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Adaptive Noise Suppression of Pediatric Lung
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Abstract— Goal: Chest auscultation constitutes a portable low-
cost tool widely used for respiratory disease detection. Though it
offers a powerful means of pulmonary examination, it remains
riddled with a number of issues that limit its diagnostic capabil-
ity. Particularly, patient agitation (especially in children), back-
ground chatter, and other environmental noises often contaminate
the auscultation, hence affecting the clarity of the lung sound itself.
This paper proposes an automated multiband denoising scheme for
improving the quality of auscultation signals against heavy back-
ground contaminations. Methods: The algorithm works on a sim-
ple two-microphone setup, dynamically adapts to the background
noise and suppresses contaminations while successfully preserving
the lung sound content. The proposed scheme is refined to off-
set maximal noise suppression against maintaining the integrity of
the lung signal, particularly its unknown adventitious components
that provide the most informative diagnostic value during lung
pathology. Results: The algorithm is applied to digital recordings
obtained in the field in a busy clinic in West Africa and evaluated
using objective signal fidelity measures and perceptual listening
tests performed by a panel of licensed physicians. A strong prefer-
ence of the enhanced sounds is revealed. Significance: The strengths
and benefits of the proposed method lie in the simple automated
setup and its adaptive nature, both fundamental conditions for
everyday clinical applicability. It can be simply extended to a real-
time implementation, and integrated with lung sound acquisition
protocols.

Index Terms—Frequency band analysis, lung sounds, short-time
Fourier transform, spectral energy, spectral subtraction.

I. INTRODUCTION

THE use of chest auscultation to diagnose lung infections
has been in practice since the invention of the stethoscope

in the early 1800s. It is a diagnostic instrument widely used by
clinicians to “listen” to lung sounds and flag abnormal patterns
that emanate from pathological effects on the lungs. While often
complemented by other clinical tools, such as chest radiogra-
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phy or other imaging techniques, as well as chest percussion
and palpation, the stethoscope remains a key diagnostic de-
vice due to its portability, low cost, and its noninvasive nature.
Chest auscultation with standard acoustic stethoscopes is not
limited to resource-rich industrialized settings. In low-resource
high-mortality countries with weak health care systems, there is
limited access to diagnostic tools like chest radiographs or ba-
sic laboratories. As a result, health care providers with variable
training and supervision rely upon low-cost clinical tools like
standard acoustic stethoscopes to make critical patient manage-
ment decisions. Despite its universal adoption, the use of the
stethoscope is riddled by a number of issues including subjec-
tivity in interpretation of chest sounds, interlistener variability
and inconsistency, need for medical expertise, as well as vulner-
ability to ambient noise which can mask the presence of sound
patterns of interest.

The issue of environmental noise contaminations is of partic-
ular interest, especially in busy clinics and rural health centers
where a quiet examination environment is often not possible,
background chatter and other environmental noises are com-
mon, and patient agitation (especially in children) contaminate
the sound signal picked up by the stethoscope. This distortion
affects the clarity of the lung sound, hence limiting its clinical
value for the health care practitioner. It also impedes the use of
electronic auscultation combined with computerized lung sound
analysis which are gaining traction in an effort to remedy the
inconsistency limitations of standard (acoustic) stethoscope de-
vices and to provide an objective and standardized interpretation
of lung sounds [1]–[3]. However, these automated approaches
have mainly been validated in well-controlled or quiet clini-
cal settings with adult subjects. The presence of background
noise impedes the applicability of these algorithms or leads to
unwanted false positives [4].

The current study investigates the use of multiband spectral
subtraction to address noise contaminations in busy patient-
care settings, where prominent subject-centric noise and room
sounds corrupt the recorded signal and mask the lung sound of
interest. The setup employs a simple digital stethoscope with
a mounted external microphone capturing the concurrent envi-
ronmental or room noise. The algorithm focuses on two parallel
tasks: 1) suppress the surrounding noise; 2) preserve the valu-
able lung sound content. While spectral subtraction is a generic
signal denoising approach, its applicability to the problem at
hand is nontrivial in two ways: First, although the signal of
interest (i.e., lung sounds) has relatively well-defined charac-
teristics [5], [6], unknown anomalous sound patterns reflecting
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lung pathology complicate the analysis of the obtained signal.
These adventitious patterns vary from quasi-stationary events,
such as wheezes to highly transient sounds such as crackles
[7], [8]. They are unpredictable irregular patterns whose signal
characteristics are not well defined in the literature [9]–[11].
Yet, any processing needs to faithfully preserve these occur-
rences given their presumed clinical and diagnostic significance.
Second, noise is highly nonstationary and its signal character-
istics differ in the degree of overlap with the signal of inter-
est. Noise contaminations can include environmental sounds
picked up in the examination room (chatter, phones ringing, fans,
etc.), patient-specific noises (child cry, vocalizations, agitation),
or electronic/mechanical noise (stethoscope movement, mobile
interference).

This paper tries to balance the suppression of the undesired
noise contaminations while maintaining the integrity of the lung
signal along with its adventitious components. The multiband
spectral scheme presented here carefully tunes the critical pa-
rameters in spectral subtraction in order to maximize the im-
proved quality of the processed signal. The performance of the
proposed approach is validated by formal listening tests per-
formed by a panel of licensed physicians as well as objective
metrics assessing the quality of the processed signal. Sections II
and III describe the theory and implementation details of the
proposed algorithm. Section IV discusses the formal listening
experiment setup. Evaluation results are described in Section V,
including comparisons to existing methods. We finish with a
general discussion of the proposed approach in Section VI.

