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Computerized Lung Sound Screening
for Pediatric Auscultation in Noisy
Field Environments

Dimitra Emmanouilidou, Eric D. McCollum, Daniel E. Park, and Mounya Elhilali

Abstract—Goal: Chest auscultations offer a non-invasive
and low-cost tool for monitoring lung disease. However,
they present many shortcomings, including inter-listener
variability, subjectivity, and vulnerability to noise and dis-
tortions. This work proposes a computer-aided approach
to process lung signals acquired in the field under ad-
verse noisy conditions, by improving the signal quality
and offering automated identification of abnormal auscul-
tations indicative of respiratory pathologies. Methods: The
developed noise-suppression scheme eliminates ambient
sounds, heart sounds, sensor artifacts, and crying contam-
ination. The improved high-quality signal is then mapped
onto arich spectrotemporal feature space before being clas-
sified using a trained support-vector machine classifier. In-
dividual signal frame decisions are then combined using an
evaluation scheme, providing an overall patient-level deci-
sion for unseen patient records. Results: All methods are
evaluated on a large dataset with >1000 children enrolled,
1-59 months old. The noise suppression scheme is shown
to significantly improve signal quality, and the classification
system achieves an accuracy of 86.7% in distinguishing nor-
mal from pathological sounds, far surpassing other state-
of-the-art methods. Conclusion: Computerized lung sound
processing can benefit from the enforcement of advanced
noise suppression. A fairly short processing window size
(<1 s) combined with detailed spectrotemporal features is
recommended, in order to capture transient adventitious
events without highlighting sharp noise occurrences. Sig-
nificance: Unlike existing methodologies in the literature,
the proposed work is not limited in scope or confined to
laboratory settings: This work validates a practical method
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for fully automated chest sound processing applicable to
realistic and noisy auscultation settings.

Index Terms—Computerized lung sound interpretation,
lung auscultation, multi-resolution analysis, noise suppres-
sion, noisy setting, pediatric.

[. INTRODUCTION

HE stethoscope is the most ubiquitous technology for ac-
T cessing auscultation signals from the chest in order to
evaluate and diagnose respiratory abnormalities or infections
[1]. Since its invention in the early 1800s, the basic system has
not changed much except for improvements in sound quality
using shape modification and the introduction of enhanced ma-
terials. Despite its universal use, it remains an outdated tool,
riddled with a number of issues. The stethoscope’s value for
clinical practice is limited by inter-listener variability and sub-
jectivity in the interpretation of lung sounds. It is also restricted
to well-controlled medical settings; the presence of background
noise affects the quality of lung auscultations and may mask the
presence of abnormalities in the perceived signal. It requires the
interpretation of auscultation signals by properly trained medi-
cal personnel, which further limits its applicability within clini-
cal settings without appropriate resources and medical expertise.
These limitations are further compounded in impoverished set-
tings and in pediatric populations. Close to 1 million children
under five years of age die each year of acute lower respiratory
tract infections (ALRI); more deaths than from HIV, malaria
and tuberculosis combined [2]. Yet, access to medical expertise
is not readily available and is further exacerbated by limited
access to alternative diagnostic tools. Despite its limitations, the
stethoscope remains a valuable tool in ALRI case management.
Its potential is even more critical in resource-poor areas where
low-cost exams are of paramount importance, access to com-
plimentary clinical methods may be scarce or nonexistent, and
medical expertise may be limited.

Computerized auscultation analyses (CAA) provide areliable
and objective assessment of lung sounds that can inform clini-
cal decisions and may improve case management, especially in
resource-poor settings. The challenges in developing such com-
puterized auscultation analysis stem from two main hurdles.
Firstly, there is great variability in the literature regarding a reli-
able description of lung signals and their pathological markers.
For instance, adventitious sounds of wheeze have been reported
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Fig. 1.
tions.

Proposed integrated framework for complete auscultation solu-

to span a wide range of frequencies varying within 100-2500 Hz
or 400-1600 Hz; similarly crackles have been characterized as
sounds with frequency content <2 kHz or >500 Hz or within
100-500 Hz [3], [4]. Secondly, ambient noise often contaminates
the auscultation signal and masks important signature cues, as it
often exhibits time-frequency patterns that greatly overlap with
characteristic events in lung sounds [5].

Over the past few decades, few CAA approaches have been
proposed to offer solutions to automated monitoring and diagno-
sis of lung pathologies. Nonetheless, the proposed approaches
remain limited in their applicability, and tend to be confined to
laboratory or well-controlled clinical settings or to simulated ad-
ditive noise conditions [6]-[8]. These artificial settings greatly
oversimplify environments in the field or the Emergency De-
partment, where noisy and raucous clinical conditions incur un-
predictable non-additive noise contamination. Few studies have
explored analysis and classification techniques for breath sound
diagnostics under more realistic clinical settings [9]-[13]; yet
the majority suffers from limited patient evaluation or low proto-
col versatility. Unfortunately, the applicability of such methods
to child auscultation is unknown and expected to be hampered
by common pediatric challenges including irregular breathing,
motion artifacts, crying or other body sounds that cannot be held
back during examination. Finally, most proposed methods offer
analysis techniques best suited to only identify context-specific
pathological sound patterns [11]-[15].

A parallel challenge to the development of fully automated
CAA systems is the need for hand-labeled information that can
parse the respiratory phases in auscultation signals, identify spe-
cific signal instances with pathological markers as well as offer a
reference medical interpretation of the auscultation signals. The
need for such labeled ground-truth annotations is crucial for the
development and training of supervised techniques, which ex-
plains why most studies are developed depending on it. Yet, a
fully-annotated reference database is unrealistic because: (i) it
is an extremely expensive and laborious effort in a large sample
size; and (ii) it is not consistent with common medical prac-
tices where health care professionals rely on a global listening
of the auscultation signal and recurrence of specific patterns
indicative of pathologies while ignoring irrelevant information.
Requiring an instant-by-instant labeling of hours of auscultation
recordings is both unreasonable and impractical.

