Speech Signal
Process., 2016, pp. 5680-5684.


http://www.jneurosci.org/cgi/doi/10.1523/JNEUROSCI.1462-07.2007
https://linkinghub.elsevier.com/retrieve/pii/S014976340800064X
http://journal.frontiersin.org/Article/10.3389/fnsys.2016.00002/abstract
https://linkinghub.elsevier.com/retrieve/pii/S1364661316302170
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi{?}cmd$=$Retrieve&amp;db$=$PubMed&amp;dopt$=$Citation&amp;list_uids$=$16158645
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi{?}cmd$=$Retrieve&amp;db$=$PubMed&amp;dopt$=$Citation&amp;list_uids$=$10573888
http://www.ncbi.nlm.nih.gov/pubmed/10704507
http://search.penalty -@M ebscohost.com/login.aspx{?}direct$=$true&amp;db$=$cmedm&amp;AN$=$22522927&amp;penalty -@M site$=$ehost-live&amp;scope$=$site
http://search.ebscohost.com/login.aspx{?}direct$=$true&amp;db$=$cmedm&amp;AN$=$22753470&amp;site$=$ehost-live&amp;scope$=$site
http://rstb.royalsocietypublishing.org/lookup/doi/10.1098/rstb.2016.0101http://www.ncbi.nlm.nih.gov/pubmed/28044012http://www.pubmedcentral.nih.gov/articlerender.fcgi{?}artid$=$PMC5206269PhilTrans2017_Kaya
http://linkinghub.elsevier.com/retrieve/pii/S0896627308010532
http://linkinghub.elsevier.com/retrieve/pii/S0166223610001670http://www.ncbi.nlm.nih.gov/pubmed/21196054http://www.pubmedcentral.nih.gov/articlerender.fcgi{?}artid$=$PMC3073558
https://catalog.ldc.upenn.edu/ldc93s1
http://asmp.eurasipjournals.com/content/2015/1/27 ignorespaces https://asmp-eurasipjournals.springeropen.com/articles/10.1186/s13636-015-0070-9
http://jn.physiology.org/lookup/doi/10.1152/jn.00395.2001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi{?}cmd$=$Retrieve&amp;db$=$PubMed&amp;dopt$=$Citation&amp;list_uids$=$19864440
http://www.ncbi.nlm.nih.gov/pubmed/21704508

BELLUR AND ELHILALI: AUDIO OBJECT CLASSIFICATION USING DISTRIBUTED BELIEFS AND ATTENTION 739

[54] M. A. Carlin and M. Elhilali, “Sustained firing of model central auditory
neurons yields a discriminative spectro-temporal representation for natural
sounds,” PLoS Comput. Biol., vol. 9, no. 3, Mar. 2013, Art. no. e1002982.
[Online]. Available: http://dx.plos.org/10.1371/journal.pcbi.1002982

[55] A. Bellur and M. Elhilali, “Feedback-driven sensory mapping adaptation
for robust speech activity detection,” IEEE/ACM Trans. Audio, Speech,
Lang. Process., vol.25,n0. 3, pp. 481-492, Mar. 2017. [Online]. Available:
http://ieeexplore.ieee.org/document/7782359/

Mounya Elhilali (Senior Member, IEEE) received
the Ph.D. degree in electrical and computer engi-
neering from the University of Maryland, College
Park, MD, USA, in 2004. She is a Charles Renn
Faculty Scholar and Professor with the Department
of Electrical and Computer Engineering, Johns Hop-
kins University, where she directs the Laboratory for
Computational Audio Perception. Her research ex-
amines human and machine hearing, with a focus on
robust representation of sensory information in noisy
Ashwin Bellur received the M.S. degree from the soundscapes, problems of auditory scene analysis and
Indian Institute of Technology Madras, Chennai, cognitive control of auditory perception. She is the recipient of the National
India, in 2013. He is currently working toward the ~ Science Foundation CAREER award and the Office of Naval Research Young
Ph.D. degree in electrical and computer engineer- ~ Investigator award.

ing with the Laboratory for Computational Audio

Perception, Johns Hopkins University, Baltimore,

MD, USA. His research interests include computa-

tional neuroscience, auditory scene analysis, speech

processing, and machine learning.



http://dx.plos.org/10.1371/journal.pcbi.1002982
http://ieeexplore.ieee.org/document/7782359/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <>
    /ESP <>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


