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Abstract—Parsing natural acoustic scenes using computational
methodologies poses many challenges. Given the rich and complex
nature of the acoustic environment, data mismatch between train
and test conditions is a major hurdle in data-driven audio process-
ing systems. In contrast, the brain exhibits a remarkable ability at
segmenting acoustic scenes with relative ease. When tackling chal-
lenging listening conditions that are often faced in everyday life,
the biological system relies on a number of principles that allow
it to effortlessly parse its rich soundscape. In the current study,
we leverage a key principle employed by the auditory system: its
ability to adapt the neural representation of its sensory input in a
high-dimensional space. We propose a framework that mimics this
process in a computational model for robust speech activity detec-
tion. The system employs a 2-D Gabor filter bank whose parame-
ters are retuned offline to improve the separability between the fea-
ture representation of speech and nonspeech sounds. This retuning
process, driven by feedback from statistical models of speech and
nonspeech classes, attempts to minimize the misclassification risk
of mismatched data, with respect to the original statistical models.
We hypothesize that this risk minimization procedure results in an
emphasis of unique speech and nonspeech modulations in the high-
dimensional space. We show that such an adapted system is indeed
robust to other novel conditions, with a marked reduction in equal
error rates for a variety of databases with additive and convolutive
noise distortions. We discuss the lessons learned from biology with
regard to adapting to an ever-changing acoustic environment and
the impact on building truly intelligent audio processing systems.

Index Terms—Adaptation, gabor filters, genetic algorithm, spec-
trotemporal filters, speech activity detection.

I. INTRODUCTION

THE acoustic world we inhabit is a rich one, often composed
of multiple sound sources. Developing computational

techniques to parse a complex acoustic scene poses numerous
challenges. Given the increasing desire to process such real
world data for tasks like speech detection and recognition, data
tagging, source separation and coding, there is great deal of
emphasis on developing robust computational methodologies
capable of working with complex real-world acoustic signals.
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One of the main issues when dealing with real-world acoustic
signals using data-driven computational techniques, is the prob-
lem of data mismatch. That is, a mismatch between the statistics
captured by the system during the training phase and statistics
of data used during testing. This problem often arises owing to
the rich nature of the acoustic environment and the inability to
include all possible scenarios during the training phase. While
data-driven state of the art systems, be it in speech detection
or recognition or scene analysis, are remarkably accurate in
matched conditions, the performance drops rapidly under mis-
matched conditions. In contrast, human listeners are amazingly
adept at dealing with such complex acoustic scenes, especially
in adapting to changing and novel acoustic environments. A
commonly cited example is that of a cocktail party, where we
are able to communicate with notable ease in the midst of music,
clinking of glasses and loud background chatter [1]. Studies of
the neurophysiology of the mammalian auditory system have
shed light on some of the processes that render the auditory
system efficient in complex soundscapes [2]–[4]. The goal of
this study is to leverage some of these processes for building a
robust data-driven audio processing system.

Our knowledge of brain processes reveals that the time-
domain sound signal, a low-dimensional vector, undergoes a
series of transformations along various stages of the auditory
system, akin to a mapping onto high-dimensional space [5].
This mapping captures modulations or variations in the sig-
nal along both time and frequency. By projecting the signal
onto this high-dimensional spectro-temporal modulation space,
different components of the acoustic scene are etched out, ef-
fectively occupying different sub-regions of the space; which in
turn enable the brain to effectively parse the acoustic scene [6].
Complimentary to this high-dimensional mapping are adapta-
tion mechanisms that allow the biological system to re-tune its
filtering properties in a direction that facilitates the segregation
of target sounds from background distractors. Particularly, when
listening to a specific sound of interest in a scene, mechanisms
of selective-attention provide a feedback control that adapts the
sensory mapping to enhance the representation of the target
regardless of competing masker sounds [7]–[9]. This feedback-
driven adaptation of sensory processing gives the brain a no-
table advantage over engineering systems, allowing it to adapt
to its environment even in novel, previously unseen acoustic
surrounds.

There have been numerous efforts to develop computa-
tional algorithms to incorporate bio-inspired processes of high-
dimensional mapping into audio technologies [10]–[13]. In fact,
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recent trends using deep belief and convolutional networks ef-
fectively model the acoustic space using filters that reflect a
similar tiling of the spectrotemporal space akin to the high-
dimensional mapping in the auditory system [14], [15]. These
bio-inspired and representation learning techniques have been
applied for various tasks like speech recognition [11], [16]–[18],
speech activity detection [19]–[21], source separation [22], [23],
scene recognition [24], [25] and timbre recognition [26], [27].

On the other hand, there have been relatively fewer efforts
that have sought to leverage the complimentary task-driven
adaptation phenomenon [28], [29]. The main focus of the cur-
rent work is to develop a framework that not only performs the
prerequisite high-dimensional sensory mapping, but also adapts
in a task-driven setting so as to enhance the robustness of the
system. Given the effectiveness of these biological processes in
facilitating speech processing even in the most adverse acoustic
environments [30], we develop a system for robust speech
activity detection (SAD) that can operate in novel noisy sound-
scapes. The next section provides an overview of the proposed
framework and outlines how the system integrates processes of
sensory mapping and adaptation to achieve a robust represen-
tation of speech signals. Section III provides details of the im-
plementation of the high-dimensional mapping of the acoustic
signal as well as statistical modeling of speech and non-speech
sound classes. Section IV then details the proposed methodology
to incorporate feedback driven adaptation of the sensory map-
ping process. In section V, we provide specifics of the proposed
SAD system as well as databases employed to validate it. We
report the results in Section VI and conclude with a discussion in
Section VII.