To tackle these challenges, we introduce an integrated scheme
shown in Fig. 1 that (i) encompasses noise suppression to im-
prove the signal quality, (ii) offers a rich feature representation
to address the unpredictable nature of adventitious auscultation
patterns, and (iii) provides patient-level assessment of patholog-
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Fig. 2. lllustration of the 8 auscultation sites and the annotation pro-
cess. A reviewer labeled the depicted site as crackles, C, in red/solid
line, and then provided an indicative label of a crackling excerpt in pur-
ple/dashed line.

ical status by combining partial signal-level assessments with-
out the need for exhaustively detailed annotations. For validation
and evaluation, we use a large realistic dataset collected in devel-
oping countries in non-ideal rural and outpatient clinics. When
it comes to distinguishing between normal vs. pathological lung
sounds, we demonstrate the need for noise-free quality signals
by using objective quality measures; we further demonstrate the
advantages of the proposed feature extraction against state-of-
the-art methods, which are shown here to lack the robustness
to perform effectively on a diverse set of adventitious sounds,
especially when noise events further mask the signal signatures.

Section II provides an overview of the digital data collec-
tion protocol and Section III presents the multi-step noise sup-
pression scheme and evaluation. The rich feature space, clas-
sification and decision-making process follow in Section IV.
Section V discusses patient diagnostic results as compared to
other methods; and Section VI concludes the work with a dis-
cussion on the significance of these results.

Il. DATA DESCRIPTION AND PREPARATION

All data and annotations were provided by the Pneumonia
Etiology Research for Child Health (PERCH) study [16].

A. Data Collection

Digital auscultation recordings were acquired from children,
ages 1 to 59 months (median age 7 &= 11.43 months), in out-
patient or busy clinical settings in Africa (The Gambia, Kenya,
South Africa, Zambia) and Asia (Bangladesh, Thailand). In to-
tal, 1157 children were enrolled into the digital auscultation
study and were classified into one of the two categories: cases,
having World Health Organization-defined severe or very severe
pneumonia [17], or age-matched community controls, without
clinical pneumonia.

The auscultation protocol called for recordings over 8 body
locations (sites): four across the child’s back, two in the axilla
and two on the chest area (Fig. 2). To ensure two full breath
cycles, at least 7 s of body sounds were obtained per site. A
commercial digital stethoscope was used for data acquisition
(ThinkLabs Inc. ds32a), sampling at 44.1 kHz. An independent
Sony-ICD-UX71-81 microphone was affixed on the back of
the stethoscope, recording concurrent ambient sounds. During
examination the infant was seated, laid down or held to the most
comfortable position.

B. Annotations

Nine expert reviewers (pediatricians or pediatric-experienced
physicians) were enrolled for the annotation process. For each
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TABLE |

AVAILABLE ANNOTATIONS OF PATIENTS’ RECORDINGS

Annotation Label

Abnormal (Intervals
with wheeze and/or
crackles)

Normal (Intervals
without wheeze nor
crackles)

SUB-INTERVAL

PER-SITE (or
SITE)

FULL-PATIENT

annotated clip of
arbitrary length found
in abnormal site
recordings of full or
partial reviewer
agreement

a site recording found
abnormal by full or
partial reviewer
agreement

includes all site
recordings of a patient
if at least one site was
found abnormal

annotated clip of
arbitrary length found
in normal site
recordings of full or
partial reviewer
agreement

a site recording
labeled normal by full
or partial reviewer
agreement

includes all site
recordings of a patient
if all sites were found
normal

patient recording, two distinct primary reviewers annotated the
8 sites (per site or site annotation) as being Normal or Abnor-
mal (Table 1), with an accompanying descriptor label: “defi-
nite”, “probable” or “non-interpretable”. A “definite” label was
provided when the reviewer could interpret two or more full
breaths with certainty. If only one breath could be interpreted
with certainty or if two or more breaths could be interpreted
with uncertainty, then a “probable” descriptor was given. If no
full breath sounds could be distinguished (due to poor sound
quality, technical errors, or unrecognizable contamination), a
“non-interpretable” label descriptor was assigned.

The above process ensured that every site recording was as-
signed an annotation explaining breath sound findings, along
with a confidence indicator for each finding. In case of dis-
agreement between the two primary reviewers, more reviewers
listened to the recording to resolve ambiguities, and provided
additional labeling as needed (see [18] for details on the annota-
tion process). Finally, within each per site label, reviewers were
asked to specify a sub-interval label containing one segment of
arbitrary length that best exemplified the given per site label
(Fig. 2).

C. Datasets

Based on the sub-interval and per site labels, two types of
data sets were created for the evaluation of this work:

1) Sub-interval set: including all patients’ sub-interval
recordings of arbitrary length, grouped into Normal and
Abnormal (Table I, 1st row).

2) Full patient set: including all patients’ records, grouped
into Normal or Abnormal (Table I, 2nd-3rd row).

A few key-observations on the formed data groups: (i) ad-
ventitious events may still exist within a normal annotation, as
long as their occurrence was not regarded a pathological lung
sound; (ii) a per site recording was considered abnormal if there
was full or partial agreement among reviewers over an abnormal
annotation. Full or partial agreement means that a “definite” or
“probable” presence of an abnormal sound was agreed by both

primary reviewers or by at least two of the total reviewers. Aug-
menting the data sets to include both full and partial agreement
cases ensured the minimization of excluded data, making the
study more realistic, but at the expense of infusing uncertainty
to the classification model; (iii) a patient record labeled as Ab-
normal (Table I, 3rd row), may contain one or more abnormal
sites (Table I, 2nd row); (iv) patient records obtaining a “non-
interpretable” label or failing to obtain full or partial agreement,
were excluded from evaluation.

In total, 62 patients were excluded due to missing annotations,
along with 29% of remaining site recordings, due to: “non-
interpretable” labels, missing audio, recording malfunctions in
one of the two microphones, or high disagreement among re-
viewer labels. The final included data set consisted of more than
250 hours of recorded lung sounds.