II. MULTIBAND SPECTRAL SUBTRACTION

Spectral subtraction algorithms have been widely used in
fields of communication and speech enhancement to suppress
noise contaminations in acoustic signals [12], [13]. The gen-
eral framework behind these noise reduction schemes can be
summarized as follows: let y(n) be a known measured acoustic
signal of length N and assume that it comprises of two addi-
tive components x(n) and d(n), corresponding respectively to a
clean unknown signal we wish to estimate and an inherent noise
component which is typically not known. In many speech ap-
plications, the noise distortion is estimated from silent periods
of the speech signal that are identified using a voice activity de-
tector [13]. Alternatively, the noise distortion can be estimated
using a dual or multimicrophone setup, where a secondary mi-
crophone picks up an approximate estimate of the noise con-
taminant. Here we employ the latter, a dual-microphone setup
capturing both the internal signal coming from the stethoscope
itself, and the external signal coming from a mounted micro-
phone. The external signal is assumed to be closely related to
the actual noise that contaminates the lung signal of interest, and
shares its spectral magnitude characteristics with possibly dif-
ferent phase profiles due to their divergent traveling trajectories
to the pickup microphones.

Here noise is assumed to have additive effects on the desired
signal and originate through a wide-sense stationary process.
Without loss of continuity, we alleviate the stationarity require-
ments for the noise process, and assume a smoothly varying
process whose spectral characteristics change gradually over

successive short-time periods. In this paper, such noise signal
d(n, τ) represents the patient- or room-specific noise signal;
x(n, τ) denotes the desired unknown clean lung sound infor-
mation, free of noise contaminations; and y(n, τ) denotes the
acoustic information captured by the digital stethoscope

y(n, τ) = x(n, τ) + d(n, τ). (1)

τ is used to represent processing over short-time windows
w(n). In other words, x(n, τ) = x(n)w(τ − n) and similarly
for y(n, τ) and d(n, τ). For the corresponding frequency-
domain formulation, let X(ω, τ) denote the discrete Fourier
transform (DFT) of x(n, τ), implemented by sampling the
discrete-time Fourier transform at uniformly spaced frequen-
cies ω. Letting Y (ω, τ) and D(ω, τ) be defined in a similar
way for y(n, τ) and d(n, τ), (1) becomes: |Y (ω, τ)|ejφy (ω,τ ) =
|X(ω, τ)|ejφx (ω,τ ) + |D(ω, τ)|ejφd (ω,τ ) . Short-term magni-
tude spectrum |D(ω, τ)| can be approximated as |D̂(ω, τ)| using
the signal recorded from the external microphone. Phase spec-
trum φd(ω, τ) can also be reasonably replaced by the phase of
the noisy signal φy (ω, τ) considering that phase information has
minimal effect on signal quality especially at reasonable signal-
to-noise ratios (SNR) [14]. Therefore, the denoised signal can
be formulated as

X̂(ω, τ) = (|Y (ω, τ)| − |D̂(ω, τ)|) ejφy (ω,τ ) . (2)

The same formulation can be extended to the power spectral
density domain by making the reasonable assumption that en-
vironmental noise d(n, τ) is a zero-mean process, uncorrelated
with the lung signal of interest x(n, τ)

|X̂(ω, τ)|2 = |Y (ω, τ)|2 − |D̂(ω, τ)|2 . (3)

Building on this basic spectral subtraction formulation to syn-
thesize the desired signal, we extend this design in a number of
ways

1) Extending the subtraction scheme into multiple frequency
bands {ωk} ∈ [ωmin

k , ωmax
k ]. This localized frequency

treatment is especially crucial given the variable, unpre-
dictable, and nonuniform nature of noise distortions that
affect the lung recording (see [15] for a discussion of sig-
nal characteristics of noise contaminants). Looking back
in (3), the subtraction term D̂(ω, τ) can be weighted dif-
ferently across frequency bands by constructing appropri-
ate weighting rules (δk ) that highlight the most informa-
tive spectral bands for lung signals.

2) Altering the scheme to weight the subtraction operation
across time windows and frequency bands by taking into
account the current frame’s SNR.

3) Reducing the residual noise in the signal reconstruction
by smoothing Y (ω, τ) estimate over adjacent frames.

Therefore, for frame τ and frequency band ωk , the enhanced
estimated signal spectral density is given by

|X̂(ωk , τ)|2 = |Ȳ (ωk , τ)|2 − αk,τ δk |D̂(ωk , τ)|2 . (4)

Bar notation Ȳ (ωk , τ) signifies a smooth estimate of Y (ωk , τ)
over adjacent frames. αk,τ is an oversubtraction factor adjusted
by the current frame’s SNR, for each band ωk and frame τ . δk

is a spectral weighting factor that highlights lower frequencies
typically occupied by lung signals [5], [16] and penalizes higher
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frequencies where noise interference can spread. Partial noise
is then added back to the signal (5) using a weighing factor
γτ ∈ (0, 1) to suppress musical noise effects [12], [17]. The
final estimate x̃(n) is resynthesized using the inverse DFT and
overlap and add method across frames [13]

|X̃(ωk , τ)|2 = (1 − γτ )|X̂(ωk , τ)|2 + γτ |Ȳ (ωk , τ)|2 . (5)