II. OVERVIEW OF THE ADAPTIVE SENSORY

MAPPING FRAMEWORK

The proposed system comprises of three key components:
(i) Sensory mapping, implemented using a hierarchy of time-
frequency short-term analyses followed by multi-resolution
filtering via an array of parameterized two-dimensional Gabor
filters. The resultant representation is a high-dimensional fea-
ture transformation that encodes spectrotemporal modulations
of the incoming signal and serves as an effective biomimetic
approximation of the sensory mapping observed in the mam-
malian system. (ii) Statistical modeling, which learns generative
models of speech and non-speech data in the high-dimensional
modulation space. (iii) Adaptation, which re-tunes the Gabor
filters using feedback from the statistical models. Effectively,
this stage allows the system to tackle mismatched conditions by
changing the sensory mapping in order to best fit the statistical
models of speech and non-speech. Using held-out noisy speech
data, the sensory mapping is adjusted while keeping the statis-
tical models fixed, with a goal to maintain discriminability be-
tween speech and noise/non-speech even in adverse mismatched
conditions.

Fig. 1 shows an overview of the proposed system. Our work-
ing hypothesis is as follows: during the training phase, statistical
representations of the speech class φ(T |S) and non-speech class
φ(T |N) are estimated over sensory space TΛ . These represen-

Fig. 1. Training: a(t) is the acoustic signal from clean speech (S) and non-
speech (N) classes during the training phase. TΛ denotes the sensory mapping
process φ denotes the conditional distributions. Adaptation: data a(t) is from
noisy speech (NS) and non-speech classes. TΛ̂ denotes the adapted sensory
mapping process. Risk estimated using posterior probabilities P (TΛ̂ (t)|S) and
P (TΛ̂ (t)|N ) with respect to the original models φ; goal of iterative adaptation
is to minimize risk

tations serve as fixed accounts of the most-informative regions
of speech and noise in the modulation space. The subspaces
are assumed to be well-separated given the high-dimensional
nature of the mapping TΛ as well as the discernible statistical
differences between clean speech and noise. However, under
low signal-to-noise ratio (SNR) conditions, there is a larger
overlap in the regions occupied by noisy speech (NS) and non-
speech signals (N ). This results in a larger risk of misclassifi-
cation, which can be computed using conditional probabilities
P (TΛ(t)|S) and P (TΛ(t)|N), given labeled data [31]. In order
to mitigate this risk, we propose to use a measure of misclas-
sification risk to re-tune our sensory mapping in order to keep
the risk minimal and effectively maximize the separability of
the two classes in a direction that matches their original sta-
tistical models φ(T |S) and φ(T |N). The risk measure acts as
a feedback control that adaptively changes the sensory map-
ping indexed by Λ onto a modified space Λ̂. This process is
achieved iteratively with the reduced risk measure estimated at
every iteration using P (TΛ̂(t)|S) and P (TΛ̂(t)|N) with respect
to the original models φ. The process leverages known phys-
iological projections from higher cognitive brain regions onto
sensory cortex which adaptively modulate tuning properties of
auditory filters in a direction that maximizes figure/ground seg-
regation and enhances the robust encoding of target sounds de-
spite presence of severe interference [9], [32]. We hypothesize
that this risk minimization procedure results in an emphasis of
unique speech and non-speech modulations, as represented by
the original fixed models (φ). Consequently, by tuning the sen-
sory mapping to put a spotlight on unique signatures of speech
and non-speech features, the system is able to generalize to un-
seen conditions and operate robustly under various distortions.
As will be shown in this work, this adaptation process results in
a nonlinear alteration of the sensory mapping Λ onto the new
mapping Λ̂ that enhances the discriminability between speech
and non-speech sound classes.
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It is important to note that the proposed framework differs
from other model-adaptation methods commonly employed for
addressing data mismatch, like maximum a posteriori (MAP)
[33] and maximum likelihood linear regression (MLLR) [34].
Unlike these aforementioned techniques, the statistical speech
and non-speech models used in the current approach are kept
intact while changing the feature space to best match these
models. Additionally, the proposed work is different from multi-
condition training neural networks where labeled noisy speech
and non-speech data are used to train robust neural network
systems [20], [35]–[37]. While the basis or weights estimated in
these systems are shown to be robust, they are still constrained by
the nature of labeled training data and are susceptible to data-
mismatch. In our current approach, feedback from statistical
models is used to direct the feature space to primarily highlight
known disparate speech and non-speech regions as represented
by the statistical models.

III. SENSORY MAPPING AND MODELING OF SPEECH AND

NON-SPEECH CLASSES

A. Bio-Mimetic Sensory Mapping

The incoming sound waveform undergoes a series of trans-
formations along the auditory pathway that extract informative
cues about the signal and sound sources present in the environ-
ment [3]. These transformations, dubbed bottom-up processes in
reference to their feed-forward nature, project the time-domain
signal onto a different auditory space that facilitates tasks of
sound detection, recognition and segregation [38]–[40].