D. Preprocessing

All acquired recordings were low-pass filtered with an anti-
aliasing 4th order Butterworth filter at 4 kHz cutoff; then resam-
pled at 8 kHz and whitened to zero mean and unit variance. No
crucial information loss was anticipated after down-sampling,
given the nature of the recorded signals and the suggested guide-
lines [19]: normal respiratory sounds are typically found be-
tween 50-2500 Hz, tracheal sounds can reach energy contents
up to 4000 Hz, abnormal sounds including wheeze, crackles,
stridors, squawks, rhonchi or cough exhibit a frequency profile
below 4000 Hz, and heart beat sounds can be found in the range
of 20-150 Hz.

[ll. SIGNAL ENHANCEMENT

Auscultation recordings acquired in busy clinical settings are
often prone to environmental noise contamination, and result
in inherent difficulties for both the physician and computerized
methods. PERCH recordings were also heavily corrupted by
contamination of various noise sources such as family members
talking close to the patient, children crying in the waiting room,
musical toys, vehicle sirens, mobile or other electronic inter-
ference, and other. An effective noise suppression scheme was
developed below, crucial for suppressing exterior contamination
before further analysis.

A. Clipping Distortions

Clipping distortions are produced when the allowed ampli-
tude range of the stethoscope sensor or recording device is ex-
ceeded. The incoming sound signal is then truncated, enforcing
the loss of high amplitude content and resulting in significant
distortion. Both the time and spectral signal signatures are heav-
ily affected by the non-trivial high frequency harmonics formed.
Clipped regions were identified as consecutive time samples
with constant maximum-value amplitude, up to a small 3%
perturbation tolerance [Fig. 3(a)]. Then, the identified regions
were repaired using spline piece-wise cubic interpolation; given
the brief duration of clipping intervals (a few consecutive data
samples), this method was adequate for replacing the distorted
portions without distorting the physiological sound signal.
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Fig. 3. (a) Waveform of a lung sound excerpt distorted by clipping (flat
amplitude regions in panel “before”), and the corresponding output of the
correction algorithm (panel “after”); (b) waveform of a lung sound excerpt
illustrating the effects of the heart sound interference suppression; notice
the suppressed heart sound patterns (panel “after’) when compared to
the original waveform ("before”); (c) two spectrogram representations of
lung sound excerpts illustrating the inherent difficulty in differentiating
between wheezing patterns and crying contamination.

B. Mechanical or Sensor Artifacts

Mechanical or sensor noise is usually generated when the
physician moves the stethoscope to various body locations or
when the stethoscope is unintentionally and abruptly displaced.
This is a common distortion, and especially prominent during
pediatric auscultation. Sharp stethoscope movements are typi-
cally associated with skin friction and produce irregular short-
time broadband energy bursts in the sound signal, resembling
profiles of abnormal Iung sounds such as crackles. In the cur-
rent dataset, the stethoscope transition noise was identified as
follows: the auditory spectrogram (ASP) representation was cal-
culated on an 8 ms window (described in details later in (4)),
and normalized to [0, 1]. Mostly interested in broadband events,
the region of interest ROI4sp within the ASP spectrum, was
defined as high spectral content above 1 kHz, with a span greater
than 1.5 kHz. Consecutive frames, of 8 up to 100 ms, exhibit-
ing high energy content within ROI,gp were identified and
discarded.

C. Heart Sound Interference

In the context of auscultation recordings, heart sounds (HS)
are yet another added component masking respiratory sounds.
Heart signal suppression has been addressed in several studies
using various techniques including wavelets and Short Time
Fourier Analysis [20], [21]. In order to maintain the integrity of
the lung sounds, particularly any adventitious events, a conser-
vative approach was used here, utilizing a wavelet multi-scale
decomposition [22].

(1) HS identification: The original lung sound signal was
band-pass filtered in [50, 250] Hz and down-sampled to 1 kHz,
using a 4th order Butterworth filter. This step enhanced heart
beat components by suppressing lung sounds and noise com-
ponents outside this range. Next, the discrete Static Wavelet
Transform (SWT) was obtained at depth 3, using Symlet de-
composition filters (due to their appropriate shape): after Detail
D;(t), and Approximation A;(t) coefficients were obtained,
signals did not undergo down-sampling, which allows for the
time-invariance of the transform. Signal reconstruction was then
easily obtained by averaging the inverse wavelet transforms [23].
Let SWT;{s(t)} be the wavelet decomposition at the jth scale
level of the lung sound signal s(t) and A;(t) be the obtained

normalized approximation coefficient. Then P;.;(t) is the mul-
tiscale product of all J approximation coefficients, defined in
(1). Intervals achieving high values for P;.;, were identified as
heart sounds and were replaced using an ARMA model.

J

HA] (t)/max(|4; (t)]) (1)

=1

(i1) HS replacement: Assummg that lung sounds are locally
stationary, an ARMA model was employed to replace missing
data of (n) using past or future values. First a stationarity check
- explained next - was performed on the neighboring area of the
removed segment. If the post-neighboring segment was found
non stationary, then a forward linear prediction model was used
(2a); otherwise, a backward model was used (2b):

== a,(k)x(n —k) (2a)
k=1

= By(k)x(n—k) (2b)
k=0

where {—a, (k), —f,(k)} denote the prediction coefficients of
the order-p predictors. Solving for the coefficients by minimiz-
ing the mean-square value of the prediction error {z(n) — &(n)}
leads to the normal equations involving the autocorrelation
function, v, (1): D% _, o (k)vea (I — k) = 0, with lags [ =
1,2,..,p and coefficient a,(0) = 1. The Levinson-Durbin al-
gorithm was used to efficiently solve the normal equations for
the prediction coefficients. The order of each linear prediction
model was determined by the length of the particular heart sound
gap, using an upper bound of p,,x = 125 ms.

For the stationarity check, the two neighboring intervals
around the missing data, of length 7; = 200 ms, were par-
titioned into M non-overlapping windows of length L. Using
the Wiener-Khintchine theorem, the power spectral density of
the m-th segment, ', (1), was computed via the multitaper pe-
riodogram and the following spectral variation measure was
introduced [24]

-1 M-1 M -1
U999 SLATEES SERUIND
1=0 m=0

with V(x) = 0 signifying a wide-sense stationary process.