III. METHODS

Lung signals were acquired using a Thinklabs ds32a digital
stethoscope at 44.1-kHz rate, by the Pneumonia Etiology Re-
search for Child Health (PERCH) study group [18]. Thinklabs
stethoscopes used for the study were mounted with an indepen-
dent microphone fixed on the back of the stethoscope head, cap-
turing simultaneous environmental contaminations without any
hampering of the physician’s examination. Auscultation record-
ings were obtained from children enrolled into the PERCH
study with either World Health Organization-defined severe and
very severe clinical pneumonia (cases) or community controls
without clinical pneumonia [19] in a busy clinical setting in
Basse, Gambia in West Africa. A total of 22 infant recordings
among hospitalized pneumonia cases with an average age of
12.2 months (2–37 months) were considered. Following the ex-
amination protocol, nine body locations were auscultated for a
duration of 7 s each. The last body location corresponded to a
cheek position and is not used in this study.

Noise contaminations were prominent throughout all record-
ings in the form of ambient noise, mobile buzzing, background
chatter, intense subject’s crying, musical toys in the waiting
room, power generators, vehicle sirens, or animal sounds. Pa-
tients were typically seated in their mothers’ lap and were quite
agitated, adding to the distortion of auscultation signal.

A. Preprocessing

All acquired signals were low-pass filtered with a fourth-order
Butterworth filter at 4 kHz cutoff, downsampled to 8 kHz, and
centered to zero mean and unit variance. Resampling can be
justified by guidelines of the CORSA project of the European
Respiratory Society [16], as lung sounds are mostly concen-
trated at lower frequencies.

A clipping distortion algorithm was then applied to correct
for truncated signal amplitude (occurring when the microphone
reached maximum acoustic input). Although clipped regions
were of the order of a few samples per instance, they produced
very prominent signal distortions. The algorithm identifies re-
gions of constant (clipped) amplitude, and replaces these regions
using cubic spline interpolation [20].

B. Implementation

The proposed algorithm employs a wide range of parameters
that can significantly affect the reconstructed sound quality. An
initial evaluation phase using informal testing and visual inspec-
tion reduced the parameter space. The preliminary assessment of
the algorithm suggests that 32 frequency bands were adequate,
using frequency-domain windowing to reduce complexity.
Since the algorithm operates independently among bands, their

TABLE I
TWO PROPOSED SETS OF VALUES FOR δk

fk band range δ
( 1 )
k value δ

( 2 )
k value

(0, F1 7 ] 0.01 0.01
(F1 7 , F2 5 ] 0.015 0.02
(F2 5 , F2 6 ] 0.04 0.05
(F2 6 , F2 7 ] 0.2 0.7
else 0.7 0.7

boundaries can affect the final sound output. Two ways of cre-
ating the subbands were explored: 1) logarithmic spacing along
the frequency axis and 2) equienergy spacing. The latter spac-
ing corresponds to splitting the frequency axis into band regions
containing equal proportions of the total spectral energy. Other
band splitting methods were excluded from analysis after the
initial assessment phase.

An important factor related to the frequency binning of the
spectrum is the weighing among frequency bands, regulated by
factor δk in (4). Since interfering noise affects the spectrum in
a nonuniform manner, we imposed this nonlinear frequency-
dependent subtraction to account for different types of noise. It
can be thought of as a signal-dependent regulator, taking into
account the nature of the signal of interest. Lung sounds are
complex signals comprised of various components [16], [21],
[22]: normal respiratory sounds typically occupy 50–2500 Hz;
tracheal sounds reach energy contents up to 4000 Hz, and
heart beat sounds vary within 20–150 Hz. Finally, wheeze and
crackles, the commonly studied adventitious (abnormal) events,
typically have a range of 100–2500 and 100–500 Hz, respec-
tively. Other abnormal sounds like stridor, squawk, low-pitched
wheeze or cough, all exhibit a frequency profile below 4 kHz.
The motivation for appropriately setting factor δk is to minimize
distortion of lung sounds that typically occupy low frequencies
and penalize noise occurrences with strong energy content at
high frequencies [15]. Our analysis suggested two value sets for
parameter δk in Table I. In logarithmic spacing, subbands F17 ,
F25 , F26 , and F27 correspond to 80, 650, 850, and 1100 Hz,
respectively. In equienergy spacing, Fm corresponds to the mth
subband whose frequency ranges are signal dependent; F17 , F25 ,
and F26 roughly correspond to 750, 2000, and 2300 Hz. Com-
paring the proposed sets, δ

(1)
k resulted in stronger suppression

of high-frequency content.
This nonlinear subtraction scheme was further enforced by the

frequency-dependent oversubtraction factor αk,τ defined in (6)
which regulates the amount of subtracted energy for each band,
using the current frame’s SNR. Larger values were subtracted
in bands with low a posteriori SNR levels, and the opposite was
true for high SNR levels. This way, rapid SNR level changes
among subsequent time frames could be accounted for. On the
other hand, such rapid energy changes were not expected to
occur within a frequency band, considering the natural environ-
ment where recordings took place; thus, the factor αk,τ could be
held constant within bands. Such frame-dependent SNR calcu-
lations could also remedy for a type of signal distortion known as
musical noise, which can be produced during the enhancement
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process.