In the current work, the acoustic waveform is first mapped
onto a time-frequency spectrogram using a number transforma-
tions mimicking processes in the mammalian auditory periph-
ery. Details of this early transformation can be found in [5] but
are summarized next. The incoming signal a(t) is first filtered
through an array of asymmetric, constant-Q, band-pass filters
hc(t, f) which span 5.3 octaves on a logarithmic scale, start-
ing at frequency of 180 Hz. The filters hc(.) are pre-defined
to match neurophysiologically-derived cochlear filters. The fil-
tered frequency-dependent signals are then half-wave rectified,
integrated over a short time window w(t; τ) = e−t/τ u(t) where
τ = 8ms, and then compressed using a cubic root compres-
sion. Equation (1) succinctly summarizes these steps, where ∗
denotes convolution with respect to time.

y(t, f) = (max(δf (a(t) ∗ hc(t, f)), 0) ∗ w(t, τ))1/3 (1)

Next, the resultant time-frequency spectrogram y(t, f) is fur-
ther analyzed using a filter bank of two-dimensional Gabor fil-
ters (the choice of parameterized Gabor filters will become clear
later in the text). These filters can be considered as linear ap-
proximations of the transfer functions of auditory neurons in the
central stages of the mammalian auditory pathway [41], [42].
By having each filter tuned to a particular spectral modulation
(or scale) Ω and temporal modulation (or rate) ω, this filter-
ing process highlights the spectro-temporal modulations present
in the signal and effectively tiles the spectrotemporal modula-
tion space. The Gabor filters are parameterized as shown in

Fig. 2. Two dimensional Gabor filter at rate ω and scale Ω. σt is the bandwidth
of the Gaussian along the time axis. σf is the bandwidth of the Gaussian along
the frequency axis. θ denotes the orientation of the main lobe of the Gabor filter

equation (2).
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where t1 = t cos(θωΩ) + f sin(θωΩ) and f1 = −t sin(θωΩ) +
f cos(θωΩ). The parameters in equation (2) are:

1) ω: in Hz represents the rate (temporal modulations) and
Ω: in cycles/octave is the scale (spectral modulations)
which determine the variations of the filter in time and
frequency. Gabor filters can be downward- or upward-
selective with upward-selective filters denoted using neg-
ative rate values.

2) σtω Ω and σfω Ω denote the bandwidths of the Gaussians
of the Gabor filters along time and frequency direction
respectively.

3) θωΩ specifies the orientation of the main lobe of the Gabor
filter.

4) αωΩ is an additional scalar gain. The gain term is used to
suppress or enhance the output of the filter.

The parameters are collectively represented as a vector Λ
where Λ = {σtω Ω ,σfω Ω , θωΩ ,αωΩ}. Fig. 2 shows a gabor filter
tuned to a rate (ω) of 2Hz and scale (Ω) of 1 cycle/octave.

The auditory spectrogram obtained using equation (1) is con-
volved over both time and frequency (denoted as ⊗) with the
bank of Gabor filters (Eq. (3)). The output of this stage yields a
projection onto the modulation space, of which only the magni-
tude is preserved.

R(ω,Ω, t, f |Λ) = |Y (t, f) ⊗ F (ω,Ω, t, f |Λ)| (3)

The output R(.) is further collapsed along the time axis to ob-
tain a Rate-Scale-Frequency (RSF) representation T (f,ω,Ω|Λ)
as shown in equation (4). While the time axis is effectively re-
moved from the final feature representation over the duration
of the analysis frame, temporal information is still maintained
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Fig. 3. Population of the first generation is initialized as the default 240
dimensional filter bank parameter vector. Each tuple can take any of the five
feasible values leading to a search space of (4M )C .

as slow temporal modulations are represented along the rate
axis (ω).

T (ω,Ω, f |Λ) =
∫

R(ω,Ω, t, f |Λ)dt (4)

B. Statistical Models of Speech and Non-Speech Classes

Speech and non-speech classes are fairly separable in the
modulation space. In this work, we employ a generative repre-
sentation using Gaussian mixture models (GMMs) to capture
the statistics of both classes. Given data from clean speech or
non-speech classes, frame-wise RSF (T (ω,Ω, f |Λ)) features
are first extracted. The features extracted are of dimensions
[rates × scales × frequency]. In order to facilitate building of
GMMs, Tensor Singular Value Decomposition (TSVD) [43] is
used to reduce the number of dimensions of the RSF represen-
tation while ensuring that certain percentage of the variance is
retained. Using the reduced-dimension feature vectors (repre-
sented as VΛ ), respective clean speech and non-speech GMMs
can be estimated.

IV. FEEDBACK-DRIVEN ADAPTATION

The GMM models developed earlier result in a degree of sep-
arability between speech and non-speech classes as quantified
by the Log likelihood ratio (LLR) (Equation (5)), with speech
as the null hypothesis. Let P (VΛ |Φ) denote the posterior prob-
ability of the feature VΛ , extracted from a frame of data with
respect to the GMM model Φ. Φs and Φn , which represent the
clean speech and non-speech GMM models, respectively.

LLR = log
P (VΛ |Φs)
P (VΛ |Φn )

(5)

Following the framework presented in Fig. 1, an adaptation
stage performs a transformation of the mapping Λ onto a new
mapping Λ̂. The need for adaptation can be motivated by look-
ing at Fig. 4. The dotted histograms in Fig. 4(b), are the LLR
histograms of non-speech and speech regions, estimated before
adaptation, from a mismatched acoustic signal of 120 seconds
duration (Fig. 4(a)). As can be seen from the histograms at dif-
ferent SNR, they are fairly separable when speech is present at
a high SNR of 15 dB to 5 dB. However, at lower SNRs (0 dB to
−10 dB), the clean speech model is no longer a good represen-
tation of the statistics of the speech signal. This leads to a large
overlap between LLR values of noisy speech and non-speech,
implying a higher risk of misclassification. From the line plot in
blue in Fig. 4(c), it can be seen that while the equal error rates

are around 5% at high SNRs, it deteriorates to 33% when the
SNR is −10 dB.