Among identified HS intervals, only the very prominent ones
were chosen to be replaced, i.e. the ones achieving increased
product values P;.; > 0.2. Additionally, if the peak-to-peak in-
terval for 1dent1ﬁed heart sounds was too short for pediatric
standards (<0.28 s), then the corresponding identified regions
(possibly indicative of other adventitious sounds) were not re-
placed. Fig. 3(b) shows an example of a heart sound suppressed
segment.

D. Subject’s Intense Crying

Depending on the cause of irritation, infants and young chil-
dren can broadcast crying vocalizations of varying temporal and
frequency signature modes [25], [26]: phonation, consisting of
the common cry with a harmonic structure and a fundamental
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frequency ranging in 350-750 Hz; hyperphonation, a sign of ma-
jor distress or pain, also harmonically structured but with rapidly
changing resonance and a shifted fundamental frequency of
1-2 kHz or higher; and dysphonation (beyond the scope of this
work), a sign of poor control of the respiratory cycle, containing
aperiodic vibrations.

Because of their spectral span and harmonic structure, in-
stances of phonation and hyperphonation cry were identified
using properties of the signal’s time-frequency representation.
However, since adventitious lung sounds (particularly wheezes)
can produce patterns of similar or overlapping specifications
[Fig. 3(c)], here the focus was on longer, intense crying inter-
vals bearing limited value for clinical assessment.

For the detection of phonation mode cry: (i) The ASP rep-
resentation was calculated for every 8 ms frame (described in
details later in (4)). A pitch estimate for every frame was cal-
culated, using an adaptation of a template matching approach
[27]. Each spectrogram slice was compared to an array of pitch
spectral templates, generated by harmonically-related sinusoids,
modulated by a Gaussian envelope. The dominant pitch per
frame was then extracted and the average pitch (excluding 20%
of distribution tails) constituted the resulting pitch estimation per
region. Frames with an extracted pitch lower than 250 Hz were
immediately rejected. To avoid confusion with possible adventi-
tious occurrences during inspiration or expiration, an identified
interval was required to be of duration 74, > 600 ms, consid-
ering respiratory rate standards for infants [28]; typical rates in
the current dataset were 18—60 breaths per minute. (ii) Features
of spectro-temporal dynamics (6)—(8) were extracted from all
candidate time-segments, and fed to a pre-trained, binary SVM
classifier using radial basis functions, to distinguish crying from
other voiced adventitious sounds like wheezes.

For hyperphonation, simpler steps were required as lung
sounds were unlikely to overlap with this type of cry: regions
with high ASP spectral content above 1 kHz, and exceeding a
duration of Ty,,, were detected as hyperphonation cry.

In total, 20% of all recorded lung signals were identified as
phonation or hyperphonation cry, demonstrating the necessity
of such processing step.

E. Ambient Noise

Lung auscultation is highly vulnerable to ambient noise in-
terference, especially when patients are examined in busy clin-
ics or non-soundproof rooms. Natural occurring environmental
sounds, vehicle sounds, electronic machinery sounds, phones
ringing, conversational speech or distant crying all fall under
the umbrella of ambient noise commonly found in realistic aus-
cultation protocols, like the PERCH study.

A modified spectral subtraction scheme was employed for
suppressing such complex noise contamination. The general
spectral subtraction scheme assumes a known measured signal
quantity s (noisy lung sounds) to be comprised of two signal
components s = x + d: the unknown desired signal x (pure
clean lung sounds) and a known or approximated interference
signal d (ambient sound pick-up signal). The algorithm operates
in the spectral domain, in short frames to allow for short-term
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Fig. 4. Pipeline illustration of the ambient noise suppression scheme.

stationarity assumptions, and the content of the clean signal is
obtained by |S|?> = |X|* — |D|?, where X, S, D correspond
to the short time discrete Fourier Transform (STFT) of z, s, d
respectively.

An extension of this general framework to chest sounds would
not be readily sufficient or effective, due to the intricate nature
of these signals. The design above was extended as part of our
previous work [9], to account for (i) the preservation of the sen-
sitive lung sound content present in both low and high frequen-
cies (ii) localized frequency treatment, by adaptively splitting
the frequency range and ensuring robustness over unpredicted
noise environments; (iii) localized time window treatment, by
using the local Signal To Noise Ratio (SNR) information to
individually adjust the amount of subtracted information; this
way, both slow and fast-varying contamination can be treated;
and finally account for (iv) the elimination of reconstruction
distortions such as “wind tunnel” noise effects, by smoothing
signal estimates along adjacent frames and frequency bands.
This modified, adaptive spectral-subtraction scheme was vali-
dated by 17 medical experts, who confirmed that the valuable
breath sound was faithfully preserved in the recovered signals,
while the ambient noise was successfully suppressed (Fig. 4).

F. Objective Quality Assessment of Enhanced Lung
Sounds

A subjective sound quality assessment before and after the
ambient noise suppression scheme had been previously shown,
by enrolling medical experts that evaluated sounds based on their
quality and preservation of the lung sound content [9]. Here we
attempt a sound quality assessment offered by the overall noise
suppression scheme, based on objective measures. The choice
of an appropriate metric is not a trivial task since (i) there is
no available standardized method for evaluating quality of lung
sound content (ii) most quality measures proposed for speech or
sound enhancement require knowledge of the true clean signal
[29], [30], which in our case, would be the true clean lung
sound of the individual patient, a quantity that is unknown for
non-simulated environments.