αk,τ =

⎧
⎨

⎩

4.75 : SNRk,τ < −25

4 − 3SNRk , τ

20 : −25 ≤ SNRk,τ ≤ 40
1 : SNRk,τ > 40

SNRk,τ = 10 log10

(
∑

ω∈ωk

|Ȳ (ω, τ)|2/
∑

ω∈ωk

|D̂(ω, τ)|2
)

(6)

The window length for short-time analysis of the signal was
another crucial parameter that can result in noticeable artifacts,
since a long-time window might violate the stationarity assump-
tions made in Section II. Following the initial algorithm assess-
ment phase, we proposed two ways of short-time processing:
1) 50-ms window (N = 400) and 90% overlap; and 2) 80-ms
window (N = 640) with 80% overlap. Hamming windowing
w(n) was applied in the time waveform to produce all frames.
Negative values possibly arising by (4) were replaced by a
0.001% fraction of the original noisy signal energy, instead of
using hard thresholding techniques like half-wave rectification.

Finally, the enhancement factor γτ for frame τ in (5) was
an SNR-dependent factor and was set closer to 1 for high
SNRτ , and closer to 0 for low SNRτ values. For the cal-
culation of Ȳ (ωk , τ), the smooth magnitude spectrum was
obtained by weighting across ±2 time frames, given by
|Ȳ (ωk , τ)| =

∑2
j=−2 W (j)|Yτ−j (ωk )| with coefficients W =

[0.09, 0.25, 0.32, 0.25, 0.09].

C. Postprocessing

Typically, time intervals where the stethoscope is in poor
contact with the subject’s body tended to exhibit insignificant or
highly suppressed spectral energy. After the application of the
enhancement algorithm, intervals with negligible energy below
50 Hz were deemed uninformative and removed. A moving
average filter smoothed the transition edges.

IV. HUMAN LISTENER EXPERIMENT

The listening experiment was designed with a two-fold pur-
pose: 1) evaluate the effectiveness of the proposed enhancement
procedure and 2) evaluate the effect of the proposed parameters
including frequency band binning, window size, and customized
band-subtraction factor δk,τ on the perceived sound quality. All
methods were designed within the scope of the PERCH study
and approved by the Johns Hopkins Bloomberg School of Public
Health Institutional Board of Review (IRB).

A. Participants

Eligible study participants were licensed physicians with sig-
nificant clinical experience auscultating and interpreting lung
sounds from children. A total of 17 physicians (6 pediatric pul-
monologists and 11 senior pediatric residents) were enrolled,
all affiliated with Johns Hopkins Hospital in Baltimore, MD,
USA, with informed consent, as approved by the IRB at the
Johns Hopkins Bloomberg School of Public Health, and were
compensated for participation.

TABLE II
IMPLEMENTATION DETAILS BEHIND ALGORITHMS A, B, C, D RUNNING

ON DIFFERENT SHORT-TIME ANALYSIS WINDOWS, FREQUENCY BAND

SPLITTING AND SELECTION OF THE BAND-SUBTRACTION FACTOR δk

A B C D

Window (ms) 50 50 50 80
Band Split log equilinear log log

Selection δk δ
( 1 )
k δ

( 1 )
k δ

( 2 )
k δ

( 1 )
k

B. Setup

The experiment took place in a quiet room at Johns Hopkins
University and was designed to last for 30 min, including rest
periods. Data recorded in the field in the Gambia clinic were
played back on a computer to participants in the listening exper-
iment. Participants were asked to wear a set of Sennheiser PXC
450 headphones and listen to 43 different lung sound excerpts of
3 s duration each. The excerpts originated from 22 distinct pa-
tients diagnosed with World Health Organization-defined severe
or very severe pneumonia [19]. For each excerpt, the participant
was presented with the original unprocessed recording, along
with four enhanced versions A, B, C, D. These enhanced lung
sounds were obtained by applying the proposed algorithm with
different sets of parameter values, as shown in Table II. In order
to increase robustness of result findings, the experiment was
divided into two groups consisting of eight and nine listeners,
respectively. Each group was presented with a different set of
lung sound excerpts, making sure that at least one excerpt from
all 22 distinct patients were contained within each set. In order
to minimize selection bias, fatigue, and concentration effects,
the sound excerpts were presented in randomized order for every
participant. The list of presented choices was also randomized
so that, on the test screen, choice A would not necessarily cor-
respond to algorithmic version A for different sound excerpts,
and similarly for choices B, C, and D.

Listeners were given a detailed instruction sheet and pre-
sented with one sound segment at a time. They were asked to
listen to each original sound and the enhanced versions as many
times as needed. Listeners indicated their preferred choice while
considering the preservation or enhancement of lung sound con-
tent and breaths, and the perceived sound quality. Instructions
clearly stated that this was a subjective listening task with no
correct answer. If participants preferred more than one options,
they were instructed to just choose one of them. If they pre-
ferred all of the enhanced versions the same, but better than the
original, an extra choice, “Any,” (brief for “Any of A, B, C, D”)
was added.