Our proposed framework uses a held-out set of unseen noisy
speech data and non-speech data to retune the Gabor filters. The
aim of such a retuning process using mismatched noisy speech
and non-speech is to effectively transform the sensory mapping,
so as to emphasize the specific regions of the modulation space
that are uniquely indicative of the presence or absence of speech
as reflected by the clean speech and non-speech GMM models,
Φs and Φn respectively. The held-out set of noisy speech in this
work was created using held-out data from non-speech classes as
additive noise to speech. We hypothesize that by using a diverse
held-out noisy speech set (with mismatched noise distortions
relative to the test data), we can obtain an adapted setup that can
scale to other novel and adverse mismatched conditions. The
efficacy of this adaptation process is ultimately reflected in how
separable the mismatched noisy speech and noise are in terms
of LLR values.

Given that our framework employs parameterized modula-
tion filters such as Gabors, it offers us a powerful nonlinear
mechanism for retuning the sensory mapping by taking advan-
tage of the degrees of freedom afforded by Gabor filters. Effec-
tively, these degrees of freedom include gain (αω ,Ω ), bandwidth
(σtω Ω ,σfω Ω ) and orientation (θω ,Ω ); which conform to the na-
ture of attention-driven adaptation observed in spectrotemporal
modulation encoders in the mammalian auditory pathway [8],
[44]. Next, we outline details of how Gabor filters are retuned.

A. Adaptation Procedure

The adaptation procedure requires an objective measure of
speech/non-speech discriminability. In the current work, we use
a d-prime measure (Equation (6)) as proxy for the risk measure
shown in the schematic in Fig. 1. The symbols µx and σx de-
note the mean and standard deviation respectively, of the LLR
(equation (5)) values for noisy speech (x = ns) and non-speech
(x = n) classes.

d
′
=

µns − µn√( 1
2 (σ2

ns + σ2
n )
) (6)

Using this measure, the sensory mapping is then
adapted by retuning each of the Gabor parameters Λ =
{σtω Ω ,σfω Ω , θωΩ ,αωΩ} in order to maximize the separa-
bility measure for the new held-out set. In order to con-
strain this search, each of the parameters is confined to a
range of possible values. That is, the adapted parameters
Λ̂ = (σ̂tω Ω , σ̂fω Ω , θ̂ωΩ , α̂ωΩ) are constrained such that σ̂tω Ω ∈
Sσt , σ̂fω Ω ∈ Sσ f , θ̂ωΩ ∈ Sθ and α̂ωΩ ∈ Sα . The symbols
Sσt ,Sσ f ,Sθ and Sα denote sets of narrow range of values each
of the parameters can adopt. While this aids in restricting the pa-
rameter search space, it does incorporate the fact that task-driven
adaptation results in marginal changes in the characteristics of
individual encoders in the auditory system [45]. Despite small
changes at the individual filter level, the neural ensemble oper-
ates collectively to effectively track a target amidst maskers.

With a filter bank of M filters each with four tunable pa-
rameters, the parameter search space grows exponentially with
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Fig. 4. a) An audio recording of 120s durations with speech in QUT StreetCity noise. b) Histogram of LLR values of speech and non-speech with speech present
at different SNR, ranging from 15 to −10 dB. Dotted plots are histograms with the original filters (Λ) and solid lines represent the adapted filters Λ̂. c) Equal error
rate estimated using LLR values at different SNR for both default and adapted filters. The error bar on the adapted system signifies the standard deviation of the
EERs obtained using different adapted filters derived from 10 independent runs of the algorithm.

cardinality of sets Sσt ,Sσ f ,Sθ and Sα . If each of the sets have
a cardinality of C, the parameter search space is of the order
(4M)C . In order to sift through this large space of filter adap-
tations, with the goal of maximizing the d-prime measure, we
employ a Genetic Algorithm (GA) as detailed next.

B. Genetic Algorithm

A Genetic Algorithm (GA) presents an elegant search mecha-
nism that canvases the space of possible filter retunings in order
to select an optimal solution as defined by our risk measure.
The use of genetic algorithms as search heuristic for filter op-
timization has been more popular in image processing systems
such as target detection [46], texture segmentation [47], and
classification [48] problems.

The Genetic algorithm (GA) is based on the process of evolu-
tion through natural selection and provides an effective way to
search through possible members of a population P to find the
fittest member. In the context of this work, each of the (4M)C

bank of Gabor filters represent possible members of the popu-
lation P . The d-prime estimate (equation (6)) is used as fitness
measure.

Fig. 3 shows a member of population P . As can be seen
each member is a 4M dimensioned vector, representing a bank
of Gabor filters, with each dimension taking on values from
their respective sets Sσt ,Sσ f ,Sθ and Sα . Using GA, we aim to
find the parameter set Λ̂ (fittest member) that yields maximum
discriminability between speech and non-speech for a held-out
data set. The algorithm works as follow:

1) Initialization: The first generation G1 is initialized with
random members of the population along with the default
parameter configuration shown in Fig. 3. G1 = {Λ, p};
where p ⊂ P

2) Selection: Given members of generation Gi , only the
fittest members participate in generating the members of
the next generation Gi+1 . The set of retained members is
denoted as G̀i where G̀i ⊂ Gi .