In absence of the true underlying lung sound content, here
we assess each step of the proposed noise-suppression frame-
work by comparing the amount of shared information with
the picked-up background noise. Evidently, this approach is
not a conventional measure for signal quality improvement,
but offers a practical alternative to quality assessment adjusted
to the problem at hand. It assesses how much information is
shared between the background or subject-specific noise and the
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signals before, during and after the sound enhancement process.
Two objective metrics were explored:
1) Normalized-Covariance:

K K
NCM = w; SNR" (k) / > wy

k=1 k=1

NCM is a measure used specifically for estimating speech
intelligibility (SI) by accounting for audibility of the sig-
nal at various frequency bands. It is a measure based on
the speech-based Speech Transmission Index (STI). It
captures a weighted average of a Signal to Noise quantity
SN RN, calculated from the covariance of the envelopes
of the two signals over different frequency bands k [31]
and normalized to [0, 1]. A value equal to 1 is achieved
when the signals under comparison are identical. The
band-importance weights wj, followed ANSI-1997 stan-
dards [32]. Though this metric is speech-centric, it is
constructed to account for audibility characteristics of the
human ear hence reflecting a general account of improved
quality of a signal as perceived by a human listener.

2) Three-Level Coherence Speech Intelligibility Index:

T K K
1
CSIL, = > {Z wy SNRY ¢, (k, T)/; wk}

7=1 (k=1

The CSII metric is also a speech intelligibility-based met-
ric, based on the ANSI standard for the Speech Intelligibil-
ity Index (SII). Unlike NCM, CSII uses the signal-to-residual
SNRY,, an estimate of Signal-to-Noise ratio in the spectral
domain, for each frame 7 = 1, ..., T’; it is calculated using the
ro-ex filters and the Magnitude-Squared Coherence (MSC) fol-
lowed by [0, 1] normalization, with a value of 1 signifying
identical signals. A 30 ms Hanning window was used and the
three-level CSII approach divided the signal into low, mid, and
high-amplitude regions, using each frame’s root mean square
(rms) level information. The high-level region C'S11y4), con-
sisted of segments at or above the overall rms level of the whole
utterance. The mid-level C'S11,,;q consisted of segments rang-
ing from the overall rms level to 10 dB below, and the low-level
CSI1,y consisted of segments ranging from rms —10 dB to rms
—30dB [33].

IV. CLASSIFICATION MODEL
A. Acoustic Analysis

After signal enhancement, an analysis of the joint spectral
and temporal characteristics of the auscultation signal was per-
formed. A biomimetic approach was employed, and the acoustic
signal was projected onto a high-dimensional space spanning
time, frequency, as well temporal dynamics and spectral modu-
lations. The analysis followed the model proposed in [34], [35]
by adapting it to auscultation signals; and is summarized below:

The auscultation signal s(¢) was first analyzed through a bank
of 128 cochlear filters h(t; f), with 24 channels per octave.
These filters were modeled as constant-Q asymmetric band-pass
filters and tonotopically arranged with their central frequencies
logarithmically spaced. Then, signals were pre-emphasized by a

temporal derivative and spectrally sharpened using a first-order
difference between adjacent frequency channels, followed by
half-way rectification and a short-time integration y(t; 7), with
7 = 8 ms. The result was an enhanced representation, the audi-
tory spectrogram:

y(t, f) = max(95 0; s(t) *s h(t, [),0) % p(t;7) (4

This time-frequency representation was further expanded to ex-
tract signal modulations using a multiscale wavelet analysis,
akin of processes that take place in the central auditory path-
way, particularly at the level of auditory cortex [35]. This anal-
ysis yields a rich feature representation that captures intrinsic
dependencies and dynamics in the lung sound signals along
both time and frequency. This stage is implemented by filtering
the auditory spectrogram (¢, f) through a bank of modulation-
tuned filters G, selective to specific ranges of modulation in
time (rates v in Hz) and in frequency (scales s in cycles/octave
or ¢/o):

G+ (tv I, 5) = A*(hl (tvt))A(hs(faﬁ))
G_(t, fiv,s) = A (h (t;v))A(hs(f58))

where A(.) indicates the analytic function, (.)* is the complex
conjugate, and +/— indicates upward or downward orientation
selectivity in time-frequency space, i.e., detecting upward or
downward frequencies sweeping over time: a positive rate cor-
responds to downward moving energy contents and a negative
rate corresponds to upward moving energy contents. The seed
functions h, (t) and h,(f) were shaped as Gamma and Gabor
functions respectively

(5a)
(5b)

h(f) = f2e=° (6)

A filter bank was constructed by dilating the seed function
and creating 31 filters of the form &, (¢;t) = th, (tt) to capture
slow/ fast temporal variations for modulations ¢ = 2/1:4:0-22:8]
and 21 filters of the form hy(f;s) = shs(sf), to capture nar-
row/broadband spectral content, with s = 2[-5:0-4:3] Each mod-
ulation filter output modeled the response of differently-tuned
filters, mapping the time waveform onto a high-dimensional
space:

h.(t) = t?e * cos(2nt),

)

Ti<ta f;t75) = y(t7 f) *t,f Gi(ta f;'C,S) (7)

where *; ; corresponds to convolution in time and frequency and
G is the 2D modulation filter response. The final representation
was obtained by integrating the response along time, achieving
a frequency-rate-scale description:

Ri(f;v,s) = /Ti(tvﬁt»s) ot (®)

t
Note that even though the time axis is integrated in the equation
above, details of the temporal changes in the signal are captured
along the rate axis t.

B. Reduction of Feature Space Dimension

To reduce the size of the feature space, tensor Singular Value
Decomposition (SVD) was used. Data was unfolded along each
dimension of the SVD space, created by the training data set
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only. Let R be the feature tensor of order 3 seen above, where the
R_ axisis concatenated with the R axis, so that R € R1xd2xds
where d; = 128 for the frequency axis, do = 31 x 2 = 62 for
both =+ rates, and d3 = 21 for scales. When unfolding R along
mode (dimension) 1, an order-2 tensor (or matrix) was created,
R™M) | of dimensions d; x(d2xds). Similar order-2 tensors were
also created when unfolding along dimension 2 and 3, creating
matrices R(?>) and R(®). Singular value decompositions were
obtained for each of the mode unfoldings R("), forn =1,..,3
as:

R — )y (n) T

For mode-1 unfolding, > isa diagonal matrix of dimension r,
with the nonzero singular values on its diagonal; r < min{d;,
(doxds)} is the rank of RM | je. the dimension of the space
spanned by the columns or rows of R(") and U") and V(1) T
are unitary matrices. The singular values in $(!) are presented
ranked, as 051) > Ugl) > ... > oY) > 0. Similar expressions
were obtained for mode-2 and mode-3 decomposition. For each
R only components capturing up to 99% of the total vari-
ance were kept (i.e. 7" = argmin, f(z):={>", 0" >
0.99 |x =1,...,d, }. The final space projection was achieved
by tensor-matrix multiplication (mode-n product), significantly
reducing the feature dimensions from 128 x 62 x 21 to about 5
x 3 x 3 (exact dimension may vary depending on the training
subset).