C. Dataset

Data included in the listening experiment was chosen
“pseudo-randomly” from the entire dataset available. Although
initial 3-s segments were chosen randomly from the entire data
pool, the final dataset was slightly augmented in order to in-
clude: 1) abnormal occurrences comprising of wheeze, crackles
or other; 2) healthy breaths; and 3) abnormal and normal breaths
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Fig. 1. Spectrogram representation of four lung sound excerpts. Top panel: internal microphone; middle panel: external microphone recording; bottom panel:
signal as outputted by spectral subtraction algorithm B. The quasi-periodic energy patterns, more pronounced in (a) and (b), correspond to the breathing and heart
cycles and are well preserved in the enhanced signal. (a) Electronic interference contaminations and (b) soft background cry have successfully been removed.
Panels (c) and (d) show cases heavily contaminated by room noise and loud background crying which have substantially been suppressed using the proposed
algorithm. Notice how concurring adventitious events were kept intact in (c) at 1.5–3 s and in (d) at 0.6–0.8 s . The period at the beginning of (d) corresponded to
an interval of no contact with the child’s body and was silenced after the postprocessing algorithm.

in both low- and high-noise environments. A final selection
step ensured that recordings from different body locations were
among the tested files.

V. RESULTS

The validation of the proposed enhancement algorithm re-
quires a balance of the audio signal quality along with a faith-
ful conservation of the spectral profile of the lung signal. It is
also important to consider that clinical diagnosis using stetho-
scopes is ideally done by a physician or health care profes-
sional whose ear has been trained accordingly, i.e., for listening
to stethoscope-outputted sounds. Any signal processing to im-
prove quality should not result in undesired signal alterations
that stray too far from the “typical” stethoscope signal, since
the human ear will be interpreting the lung sounds at this time.
For instance, some aspects of filtering result in “tunnel hear-
ing” effects, which would be undesirable even if the quality is
maintained. In order to properly assess the performance of the
proposed algorithm, we used three forms of evaluations: visual
inspection, objective signal analyses, and formal listening tests,
as detailed below. We also used the field recordings employed
in the current study to compare the performance of existing
enhancement algorithms from the literature.

A. Visual Inspection

Fig. 1 shows the time–frequency profile of four lung sound
excerpts appearing per column. Typical energy components that
emerge from such spectrograms are the breaths and heart beats,
producing repetitive patterns that follow the child’s respiratory
and heart rate—[see (a) and (b)]. Such energy components are
well preserved in the enhanced signals (bottom). Middle rows
depict concurrent noise distortions captured by the external mi-
crophone. Contamination examples include (a) mobile interfer-
ence and (b)–(d) background chatting or crying, which have
successfully been suppressed or eliminated, providing a clearer
image of the lung sound energies.

B. Objective Validation of Processed Signals

To further assess improvements on the processed signals, ob-
jective methods were used to compare the signals before and af-
ter processing. Choosing an evaluation metric for enhancement
is a nontrivial issue; many performance or quality measures
commonly proposed in the literature often require knowledge
of the true clean signal or some estimate of its statistics [23].
This is not feasible in our current application: biosignals, such
as lung sounds, have both general characteristics that can be es-
timated over a population, but also carry individual traits of each
patient that should be carefully estimated. It is also important to
maintain the adventitious events in the lung sound while miti-
gating noise contamination and other distortions. To provide an
objective assessment of the proposed method, we employed a
number of qualitative and quantitative measures coming from
telecommunication and speech processing fields but adapted to
the problem at hand. The metrics were chosen to assess how
much shared information remains in the original and enhanced
signals, relative to the background noise recording. While it is
important to stress that these are not proper measures of signal
quality improvement, they provide an informative assessment
of shared signal characteristics before and after processing.

1) Segmental Signal-to-Noise Ratio (fSNRseg): Objective
quality measure estimated over short-time windows account-
ing for signal dynamics and non-stationarity of noise [13]

fSNRseg = 10
T

∑T
τ =1

∑ K
k = 1 wk SNRF

∑ K
k = 1 wk

with SNRF = log10{(|X(k, τ)|2) / (|X(k, τ)| − |X̂(k, τ)|)2},
where wk represents the weight for frequency band k, X̂ repre-
sents the processed signal, and X typically represents the clean
(desired) signal. As mentioned above, in this paper, X will rep-
resent the background noise, since the clean uncontaminated
signal in not available. SNRF is calculated over short-time
windows of 30 ms to account for signal dynamics and non-
stationarity of noise using a Hanning window. For each frame,
the spectral representations X(k, τ) and X̂(k, τ) are computed
by critical band filtering. The bandwidth and center frequencies



2284 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 62, NO. 9, SEPTEMBER 2015

Fig. 2. (a) Average results with error bars on the evaluation of objective, quality, and intelligibility measures for original noisy signal (left bar) and the enhanced
signal (right bar), compared with noise as the ground truth. Enhanced signals were found to be more “distant” representations of the noise signals. Stars indicate
statistically significant differences. (b) Average responses of the listening text where bars indicate the preference percentage per choice. Left: overall results,
comparing average preference of the original sounds versus preference of any of the enhanced versions. Panel [A to Any] includes choices {A, B, C, D, Any};
Right: the breakdown among all choices. Choice Any of A,B,C,D has been abbreviated to Any.

of the 25 filters used and the perceptual (Articulation Index)
weights wk follow the ones proposed in [24] and [13]. Using
the described method, fSNRseg value can reach a maximum of
35 when the signals under comparison are identical. Compara-
tively, a minimum value just below −8 can be achieved when
one of the signals comes from a white Gaussian process.