3) Next Generation: Members of Gi+1 , are generated in three
ways.

1) Crossover: where the members of the next genera-
tion inherit values from each of their parent mem-
bers in G̀i (≈ 50% from each parent) as shown in
the figure below.

1) Mutation: Members of G̀i undergo changes in a
limited number dimensions and take on values from
appropriate Sσt ,Sσ f ,Sθ and Sα , to generate mem-
bers of the generation Gi+1 .

1) Elite: Fittest members of generation G̀i propagate
to generation Gi+1 without any changes.

Thus Gi+1 = C(G̀i) ∪ M(G̀i) ∪ E(G̀i), where C(),
M() and E() represent the crossover, mutation and elite
operations respectively.

4) Stopping Criteria: Steps 2 and 3 are repeated to propagate
the algorithm. The algorithm comes to a halt when the
fitness of the most fit member does not change over a
certain number of generations. The fittest member of the
final generation is the desired Λ̂.

V. SPEECH ACTIVITY DETECTION SYSTEM:
EXPERIMENTAL METHODS

A. Databases

In order to test the efficacy of the proposed speech activity
detection system, 3 databases were used:

1) Training set: A database of clean speech and noise was
used to train the GMM statistical models of the two
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TABLE I
LIST OF SPEECH AND NON-SPEECH SCENES MODELED DURING TRAINING

Speech and Non-speech Scenes
Scene Database
Speech TIMIT [49]

Emergency BBC Sound effects [50]
Office
Impacts
Industry
Technology
Transportation
Warfare
Water
Weather

classes. We used the TIMIT database [49] to train the clean
speech GMM and the BBC sound effects database [50]
to train the non-speech GMMs. Table I lists the scenes
from the BBC sound effects database used to estimate
non-speech GMM models.

1) Held-out set: A held-out set from TIMIT and BBC datasets
(non-overlapping with the training set) was used for the
purpose of adapting the sensory mapping process. Speech
samples were corrupted additively with non-speech sam-
ples at various SNR levels ranging from 0 dB to −10 dB.
A total of 800 samples each of duration 1 s, from the 2
classes were used to build this held-out set.

1) Testing sets: In order to test the system, three different
corpora were used consisting of noisy speech recordings
at different SNR levels with various distortions:

1) QUT-Noise-Timit [51]: is a speech-in-noise cor-
pus created for testing SAD systems. Noisy speech
sequences are constructed using speech from
TIMIT and recordings of naturally occurring noises.
Car-Window-down, Street-City, Home-Kitchen and
Reverb-Pool classes from the QUT database were
used for testing purposes. From each of the classes
120 audio wave files, each of 60 s duration were
used. The SNRs ranged from +15 dB to−10 dB with
active speech proportions ranging from 25% to 75%
of the audio recording. It was ensured that there was
no overlap between the TIMIT data used for train-
ing the models, data used for adapting the filters and
the speech data used to create noisy-speech classes
in QUT.

2) SPINE2 [52]: contains recordings in military back-
ground noise environments like aircraft carrier,
humvee, office etc. All 64 recordings, on average
180 s long with 40% speech were used for testing
the system. The average SNR is around 5 dB.

3) DARPA RATS [53]: contains conversational
telephone speech recorded over degraded communi-
cations channels. 250 audio files from the database,
with an average duration of 700 s each were used in
this work for testing the system. Audio waveforms
containing regions of ”No Transmission”, which is a
high amplitude static noise was excluded from scor-

ing the SAD task as suggested by RATS guidelines.
The average SNR is ≈ −2 dB. The distortion in this
database is non-linear and correlated with speech.

B. Comparison With Baseline Systems

The performance of the proposed system was compared with
other popular pre-trained unsupervised SAD techniques. These
include single observation likelihood ratio test, with HMM
based smoothing (Sohn [54]), multiple observation likelihood
ratio test which uses harmonic frequency components as a pri-
mary feature (HMLRT [55]), SAD using long-term signal vari-
ability, which bases the system on the fact that speech and non-
speech sounds have different variability profiles (Ghosh [56])
and the recently proposed multi-condition trained ANN system
multiple source-filter model based features (Drugman [57]). It
should be noted that the baseline techniques look at smaller
time frames (≤ 100 ms), when compared to the proposed bio-
inspired technique which seeks to capture slower temporal mod-
ulations, with an integration time of 500 ms.

C. Sensory Mapping and Model Estimation

To estimate the GMM models, spectrotemporal modulation
features were extracted using the method specified in section
III. Default Gabor filters F (ω,Ω, t, f |Λ) were estimated at
rates ω (in Hz) {±2,±4,±8,±16,±32} scales (in cycles/oct)
{0.25, 0.5, 1, 2, 4, 8}, a total of 60 filters. The default parameters
Λ were initialized as follows ∀ω,Ω:

σtω Ω =
1
2ω

,σfω Ω =
1

2Ω
, θωΩ = 0 and αωΩ = 1

The audio time signals were first normalized to zero mean
and unit variance. The RSF representation T (ω,Ω, f |Λ), was
obtained by integrating the modulation space R(ω,Ω, t, f |Λ)
(equation (3) and (4)) over every 500 ms (frame size), with
a frame shift of 10 ms. The RSF representation T (ω,Ω, f |Λ)
which is of dimensions 10 × 6 × 128, then underwent dimen-
sionality reduction using the TSVD based technique, to obtain
a 96 dimensioned feature vector VΛ , while ensuring that 99% of
variance was retained. 48 mixture GMMs representing speech
and non-speech classes with diagonal covariance were estimated
using the respective 96 dimensional feature representation. In-
stead of a single non-speech model Φn as represented in equa-
tion (5), a cohort of nine non-speech GMMs were estimated, for
each of the scenes in Table I, represented as Φn1 ,Φn2 , . . . ,Φn9 .