C. Auscultation Classification

The classification of feature vectors into Normal vs. Abnor-
mal was obtained using a soft-margin non-Linear Support Vector
Machine (SVM) classifier. Let x be the matrix comprising of all
x; SVD-projected feature vectors € R", where rr = Hizl rm);
and let ® be a kernel mapping where data is believed to be sepa-
rable, so that ®(x) : x — ®(x), mapping data from R” — R?,
D > r. Given knowledge of data points x, and their true class
y, a binary SVM classifier, seeks to learn an optimal hyperplane
w! ®(x), w € RP, where

f(x) =w ®(x) +b

is the output class participation (f(x;) = +1) of example x;;
b= +1— wl®(x) for examples in class 1; b = —1 — w’ ®(x)
for examples in class —1; and |w| = 1. The optimal hyperplane
is found by solving the unconstrained quadratic minimization
problem over w:

min HWH2 + C’E;{Vmax (0,1 —w; f(=x:))
weRP

where N is the number of learning data points and C is a
regularization parameter. The second term represents the loss
function, where y; f(z;) > 1 if a data point x; falls over the
correct side of the separating hyperplane margin and y; f (z;) =
1 if it falls on the margin; finally, y; f(x;) < 1 if the data point
falls on the wrong side of the margin. The optimization problem

can also be expressed in its dual form:
f(X) = ZZNOéiyiK(l’i, l’) +b

max Yia; — %Ejﬁkajakyjykk;(xj,xk;)
subject to 0 < a; < C,Vi, and Zl a;y; = 0. In the present
work, radial-basis kernels (RBF) were used K(z;,z;) =
®(z;)T ®(x;) = exp(—|z(i) — x(4)|*). This way, only the
learning of N-dimensional vector a is needed, avoiding the learn-
ing of D-dimensional w in the primal problem.

D. Timescale of Diagnosis

Choosing the timescale (analysis window) over which to per-
form classification is a nontrivial task. An ideal parsing of the
signal would require a window segmentation aligned to the
breathing cycle. While this is often the chosen parsing method
in studies of limited data [7], [36], [37], it is an impractical
solution for large datasets recorded in the field: obtaining pre-
annotated breath cycles for all subjects is unrealistic and cannot
be automated in a straight-forward manner, especially when
considering the irregularity of infant breathing. Alternatively,
one could opt for a fixed-size window, which will likely have
an impact on the classification outcome. On one end of the
spectrum, a very short window will highlight short adventitious
events, at the expense of great heterogeneity among training
data, especially under noisy conditions. On the other end of the
spectrum, a very long window would capture average charac-
teristics of normal vs. abnormal lung sound events but could
blend details pertaining to short pathological patterns. We in-
vestigated a variety of analysis windows ranging from shorter
to longer duration: W; € [ 0.3, ..., 5] s with 50% overlap.

E. Evaluation of Classification Results

A closely related issue is the timescale of evaluating clas-
sification results. The available auscultation dataset contained
one annotation per each 7 s recording site (see Section II-C);
full-scale, extensive annotations of all sounds of interest were
not available and are not a realistic feature, thus, we propose the
following algorithmic performance evaluation technique:

1) Sub-interval Evaluation: (used for study comparison
in Section V.C): all arbitrary-length sub-interval annotations
of all available patient records were included in this dataset,
grouped into two groups (Normal/Abnormal). A decision for
each sub-interval clip was made by the SVM classifier, leading
to performance evaluation on the sub-interval level;

2) Full Patient Evaluation: (used for extended evalua-
tion of proposed method in Section V.B): this dataset combined
individual frame decisions of each sife into an overall patient
decision. This is not a trivial task, and our approach was de-
signed to be highly sensitive to abnormal occurrences. First,
all grouped site recordings were split into individual frames of
length W; € [0.3, ..., 5] s with 50% overlap, and a classifier de-
cision was made at the frame level. Next, a combined decision
for each site was obtained as follows: a site received an ab-
normal output label if at least (i) 2 consecutive intervals of «
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Average objective metric values over all recordings

NCM CSllygn  CSllgg  CSily,
* n * P N * : N * ,
0.2
)
. 1 I Py
1 2 3 1 2 3 1 2 3 1 2 3

noise suppression stage

Fig. 5. Obijective quality metrics illustrating the amount of shared infor-
mation between the ambient noise and the different noise suppression
stages. Low values indicate that signals under comparison have less
content in common. Standard deviation error bars show variation among
all site recordings. The asterisk (*) indicates that the trends across all
stages of denoising are statsitically significant at the 0.0005 level, using
both ANOVA and kruskal-wallis tests.

duration were found to be abnormal by the classifier or if at least
(ii) B% of all overlapping frames were found to be abnormal;
(this approach was partially inspired by the annotation protocol
that the medical experts followed - Section II-B). Finally, a full
patient record was assigned an abnormal label if at least one of
its sites was found to be abnormal; otherwise the patient record
was assigned a normal output label. For each time window W;,
parameters « and (8 were optimized in [0, 2] s and [30, 70]%
respectively.