2) Normalized-Covariance Measure (NCM): A metric used
specifically for estimated speech intelligibility (SI) by account-
ing for audibility of the signal at various frequency bands. It is
a speech-based speech transmission index measure capturing a
weighted average of a signal to noise quantity SNRN , where
the latter is calculated from the covariance of the envelopes
of the two signals over different frequency bands k [25] and
normalized to [0,1]. The band-importance weights wk followed
ANSI-1997 standards [26]. Though this metric is speech-centric
(as many quality measures in the literature), it is constructed to
account for audibility characteristics of the human ear, hence
reflecting a general account of improved quality of a signal as
perceived by a human listener

NCM = {
∑K

k=1 wk SNRN (k)} /
∑K

k=1 wk .

3) Three-Level Coherence Speech Intelligibility Index
(CSII): The CSII metric is also a SI-based metric based on the
ANSI standard for the speech intelligibility index (SII). Unlike
NCM, CSII uses an estimate of SNR in the spectral domain, for
each frame τ = 1, . . . , T : the signal-to-residual SNRN

ESI ; the lat-
ter is calculated using the roex filters and the magnitude-squared
coherence followed by [0,1] normalization. A 30-ms Hanning
window was used and the three-level CSII approach divided the
signal into low-, mid-, and high-amplitude regions, using each
frame’s root-mean-square level information [13], [27]

CSII = 1
T

∑T
τ =1

∑ K
k = 1 wk SNRN

E S I (k,τ )
∑ K

k = 1 wk
.

All metrics generally require knowledge of the ground truth
undistorted lung signal, which is not available in our setup. In
this paper, we apply them to contrast how much information
is shared between the improved and the background (noise)
signal, relative to the nonprocessed (original) auscultation sig-
nal. Specifically, each metric was computed between the time
waveforms of the original y(n) and the background noise d̂(n)
signals, then contrasted for the enhanced x̃(n) and the back-

ground d̂(n) signals. The higher the achieved metric value, the
“closer” the compared signals are, with respect to their sound
contents. Fig. 2(a) shows histogram distribution results for each
metric: fSNRseg yielded, on average, a value of 1.02 between
the original and the noise signals, likely reflecting leak through
the surrounding environment to the internal microphone. Such
measure was reduced to −0.44 when contrasting the improved
with the noise signal indicating reduced joint information. The
two distributions were statistically significantly different (paired
t-test: t-statistic = 15.99 and p-value pt = 3E − 13; Wilcoxon:
Z-statistic = 4.5 and p-value pw = 8E − 6) providing evidence
that the original signal was “closer”—statistically—to the sur-
rounding noise, relative to the enhanced signal. Significant dif-
ference was also observed in all other metrics [see Fig. 2(a)]
with NCM ( pt = 1E − 10; pw = 2 E − 6) , CSIImed ( pt =
1E − 10; pw = 3 E − 5), and CSIIhigh ( pt = 7E − 10; pw =
7E − 6).

C. Listening Experiment

While objective signal metrics hint to significant improve-
ments in the original recording postprocessing, the way to ef-
fectively validate the denoising value of the proposed algorithm
along with its clinical value for a health care professional is
via perceptual listening tests by a panel of experts. Following
the methods described in Section IV, the perceived quality of
the processed signals was assessed with formal listening eval-
uations. Fig. 2(b) summarizes the opinions of the panel of ex-
perts. Considering all listeners and all tested sound excerpts, the
bars indicate the percentage of preference among the available
choices. Bar plots were produced by first forming a contingency
table per listener, counting his/her choice preferences, and then
averaging across listeners. The vertical lines depict the standard
variation among all listeners. The listed choices on the x-axis
correspond one by one to the ones presented during the listening
test, where choice Any of A, B, C, D has been abbreviated to Any.
An extra panel [A to Any] is added here illustrating preference
percentages for any enhancement version of the algorithm, ir-
respective of choice of parameters. On average, listeners prefer
mostly choice Any (34.06% of the time), followed by choices
B and C. Overall, listeners prefer the enhanced signal relative
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to the original unprocessed signal 95.08% of the time. Consid-
ering responses across groups of listeners, results are consis-
tent across Group 1 and Group 2. A statistical analysis across
the two groups using a parametric t-test and a nonparametric
Wilcoxon rank sum test shows no difference among the two
populations except possibly for choice D. The corresponding p-
values for the t-test and the Wilcoxon test (pt , pw ) are: for choice
Original: (0.28, 0.23); choice A: (0.37, 0.52); choice B: (0.74,
0.62); choice C: (0.33, 0.74); choice D: (0.08, 0.10); choice Any:
(0.11, 0.05); and choice [A to Any]: (0.28, 0.23).

Analyzing the results, choice C is preferred over B when the
test sound consists of a low or fade normal breath. To better
understand this preference, it is important to note that algorithm
C is relaxed for higher frequencies due to the δk parameter.
Qualitatively, all low-breath excerpts retained the normal breath
information after noise suppression, but with an added soft-
wind sound effect. This wind distortion or hissing was at a
lower frequency range for algorithm B and proved to be less
pleasant than the one produced by algorithm C, which ranged
in higher frequencies. This observation was consistent across
different files and listeners. Looking further into algorithm C, a
larger preference variation was noticed for Group 2 when com-
pared to Group 1. This variation was found to be produced
by two participants who preferred C over any other choice
35% of the time and both preferred the original only in two
cases.