A cohort of non-speech models, were observed to work sig-
nificantly better, as opposed to using a single non-speech model
to represent the large variety of non-speech data. When a single
non-speech model was used, it was observed that the choice of
number of mixtures of the GMM model played a far too impor-
tant a role. While using large number of mixtures resulted in
overfitting the data, smaller number of mixtures, given the di-
verse nature of the data, resulted in the non-speech GMM model
also encompassing the speech regions. Running the GA with a
single non-speech model setup, only a marginal improvement
in the d-prime measure was observed, not as significant as the
one obtained with a cohort of non-speech models. The log like-
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Fig. 5. DET curves using the proposed as well as the baseline algorithms for all the test databases. X axis denotes the probability of false alarm and the Y axis
denotes the probability of miss.

lihood ration (LLR) required for adaptation and classification
was estimated with the cohort of non-speech models as,

LLR = log
(

P (VΛ |Φs)
maxi∈{1,2,...,9} P (VΛ |Φni )

)
(7)

D. Sensory Mapping Adaptation

The restricted set of the values the parameters can adopt were
defined as follows:

Sσt =
[

1
1.4ω

,
1

1.6ω
,

1
1.8ω

,
1
2ω

,
1

2.2ω
,

1
2.4ω

,
1

2.6ω

]

Sσ f =
[

1
1.4Ω

,
1

1.6Ω
,

1
1.8Ω

,
1

2Ω
,

1
2.2Ω

,
1

2.4Ω
,

1
2.6Ω

]

Sθ (in degrees) = [−4.5,−3,−1.5,0, 1.5, 3, 4.5]

Sα = [0.7, 0.8, 0.9,1, 1.1, 1.2, 1.3]

The default parameter values are indicated in bold. With the
filter-bank comprising of 60 filters and all sets having a cardinal-
ity of 7, the parameter search space is of the order 2407 . Using
the held-out dataset of non-speech and low-SNR noisy speech
samples, GA was run to obtain a robust set of Gabor filters
represented as the parameter set Λ̂ = (σ̂tω Ω , σ̂fω Ω , θ̂ωΩ , α̂ωΩ).

Fig. 6 shows the performance of adaptation process in terms of
d-prime of the fittest member of the population at each iteration
of the Genetic algorithm. As can be seen, there is a marked
increase in the d-prime measure of the fittest member in the
initial few generations, with a more gradual improvement at the
later generations. The d-prime measure on the held-out set was

Fig. 6. Plot shows the increasing d-prime measure of the fittest member as
generations propagate, stopping at generation 78.

found to improve from 1.91 (Λ) to 2.34 (Λ̂) over 78 generations
before reaching the stopping criterion (no change in fitness over
25 generations).

Further, in order to establish the statistical significance of the
adaptation process over the default system, the same process was
repeated 10 times to obtain 10 different sets of retuned filters. In
the following section, we will compare the systems derived from
these independent runs with the original (unadapted) system
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to show statistically significant improvements across different
SNRs. A t-test is performed to probe the null hypothesis that
the EER values from different runs of the adaptation process
are from a distribution with the mean equal to the EER of the
default system (G-Orig).

E. Sensory Mapping Adaptation Versus Model Adaptation

In the proposed framework, the clean speech and non-speech
models are kept fixed and are used to provide feedback to adapt
the sensory mapping process. We compared the performance of
the proposed system with that of a system where the model is
adapted. We estimated adapted speech models, using Maximum
a posteriori (MAP) technique, for each of the 6 noise cases (4
classes from QUT, Darpa Rats, SPINE2) using 300 s of noisy
speech data from the respective noise class. We seek to compare
the performance of such a model adaptation process vis-a-vis
adapting the sensory mapping process which has no access to
data from the test databases.

F. Role of SNR of Held-Out Data

For our primary system, the retuning of the filters was per-
formed using low SNR mismatched speech data (≤ 0 dB). We
also investigated how the effectiveness of the adaptation pro-
cess varied on using a held-out set at different SNR levels
(either higher, matched or lower than the test condition). In
order to do so, first, the noisy speech component of the adap-
tation data was restricted to one of these SNR values (in dB),
{15, 10, 5, 0,−5,−10}. Then using GA, a different set of re-
tuned Gabor filter parameters were estimated for each of these
held-out adaptation datasets. The aim here is to employ each of
these 6 retuned filters on test data at different SNR, in order to
study the efficiency of the adaptation process in relation to SNR
of the data used for adaptation and SNR of the test data.

VI. SPEECH ACTIVITY DETECTION SYSTEM: RESULTS

A. Equal Error Rate

Fig. 7 shows the performance of all methods in terms of
Equal Error Rate (EER) at various SNRs for data from the QUT
database. Test data includes 3 types of additive noise as well as
the reverberation case. The performance on using the original
Gabor filters (pre-adaptation parameters Λ) is denoted as G-Orig
and the retuned filters are denoted as G-Adap (post-adaptation
Λ̂). As can be seen in the bar plot, the adapted sensory mapping
setup G-Adap shows a marked improvement over the default
process G-Orig. The improvement is particularly significant
in the low SNR conditions. The adapted process also outper-
forms other baseline methods by significant margin in very low
SNR conditions of −5 and −10 dB SNR. The error bar over
the adapted system signifies the standard deviation of the er-
ror rates obtained from 10 independent runs of the algorithm.
A t-test comparing the default system (G-Orig) with the differ-
ent adapted systems (G-Adap) confirms that all adapted systems
are statistically significant (p ≤ 0.005) for all SNR values lower
than 10 dB, as shown in Fig. 7.