V. RESULTS

A. Objective Quality Assessment of Enhanced Lung
Sounds

Objective metrics NCM and CSII were employed to quan-
tify improvements to the signal quality before, during and after
the signal enhancement. The metrics were calculated between
the clipping corrected ambient noise signal and (i) the original
clipping corrected noisy lung sound (Stage 1 in Fig. 5); (ii) the
processed lung sound after additionally applying sensor arti-
fact correction, heart sound suppression and crying elimination
(Stage 2 in Fig. 5); and (iii) the fully enhanced lung sound after
applying all noise suppression steps including the ambient sound
suppression (Stage 3 in Fig. 5). All metrics demonstrated an at-
tenuating trend in the amount of information shared between
ambient noise and processed signals, along various stages of
the noise suppression scheme. An analysis of statistical sign-
ficance of these trends indicate that they are significant at the
0.0005 level for both ANOVA and kruskal-wallis tests. The at-
tenuating trend is an indication that the processed lung signal
shares less content with the noise, when compared to the orig-
inal lung recording. It further depicts the necessity for efficient
noise suppression techniques which can play an important role
in improving the quality of auscultation signals and facilitat-
ing the work of physicians for diagnostic purposes, allowing
data re-usability for educational or training purposes and also
improving further computerized analysis with the extraction of
more robust features.

B. Full Patient Diagnostics

After combining the noise suppression scheme with the rich
feature analysis and decision integration, the accuracy of the

TP+TN

Full-patient Classification Accuracy ( =

90

85
8 N
75 [‘Accuracy :84.08 %

70 || Sensitivity (TP): 87.17 %
o Specificity (TN): 81.00 %

03 04 05 07 08 1 2 3 5

Accuracy (%)

timescale of diagnosis: size of the analysis window (s)

Fig. 6. Final patient-classification results. Performance was calculated
based on the full-patient decision; Accuracy = (TP+TN)/All %, where
TP: number of True Positives (abnormal patients), TN: number of True
Negatives (normal patients), All: total number of patients. Grey shading
depicts the standard deviation in patient accuracy among 10 MC runs.

complete system was assessed for patient-level decisions, using
the full-patient evaluation process of Section IV-E2. As outlined
earlier, the system performance depends crucially on the choice
of analysis window W; (timescale of diagnosis). Fig. 6 shows
the system accuracy for different analysis windows. On one
hand, large windows >1 s capture the coarse characteristics
of the lung sounds at the expense of the refined detection of
adventitious events such as crackle which can be very localized
in time and are integrated in these longer time windows. Such
coarse analysis yields an accuracy of about 77%. On the other
hand, a very short analysis window <0.5 s can be sensitive
to very small or transient changes in the signal hence failing
to track sustained patterns of interest such as wheezes which
tend to be very musical in nature and can last few hundreds of
milliseconds. Such short windows also yield a smaller drop in
accuracy. Overall, it is observed that a balanced time window
of about 0.5 s is preferred as it balances the detailed analysis
with the tracking of events of interest. Using the recommended
0.5 s, our proposed integrated system yields an overall patient-
level accuracy of 84.08% in Fig. 6. The shaded area shows the
standard deviation in accuracy over 10 Monte-Carlo runs.

C. Comparison With Other Methods

The effectiveness of the proposed biomimetic features was
furthered explored via a comparison with state of the art meth-
ods in the literature. Palaniappan et al. demonstrated the use of
the Mel-frequency cepstral coefficients (MFCCs) for capturing
spectral characteristics of normal and pathological respiratory
sounds [38]. MFCCs are powerful features commonly used in
audio signal processing, particularly in speech applications; it
is a type of nonlinear cepstral representation calculated on a
mel frequency axis, which approximates spectral perception of
human listeners [39]: first, the logarithm of the Fourier trans-
form was calculated using the mel scale followed by a cosine
transform. One MFCC coefficient was obtained per frequency
band, and in total, 13 MFCCs were derived for each data ex-
cerpt, averaged over a processing window of 50 ms with 25%
overlap. This method is referred to as M FCC_P.

In a different study by Jing et al. [40], a new set of discriminat-
ing features was proposed for identifying adventitious events in
respiratory sounds, based on spectral and temporal signal char-
acteristics. The features were extracted from a refined spectro-
temporal representation, the Gabor time-frequency (Gabor TF)
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Spectrogram (STFT) TABLE Il
- Normal Breathing sub—interval Wheeze Breathmg sub-| |nterva| COMPARATIVE CLASSIFICATION RESULTS
=i m‘ L L LM- o ; b Sensitivity (TP)%  Specificity (TN)%  Accuracy%
MFCC_P Features
) et n i e PROPOSED  86.82 (+0.42) 86.55 (+0.36) 86.67
. \,.\/_,__,\/ ° TR MFCC_P 91.88 (+0.36) 53.40 (+0.74) 72.64
B R S oy R B WVILLE 63.86 (£0.55) 58.47 (+0.60) 61.16
WVLLE Features
ng MK o0 OFm | SEHD ". MISK 200 OF¢ DFm | SEHD *Performance based on sub-interval decision.
10 0 L] : 10 o e e T °
0 ..".....-wn. 0 ° o ..00.....::: 0
8 (bin#) 8 (bin#)
" Audiory spemfi?mm vs) Row 2 shows MFCC coefficients #2 and #5 tuned at 75 Hz and
_ _ ' 200 Hz respectively, extracted by MFCC p method. Row 3 shows
the WVILLE features: the 10 maximum average instantaneous
Proposed Features: Scales-Rates : . st .
" o .m kurtosis yalu.es.(M¥SK), the .mlmmum achleYed value of the en-
c : ’ ! closed discriminating function (DFm) and its center-surround
— ~ ’2 contrast (DFc); and the histogram distortion value (SEHD). Row
m P'°°°Sed Fff:“'es Frequency-ftes 4 shows the ASP spectrogram used in the proposed method for
- —. extracting the spectro-temporal breath dynamics. Rows 5-7 de-
o“ - ”“ o pict the 3-dimensional Frequency-Rate-Scale space, shown on
Proposed Features: Scales- Frequency individual two—dimensional projections. NOtiCC the hlgh diS-
(c/o) - (c/o) . . .
“ N- e criminatory nature of the proposed set of features: the wheezing
I e R breath is highlighted by the presence of strong energy compo-
Comomome | mememe . nents ~1 c/o in the Scales-Rates plot (capturing its harmonic
Fig. 7. Comparison of feature extraction methods for a normal structure), and the energy concentration around 200 Hz along