The original recording was preferred 4.9% of the time. While
this percentage constitutes a minority on the tested cases, a de-
tailed breakdown provides valuable insights on the operation of
the enhancement algorithm. In most cases, it is determined that
low-volume resulting periods affect the listeners’ judgments.

1) Clipping distortions make abnormal sound events even
more prominent. Clipping tends to corrupt the signal
content and produce false abnormal sounds for loud
breaths. However, when such clipping occurs during
crackle events, it results in more distinct abnormal sounds,
which can be better perceived than a processed signal with
muted clipping. For two such sound files in Group 1, 2/8
users prefer the original raw audio and for one such file in
Group 2, 2/9 prefer the original.

2) Child vocalization are typically removed after enhance-
ment. Since the algorithm operates with the internal
recording as a metric, any sound captured weakly by the
internal but strongly by the external microphone is flagged
as noise. One such file in Group 2 leads 4/9 users to prefer
the original sound: a faint child vocalization is highly sup-
pressed in the enhanced signal. As users are not presented
with the external recording information, it can be hard to
tell the origin of some abnormal sounds that overlap with
profiles of abnormal breaths. Nevertheless, a postanalysis
on the external microphone shows that this is indeed a
clear child vocalization.

3) Reduced normal breath sounds. The proposed algorithm
has an explicit subtractive nature; the recovered signal is,
thus, expected to have lower average energy compared to
the original internal recording. Before the listening test, all
recordings are amplified to the same level; however, iso-

lated time periods of the enhanced signal are still expected
to have lower amplitude values than the corresponding
original segment, especially for noisy backgrounds. This
normalization imbalance has perceivable effects in some
test files. For auscultation recordings in lower site posi-
tions, breath sounds can be faintly heard, and the subtrac-
tion process reduces those sounds even further. Two such
cases were included in the listening test, where suppres-
sion of a loud power generator noise resulted in a faded
postprocessed breath sound. In this case, listeners pre-
ferred the original file where the breath sounds stronger
than the processed version.

A finalized enhancement algorithm is proposed consisting of
parametric choices that combine versions B and C. The smoother
subtraction scheme enforced by factor δ

(2)
k is kept along with

the equilinear model of frequency band splitting using a 50-ms
frame size window. An informal validation by a few members of
the original expert panel confirms that the combined algorithm
parameters result in improved lung sound quality and preserva-
tion of low breaths.

D. Relation to Previous Work

A proper comparison to existing noise suppression meth-
ods for auscultation signals is largely limited due to the scarce
literature on this topic, especially when dealing with busy
real-life environments, particularly in pediatric patients. Pub-
lished methods typically consider auscultations in soundproof
chambers, highly controlled environments with low ambient or
Gaussian noise [28]–[29]. Moreover, the term noise often refers
to suppressing heart sounds in the context of healthy lung sound
analysis [30], [31], or to separate normal airflow from abnor-
mal explosive occurrences [32], [33]. Extending results from
published studies to realistic settings is nontrivial, particularly
in nonhealthy patients where abnormal lung events occur in
an unpredictable manner and whose signal characteristics may
overlap with those of environmental noise.

Here, we contrast our results with the performance of a pub-
lished lung sound enhancement scheme [34], which mainly fo-
cuses on the postclassification of auscultation sounds, rather
than the production of improved-quality auscultation signals to
be used by health care professionals in lieu of the original record-
ing. The authors adopted the speech-based spectral subtractive
scheme of Boll [35], which has well documented shortcom-
ings [36], [37]. For a fairer comparison, we used a more robust
instantiation of speech-based spectral subtraction, proposed in
[13] and [38], which we call here speechSP. We contrasted our
proposed method with speechSP, maintaining the same window
size, window overlap factor, and number of frequency bands of
Section III-B; both algorithms were applied on the same prepro-
cessed signals after downsampling, normalizing, and correcting
for clipping distortions.

A visual inspection of the speechSP method is sufficient to
observe the notable resulting artifacts. Fig. 3(a) illustrates an
example comparing the two methods when applied on the same
auscultation excerpt. SpeechSP algorithm highly suppressed the
wheezing segment around 2 s in Fig. 3(a), along with the crackle
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Fig. 3. Spectrogram illustrations comparing the proposed method with
(a) speechSP and (b) FX-LMS applied on the same sound excerpt. SpeechSP sup-
presses important lung sounds like crackle patterns (black circles) and wheeze
pattern (blue circle). FX-LMS convergence is challenged by both the parametric
setup and the complex, abrupt noise environment resulting in non-optimal lung
sound recovery. Colormap is the same as Fig. 1.

occurrences around 0.5 and 3.5 s. In this example (and all
cases in the current study—not shown), the speechSP method
suffered from significant sound deterioration; and in the ma-
jority of cases, the speechSP-processed signal was corrupted
by artifacts impeding the acoustic recognition of alarming ad-
ventitious events. Overall, the combination of visual inspec-
tion, signal analysis and informal listening tests, clearly indi-
cates that speechSP maximizes the subtraction of background
noise interference, at the expense of deterioration of the orig-
inal lung signal as well as significant masking of adventitious
lung events. Both effects are largely caused by its speech-centric
view which considers specific statistical and signal characteris-
tics for the fidelity of speech that do not match the nature of lung
signals.