Fig. 7. Bar plot shows the average Equal Error Rate (EER) estimated using
the proposed and the baseline techniques at various SNR on the 4 noise types
of the QUT database. The error bar on the adapted system signifies the standard
deviation of the EERs obtained on using the different adapted filters obtained
during the 10 runs of the algorithm. ∗ indicates p ≤ 0.005, on performing a
t-test with the null hypothesis that the EER values from different runs of the
adaptation process, is from a distribution with the mean equal to the EER of the
default system (G-Orig).

Fig. 5 shows the Detection Error Trade-off (DET) curves
for all three testing databases using the proposed as well as
other baseline systems. For the QUT database, the DET plots
are shown separately for each of the different background noise
scenarios. It can be seen that on employing bio-mimetic features,
G-Orig and G-Adap perform relatively well for additive noise
cases, with a considerable improvement with the retuned filters.
For the reverberation case, the default sensory mapping process
G-Orig performs poorly, while the adapted filters G-Adap show
a far superior performance. It should be noted that the adapta-
tion was performed using additive noise and that the reverber-
ation case represents a highly mismatched scenario. Similarly,
a notable improvement can be observed with the adapted setup
(G-Adap) over the default setup for the RATS database, again
with non-linear noise distortions. In the case of SPINE2, the
HMLRT method performs the best, though at very low prob-
ability of false alarm, the probability of miss is considerably
lower on using the proposed method.

B. Spotlight on Speech and Non-Speech Unique Regions

From the EER numbers, it is evident that there is considerable
enhancement of robustness on adapting the sensory mapping
process, even for novel unseen test data. Except for the SPINE2
dataset, the proposed method has the lowest equal error rate
when compared to other SAD systems. It is worth noting that
even in the case of RATS with correlated unseen noise condi-
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TABLE II
SENSORY MAPPING ADAPTATION VERSUS MODEL ADAPTATION

Database Adaptation of Filters Adaptation of models

QUT 8.85 8.64
RATS 10.73 23.50
SPINE2 10.43 23.89

tions, the adapted filters that use the original clean speech GMM
still yields an equal error rate of around 10% .

To shed light on the benefits gained from the adaptation
operation, we revisit the example in Fig. 4 used earlier to mo-
tivate the need for adaption in Section IV. This particular ex-
ample was from the QUT Street City test database. Fig. 4(b)
shows the histograms of LLR values of noisy speech and non-
speech with the original (Λ) and adapted filters (Λ̂). The results
somewhat refute our original hypothesis that the adaptation pro-
cess will repel the the speech/non-speech histograms away from
each other by maximizing the discriminability between the two
classes. Instead, the results reveal that the adaptation process
tends to tighten the range of LLR values for both speech and
non-speech especially at low SNR values, hence resulting in
considerably less overlap between the speech and non-speech
LLR histograms. It can be inferred from this that the adapted
sensory mapping process attempts to shine the spotlight strongly
on speech unique regions and certain non-speech unique regions
of the RSF space. While this results in greater LLR values for
both classes, it also results in less variability in terms of likeli-
hood values when presented with noisy speech and non-speech,
implying higher separability. Fig. 4(c) shows the equal error
rate as a function of SNR, with the original and adapted filters.
For this particular example, there is an improvement of ≈ 23
percentage points in terms of absolute EER at −10 dB SNR.
The error bar signifies the standard deviation of the error rates
obtained on using adapted filters estimated over 10 different
runs of the algorithm on the test utterance at different SNRs.

C. Sensory Mapping Adaptation Versus Model Adaptation

The performance of the proposed system was compared to the
scenario where data from a test case is available (300 s) and the
models can be adapted using a Maximum a posteriori (MAP)
technique (see Section V). It should be noted that for the sensory
mapping adaptation system, no data from the test databases was
used.

It can be seen in Table II that the proposed method (based on
feature adaptation) performs significantly better over model-
adapted systems when tested on the RATS and SPINE2
databases. Model adaptation leads to modest improvements over
feature adaptation on the QUT database (averaged across the 4
noise types). It is important to highlight that even though 300 s
of data is used to adapt the models (in case of MAP adapta-
tion systems), the non-stationary nature of the noise (especially
in the RATS and SPINE2 datasets) is insufficient to adapt the
clean speech models. In such dynamic noise cases, feature-based
adaptation appears to be far more effective with far less depen-
dence on test data being available. In contrast, in relatively

Fig. 8. A representation of the EER spread at different SNRs of QUT test data
in relation to the SNR of the adaptation data used to adapt the sensory mapping
process. The image was interpolated (for visualization purposes) to maintain
smoothness in representation

stationary cases such as QUT database, model-based adapta-
tion is reasonably effective in adjusting the models; though our
results indicate that feature-based adaptation performs almost
similarly to MAP-adaptation.

D. Role of SNR of Adaptation Data

It should be noted that for the results discussed thus far,
the retuning of the filters was performed using low SNR mis-
matched speech data (≤ 0 dB). Our findings indicate that such
an adapted system yields significant improvement in robustness
across all SNR and even in severely mismatched conditions like
the reverb-pool from the QUT database and the RATS database.
We next investigate the effectiveness of the adaptation process
in relation to the SNR of the held-out set. Fig. 8 shows the av-
erage EER spread for the QUT database across different SNR,
in relation to the SNR of the held-out adaptation data (setup
explained in Section V-E).