(left) ad a wheeze (right) lung sound. Row 1: time-frequency breath
characteristics; Row 2: binned MFCC coefficient #2 (75 Hz) and
#5 (200 Hz) extracted as part of the MFCCp method. Row 3:
features MISK, DFc, DFm and SEHD, extracted as part of the
WVILLE method; Rows 4-7: the proposed discriminating fea-
tures including the auditory spectrogram ASP and the combined
spectral and temporal breath dynamics. Notice the high discrim-
inatory nature of the proposed features: the wheezing breath is
highlighted with high energy concentration in the Scales-Rates plot
~1 c/o, capturing its harmonic structure, and in the Frequency-Rates and
Scales-Frequency plots ~200 Hz, capturing its pitch. Comparatively, the
normal breath exhibits much lower temporal and spectral dynamics.

distribution. As the order of the Gabor TF representation in-
creases, it converges to a Wigner-Ville distribution, and we used
the latter to extract multiple features from each frequency band,
as proposed by the authors: MISK: mean instantaneous kur-
tosis, used as feature for adventitious sound localization; DFc
and DFm denoting the contrast and minimum value of the cal-
culated discriminating function, used for signal predictability
features; and SEHD: sample energy histogram distortion, used
as a nonlinear separability criterion for breath discrimination.
This method is referred to as WV ILLE.

For a comparison focused on the effectiveness of the extracted
features, we used the data pool created from the sub-interval an-
notations (Section IV-E1) of all subjects in the PERCH database,
after full signal enhancement. Recall that the sub-interval an-
notations can be of arbitrary length (with an average duration
of 1.8 s in this database). In order to create a relatively uniform
database, the intervals were clipped or augmented to 2 s, while
intervals shorter than 1 s were discarded.

Fig. 7 illustrates the differences of all the feature extraction
techniques, as applied on a normal and a wheezing lung sound
clip. Row 1 depicts the sound spectrograms calculated on a
30 ms, 50% overlap window simply shown here for reference.

the y-axis of the Frequency-Rates and Scales-Frequency space
(capturing its pitch). Compared to the normal breath, the wheez-
ing breath exhibits much higher temporal dynamics as captured
by the rates axis.

The RBF SVM classifier was used for all compared methods
evaluated on a 10-fold cross validation and 20 Monte Carlo rep-
etitions. Subjects in the training and testing sets were again, mu-
tually exclusive, to avoid classification bias. Recall, that while
a normal annotation rules out wheeze or crackle occurrences,
the lack of other abnormal sounds such as upper respiratory
sounds (URS) or remaining noise cannot be guaranteed, adding
real life challenges to the data. Comparative results are shown
in Table II, with the accuracy index depicting the average of
sensitivity (True Positives Rate) and specificity (True Nega-
tives Rate). The superiority of the proposed feature extraction
method was revealed; the rich spectro-temporal space spans
intricate details in the lung signal and results in better discrimi-
natory features. Importantly, the proposed features appear to be
equally robust in identifying normal and abnormal breath sounds
without any bias. In contrast, low accuracy percentages of the
WV ILLE method are noticeable; the WV I L LE features were
designed to detect unexpected abnormal patterns within specific
breath context, and the feature space seems to lack the ability
of separating respiratory-related abnormal sounds from noise-
related sounds, signal corruption, or breaths containing possible
URS. M FCCp features were better qualified for identifying
abnormal breaths, but when it came to normal segments, both
WVILLE and M FCCp fail to distinguish from noise or other
contamination. The M FCCp and WV ILLE methods were
previously reported in [38] and [40] to obtain an average accu-
racy of 77.42% and Area Under the Curve accuracy of 95.60%
respectively, in distinguishing normal from pathological lung
sounds. However findings of the current work clearly illustrate
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the inherent difficulty of these feature extraction methods to
generalize findings to more realistic or challenging databases
and auscultation scenarios.

VI. CONCLUSION

Over the last decades, there has been an increased interest
in computer-aided lung sound analysis. Despite the enthusi-
asm about possibilities in automated diagnosis, the literature is
still shy in tackling real-life challenges. The presented method
addresses some of these limitations by proposing a robust dis-
criminative methodology for distinguishing normal and abnor-
mal sounds. Validated on a large-scale realistic dataset, it tackles
two aspects crucial in the development of automated ausculta-
tion analysis: noise and signal-mapping.

The proposed framework addresses the need for improved
lung sound quality by using noise-suppression techniques suit-
able for auscultation applications. It tackles various noise-
sources including ambient noise, signal artifacts, patient-
intrinsic maskers (heart-sounds, crying); and explores the use
of a rich biomimetic feature-mapping that covers the intricate
spectro-temporal details of lung sounds, and yields a notable
improvement in distinguishing normal/abnormal events when
compared to state-of-the-art systems, that tend to fixate on spe-
cialized pathologies and global features.

Crucially, this system is further validated on a large patient
dataset acquired in the field under realistic clinical conditions.
The use of such validation data highlights an additional aspect of
the analysis; notably the need for full-patient decisions. Previous
studies commonly propose methods for localized interpretations
on limited pre-segmented breaths; this entails restricted real-life
applicability since it requires a pre-segmentation process that is
extremely challenging. Instead, this study hopes to take a step
towards realistic applicability of computer-aided diagnosis. In
lieu of breath-aligned signal parsing, a short analysis-window
is recommended for capturing the manifestation of adventitious
sounds of interest while avoiding fixation to highly transient
events. A number of challenges remain to be addressed in-
cluding establishing the association between auscultations and
other clinical markers; identifying overlapping non-pathological
sounds which can incur significant false positives; and calibrat-
ing analysis-windows with respiratory cycles which can benefit
the interpretation of the observed patterns.
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