Next, we compared the proposed method to active noise can-
cellation (ANC) schemes. Such algorithms typically focus on
noise reduction using knowledge of a primary signal and at
least one reference signal. Here, we consider the case of a sin-
gle reference sensor and use a feed-forward Filtered-X Least
Mean Squared algorithm (FX-LMS). FX-LMS has been previ-
ously used for denoising in auscultation signals recorded in a
controlled acoustic chamber with simulated high-noise interfer-
ence [39]. Here, we adopt an implementation of the normalized
LMS (NLMS) as in [39] and [40]. Using all signals of the study,
we tested the effectiveness of the NLMS in suppressing exter-
nal noise interference. The filter coefficients were optimized
in the MSE sense with filter tap-order NLMS varying between
[4, . . . , 120], step size ηLMS varying between [1E − 8, . . . , 2]
and denominator term offset step size CLMS in [1E − 8, . . . ,
1E − 2]. A representative example is shown in Fig. 3(b); zero
initial filter weights were assumed with the optimal solution oc-
curring for (NLMS , ηLMS , CLMS) = (90, 5E − 7, 1E − 8). Our
results indicate that NLMS fails to sufficiently reduce the effect
of external noise, especially in low SNR instances or during
abrupt transitions in background interferences.

As previously noted in [40], difficult acoustic environments
typically pose a challenge to ANC methods for auscultation
where ambient recordings are rendered ineffective as reference
signals. This limitation is due to a number of reasons [41]. First,
the presence of uncorrelated noise between the primary and
reference channels largely affects the convergence of NLMS

and the performance of the denoising filter. Nelson et al. [40]
have indeed demonstrated that using an external microphone
is suboptimal in case of auscultation recordings, proposing use
of accelerometer-based reference mounted on the stethoscope
in line with the transducer, a nonfeasible setup for our study.
Furthermore, iterative filter updates in the NLMS are heavily
dependent on the statistics of the observed signal and refer-
ence noise [42]. Abrupt changes in signal statistics pose real
challenges in updating filter parameters fast enough to prevent
divergence [43], [44]. This is particularly true in field auscul-
tation recordings where brusque changes in the signal often
occur due to poor body seal of the stethoscope—caused by
child movement or change of auscultation site. Noise sources
are also abruptly appearing and disappearing from the envi-
ronment (e.g., sudden patient cry, phone ring); hence, posing
additional challenges to the convergence of the algorithm with-
out any prior constraints or knowledge about signal statistics
or anticipated dynamics. Furthermore, unfavorable initial con-
ditions of the algorithm can highly affect the recovered signal
and lead to intractable solutions.

VI. DISCUSSION

In this paper, the task of suppressing noise contaminations
from lung sound recordings is addressed by proposing an adap-
tive subtraction scheme that operates in the spectral domain.
The algorithm processes each frequency band in a nonuniform
manner and uses prior knowledge of the signal of interest to
adjust a penalty across the frequency spectrum. It operates in
short-time windows and uses the current frame’s signal-to-noise
information to dynamically relax or strengthen the noise sup-
pression operation. As is the case with most spectral subtrac-
tion schemes, the current algorithm is formulated for additive
noise and is unable to handle convolutive or nonlinear effects.
A prominent example of such distortions are clipping effects
which are processed separately in this paper and integrated with
the proposed algorithm.

The efficiency and success of the proposed algorithm in sup-
pressing environmental noise, while preserving the lung sound
content, was validated by a formal listening test performed
by a panel of expert physicians. A set of abnormal and nor-
mal lung sounds were used for validation, chosen to span the
expected variability in auscultation signals, including the un-
expected presence of adventitious lung events and low breath
sounds. The expert panel judgments reveal a strong preference
for the enhanced signal. Post hoc analysis and informal follow-
up listening tests suggest that simple volume increase can help
to balance few cases where the desired lung sound is perceived
as weak.

Over the last years, an augmented literature has emerged on
lung sound processing with the aid of computerized analysis.
Most popular work has been on airflow estimation, feature ex-
traction, and detection of abnormal sounds and classification,
while recordings were acquired in quiet or soundproof rooms
to overpass the inherent difficulty of noisy environments. In
this context, noise cancellation typically refers to heart sound
suppression and a wide range of techniques have successfully
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been used: high-pass filtering, adaptive filtering, higher-order
statistics, independent component analysis, or multiresolution
analysis [30], [32], [45]. On the other hand, very few studies
address ambient noise in lung sound recordings and results are
typically presented on a small number of sounds, using graphical
methods or informal listening [33], [46]. This paper focuses on
real-environment noise cancellation, applicable to both normal
and abnormal respiratory sounds, and evaluated on a large scale
by objective/quality measures and a panel of expert physicians.

The strengths and benefits of the proposed paper lie in the
simple automated setup and its adaptive nature; both are funda-
mental conditions for applicability in everyday clinical environ-
ments, especially in crowded low-resource health centers, where
the majority of childhood respiratory morbidity and mortality
takes place. By design, the proposed approach can be simply ex-
tended to a real-time implementation and integrated with lung
sound acquisition protocols. By improving the quality of aus-
cultation signals picked-up by stethoscopes, the proposed study
hopes to provide medical practitioners with an improved record-
ing of lung signals that minimizes the effect of environmental
distortions and improves and facilitates the interface between
auscultation and automated methods for computerized analysis
and recognition of auscultation signals.
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