As can be seen in the figure, even for high SNR test data, using
low SNR held-out adaptation data, resulted in a more accurate
system, when compared to using SNR matched adaptation data.
For low SNR test data, it can be that observed that using a set
of filters retuned using high SNR adaptation proves to be highly
detrimental in terms of EERs. On studying the LLR values for
these cases, it was observed that adaptation using just the low
SNR data, resulted in far narrower histograms (Fig. 4), resulting
in decreased risk of misclassification. This indicates, lower the
SNR of the speech data used for adaptation, further restricted
are the regions of the RSF space that are emphasized by the
feedback from the models. This leads to decreased variability in
LLR values; irrespective of the SNR of the test data.

E. Effectiveness of the Gabor Parameters

The parameters that were retuned were the gain αω ,Ω , band-
width of the Gaussians along time σtω Ω and frequency σfω Ω
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Fig. 9. Bar plot shows the Equal Error Rate (EER) estimated with the i)
Original filters ii) retuning just the gain parameter α iii) parameters σt σf iv)
parameter θ v) retuning all parameters Λ̂

and the orientation θω ,Ω parameters. In order to explore the
effectiveness of retuning each of these three parameters, each
of the parameters were retuned using GA in isolation, while
keeping the other two parameters fixed at their default values.
Fig. 9 shows the EER obtained for each of the three databases on
employing the original default filters (G-Orig) and the adapted
filters. It can be seen that for all 3 databases, just retuning one of
the parameters also leads to an improvement in the EER. In fact
for the SPINE2 database, the filters with just the bandwidths
retuned perform best. For the QUT and DARPA RATS
databases, retuning all three parameters (G-Adap All) perform
best, while just retuning the orientation parameter θωΩ performs
next best in terms of EER.

VII. DISCUSSION

In this work, we sought to leverage some of the key pro-
cesses observed in the mammalian auditory system for the task
of robust speech activity detection. We first proposed the use of
two-dimensional parameterized Gabor filters to form the core
of a high-dimensional adaptable feature extraction process. We
then developed a mechanism using Genetic algorithm to retune
the Gabor filters, driven by the feedback from clean speech
and non-speech models for a held-out set of mismatched exam-
ples. The proposed discriminatory non-linear setup differs sig-
nificantly from the linear transformation based setup explored
in [58].

We hypothesized that such an adapted system will scale for
other unseen conditions and validated it by showing marked im-
provement in performance of the system when tested in novel
adverse conditions. It should be noted that even with a small
restricted set of adaptable parameter space, there is a signifi-
cant improvement in robustness on adapting the Gabor filters;

thereby highlighting the importance of the joint spectrotemporal
modulation space and the effectiveness of task driven adaptation
within that space.

As has been emphasized earlier, the clean speech and the
cohort non-speech models in this work serve as fixed statis-
tical representations. They are then used to provide feedback
for adapting the bottom-up process to enhance robustness with
respect to these models. It is in this detail that the proposed
methodology differs from other methods like model adapta-
tion or multi-condition training based techniques that seek to
enhance robustness of SAD system. While there have been rela-
tively fewer efforts that incorporate such feedback-driven adap-
tation of the sensory mapping processes in audio processing
applications, a host of such techniques have been explored in
the field of machine vision [59]–[67], especially for tasks like
visual object detection in complex scenes.

For instance, in [65], the popular biologically inspired HMAX
model [68] of bottom-up image processing for object recog-
nition, is first cast in probabilistic terms to form a bayesian
network. Feedback as belief propagation through the bayesian
network, is used to modulate the HMAX like image processing
setup in line with the behavioral goals. In [67] it is shown that
deep belief networks can be employed to perform hierarchical
probabilistic inference and an example of top-down inference
is demonstrated using face recognition data. In [69], top-down
saliency is integrated into a deep network based setup for object
recognition. Similar to this paper, it was shown that summary
statistics of the objects in isolation (analog to clean speech
model) can be used to modulate the saliency response of the
network depending on the discriminatory power of the underly-
ing features. This discriminatory power of the network is shown
to be enhanced over multiple layers of the network. In [60],
[61], [64], which deal with detecting visual objects in robotic
applications, long-term memory representations of multiple ob-
jects are first learnt during the training phase. When presented
with an object query, relevant top-down biases with respect to
the object model are applied to enhance the ability of the system
to identify the queried object.

In conclusion, in this work we have outlined a framework that
leverages task driven adaptation successfully for the purpose of
highly robust speech activity detection. Using a parameterized
Gabor filter based setup, we have illustrated the effectiveness
of adaptation in the spectrotemporal modulation space, driven
by feedback from the higher level models. While in this work,
the adaptation process is incorporated prior to testing, using
a held-out data set, as future work, we plan to explore rapid
on the fly unsupervised adaptation in novel unseen conditions,
biased by the feedback from the statistical representations. In
the mammalian system, it has also been observed that in a task
driven setting, along with sensory mapping adaptation, there is
also modulation of the cognitive and decision making areas of
the brain [70]–[72]. We plan to extend the proposed framework
to also leverage this aspect of the mammalian auditory system.
In the context of this work, it would imply adapting the models
themselves in tandem with the sensory mapping adaptation, in
a complementary manner.
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